On the in-the-middle algorithm and heuristic and
some of its properties

Dag Wedelin, Data Science Division, CSE, Chalmers

Beginning with special cases of linear programming, | will describe
these algorithms, and some of their properties. | will also briefly
discuss the max-sum problem and related algorithms, and discuss some
of the general challenges with numerical propagation algorithms in
relation to classical constraint programming.
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In crew pariring system

generate many legal pairings

select an optimal subset of
these pairings

generator

optimizer

'

solution




In crew pariring system

min cx

Ax > 1

X binary vector

optimizer

'

solution




bags optimizer

* _in-the-middle algorithm

 in-the-middle heuristic




the in-the-middle algorithm
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Subtract average of
largest and second
largest numbers.

Iterate for all rows
and columns until
there are no more
sign changes.

Simplest possible algorithm!?
(just subtracting the smallest ,
select assighments

number does not work)
with positive cost!



In-the-middle
for O-1 ILP

MGY CX
Ax=b

K b;narj

A contains {-1,0,1}

b integer
inequalities ok

Consider

l

=y = A 4 2
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iteratively make single constraints
feasible by selecting the dual yi
in-the-middle of the possible
interval




A “dual” algorithm

Minimize piecewise
linear convex function
with coordinate
descent

min f(y) =

yb

F(j)

max CI

0<zx<1



Theorem:

The in-the-middle algorithm can only solve “easy” ILP

problems (the LP relaxation has a unique solution that is
integer).



How does in-the-middle fail
for difficult ILP’s?
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A small difficult problem
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in-the-middle heuristic
for difficult O-1 ILP’s
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Now it suddenly

works!

(weighted 8-queens problem)
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in-the-middle heuristic
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Sweep mechanism

convergence!

A best results with as low

/'/ / disturbance as possible
A AN

(also small random costs for resolving ties)



the max-sum problem



The max-sum problem



constraint components
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modelling and solving the max-sum problem as an ILP



The max-sum ILP

31

marginalization normalization
constraints constraints




Max-sum with the in-the-middle algorithm

OE] G

3\ 5\ 7 9} A
|

51 7 | 5\ -7 | 5]

start in-the-middle



Or solve entire subproblems with specialised algorithm!
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Iteratively update one subproblem at a time




Move in and move out...

We want to keep

4 -1\ - 0 2 \-o0 1 -1 {-c0 the best
5 41 -1 0 5 | g 4 1l o combination still
largest in
constraint!
\/ \/
“non-conflicting”
move in variable move out, but not

components too much minimizes f(y)




What if we move out ‘““‘too much’?

here we have
moved out even
more, we get a

We can easily explain why the max-sum o o
conflict”!

algorithm does not guarantee optimality!

(max-sum
algorithm!)



Many interesting relationships between algorithms!

generalised
i _the-middle iterative scaling

algorithm

max-sum diffusion

in-the-middle
heuristic

max-sum
algorithm

tree-reweighted

loopy belief message passing

propagation




Can we unify the models!?

Imax cx

max f(w) = ng(wk) +C Ax =
XTj € {O, 1}



Let’s model the other way around: ILP to max-sum!

max{2z, + 3z2 + 223 | x1 + 22 =1, 2 + 3 = 1, x,; binary}.

max g1(z1) + g2(22) + g3(z3) + ga(z1,22) + g5(x2, 73).

g1(z1) gq(w1,wo) ga(xo) g5(xo, z3) ga3(xz3)
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max cr

Ax = b
max f Z gk + C

XTj € {O, 1}
if we move out as same as in-the-
much as possible = middle algorithm
but not too much... for the original ILP
max-sum same as in-the-
algorithm = middle heuristic

The distinction between an ILP model
and a max-sum model is blurred!



To note from a constraint programming perspective

Numerical propagation can solve
many non-trivial problems with
propagation only!

(no combinatorial search!)



Summary

in-the-middle algorithm
in-the-middle heuristic

unify
algorithms!

unify
models!
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