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Beginning with special cases of linear programming, I will describe 
these algorithms, and some of their properties. I will also briefly 
discuss the max-sum problem and related algorithms, and discuss some 
of the general challenges with numerical propagation algorithms in 
relation to classical constraint programming.



Crew pairing  
screenshot



In crew pariring system

generate many legal pairings

select an optimal subset of 
these pairings

generator

optimizer

solution



generator

optimizer

solution

min cx 
Ax ≥ 1     (set covering) 
Cx ≤ d     (base capacity) 

x binary vector

In crew pariring system



paqs optimizer

•  in-the-middle algorithm  
•  in-the-middle heuristic

In production since 
many years.

Regularly benchmarked, 
continuously improved.

Parallel implementation



the in-the-middle algorithm



The simple 
assignment problem

persons

tasks



⇒

⇒... ⇒



⇒

⇒... ⇒



Subtract average of 
largest and second 
largest numbers.

Iterate for all rows 
and columns until 
there are no more 
sign changes.

select assignments 
with positive cost!

Simplest possible algorithm? 
(just subtracting the smallest 
number does not work)

⇒

⇒... ⇒



In-the-middle 
for 0-1 ILP

iteratively make single constraints 
feasible by selecting the dual yi 
in-the-middle of the possible 
interval

A contains {-1,0,1}
b integer
inequalities ok

Consider



A “dual” algorithm

Minimize piecewise 
linear convex function 
with coordinate 
descent



Theorem:  

The in-the-middle algorithm can only solve “easy” ILP 
problems (the LP relaxation has a unique solution that is 
integer).

What about convergence?



a lot of zeros…

How does in-the-middle fail 
for difficult ILP’s?



A small difficult problem



in-the-middle heuristic 
for difficult 0-1 ILP’s

not invariant!

invariant



Now it suddenly 
works!

(weighted 8-queens problem)



in-the-middle heuristic

in-the-middle
algorithm in-the-middle

heuristic



Sweep mechanism

best results with as low 
disturbance as possible

convergence!

(also small random costs for resolving ties)



the max-sum problem



The max-sum problem

Allows a highly non-linear cost function

vector of discrete variables different subsets of 
the variables



Equivalent problems

g(w1) g(w3)g(w2)g(w1,w2) g(w2,w3)

constraint components

variable components



modelling and solving the max-sum problem as an ILP



The max-sum ILP

marginalization
constraints

normalization
constraints

For C, we introduce an extra variable xc, 
together with the constraint xc = 1.



Max-sum with the in-the-middle algorithm
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Iteratively update one subproblem at a time

Or solve entire subproblems with specialised algorithm!



Move in and move out…
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We want to keep 
the best 
combination still 
largest in 
constraint!

“non-conflicting” 

minimizes f(y)

move in variable 
components

move out, but not 
too much



What if we move out “too much”?

here we have 
moved out even 
more, we get a 
“conflict”!

(max-sum 
algorithm!)
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We can easily explain why the max-sum 
algorithm does not guarantee optimality!



Many interesting relationships between algorithms!

in-the-middle 
algorithm

max-sum 
algorithm

loopy belief 
propagation

generalised 
iterative scaling

tree-reweighted 
message passing

max-sum diffusion

in-the-middle 
heuristic

convergent

non-
convergent



Can we unify the models?



Let’s model the other way around: ILP to max-sum!



if we move out as 
much as possible 
but not too much…

same as in-the-
middle algorithm 
for the original ILP

max-sum 
algorithm

same as in-the-
middle heuristic 
(for α=1)

⇒

⇒

The in-the-middle updates can be seen as fast 
specialized max-sum constraint updates!

The distinction between an ILP model 
and a max-sum model is blurred!



To note from a constraint programming perspective

Numerical propagation can solve 
many non-trivial problems with 

propagation only!

(no combinatorial search!)



Summary

unify 
algorithms!

in-the-middle algorithm
in-the-middle heuristic

unify 
models!



END


