
Introduction The FD-MCP Language Translation process Evaluation Future work

Expressive Models for Monadic Constraint
Programming

Pieter Wuille Tom Schrijvers

ModRef’10
St. Andrews, September 6, 2010

Introduction The FD-MCP Language Translation process Evaluation Future work

FD-MCP?

FD-MCP

FD-MCP:

is a CP system for Finite-Domain (FD) problems

is a subsystem of MCP, a Haskell CP framework

provides an EDSL for writing FD problems

Introduction The FD-MCP Language Translation process Evaluation Future work

Why an EDSL for CP Modelling?

EDSL

An EDSL (Embedded Domain Specific Language) is

more than an API: includes abstraction and syntactic sugar

still embedded in host language, and able to interact with it

Advantages

The result allows advantages of both:

Concise notation

Declarative syntax (not a sequence of function calls)

Full language feature set

Directly usable results

Introduction The FD-MCP Language Translation process Evaluation Future work

Haskell and MCP

Haskell

Haskell:

Lazy, purely functional programming language

Support for first-class and higher-order functions

Uses monads to order stateful operations

Supports user-defined operators and overloading through type
classes

MCP

Framework for CP in Haskell

Does not fix variable domain, solver backend, search strategy,
. . .

Introduction The FD-MCP Language Translation process Evaluation Future work

Structure

Introduction The FD-MCP Language Translation process Evaluation Future work

Expressions: example

Example (x > 5 ∧ x < 10 ∧ x2 = 49)

model = exists $ \x -> do -- request a variable x

x @> 5 -- state that x>5

x @< 10 -- state that x<10

x*x @= 49 -- state that x*x=49

return x -- return x

Introduction The FD-MCP Language Translation process Evaluation Future work

Expressions

Expressions

Everything is written as expressions

Constraints are equivalent to boolean expressions

New variables are introduced by passing a function that takes
an expression representing the new variable as argument, to
exists

Introduction The FD-MCP Language Translation process Evaluation Future work

Parameters: example

Example (x > 5 ∧ x < 10 ∧ x2 = p)

model p = exists $ \x -> do -- request a variable x

x @> 5 -- state that x>5

x @< 10 -- state that x<10

x*x @= p -- state that x*x=p

return x -- return x

Introduction The FD-MCP Language Translation process Evaluation Future work

Parameters

Problem classes are written as functions that take an
expression as parameter

Known values can be passed at runtime, to obtain a problem
instance

Model functions can be compiled as-is to C++ code

Introduction The FD-MCP Language Translation process Evaluation Future work

Higher-order constructs: examples

Example (a + b + c + d = 10 ∧ a2 + b2 + c2 + d2 = 30)

model = exists $ \arr -> do

size arr @= 4

csum arr @= 10

csum (cmap (\x -> x*x) arr) @= 30

return arr

Introduction The FD-MCP Language Translation process Evaluation Future work

Higher-order constructs

Higher-order constructs

Use equivalents of typical higher-order functions as primitives:

cmap f [a1, a2, a3, . . .]: [f (a1), f (a2), f (a3), . . .]
cfold f i [a1, a2, a3, . . .]: . . . f (f (f (i , a1), a2), a3) . . .

To build typical CP higher-order constructs on top of

forall c: fold (∧) true c
csum c: cfold (+) 0 c
count v c : cfold (p i → p + (i = v)) c
. . .

Introduction The FD-MCP Language Translation process Evaluation Future work

Monadic bind

Monadic bind

Boolean expressions can be used as solver actions that enforce
their truth

Solver actions can be combined using monadic bind

Haskell provides syntactic sugar for this

These are equivalent:

model = exists $ \x -> do

x @> 5

x @< 10

model = exists (\x ->

(x @> 5) @&& (x @< 10))

Introduction The FD-MCP Language Translation process Evaluation Future work

Building of expression tree

Building of expression tree

The EDSL: Haskell functions and operators

Syntactic sugar for boolean, integer and array expressions

Models are monadic actions that introduce variables and post
boolean expressions

Evaluate at runtime to an expression tree

Introduction The FD-MCP Language Translation process Evaluation Future work

Building of expression tree

x+y+z @< z-y

Less (Plus x (Plus y z)) (Minus z y)

Introduction The FD-MCP Language Translation process Evaluation Future work

Expression tree simplifications

Simplifications

Simple pattern matching on the tree

Applies some mathematical identities

Attempts to minimize variable references and tree nodes

Introduction The FD-MCP Language Translation process Evaluation Future work

Expression tree simplifications: examples

X + 0 → X

X - X → 0

X + X → 2*X

(a + (b + X)) → (a+b) + X

size [a] → 1

. . .

Introduction The FD-MCP Language Translation process Evaluation Future work

Conversion to Constraint Network Graph

For optimization purposes:

We need information about a constraint’s variables.

We need information those variables’ constraints.

. . .

Syntax tree does not make this explicit

So we:

We merge identical leaf nodes together, resulting in a graph

. . . or even whole identical subtrees (CSE)

We turn higher-order constructs without flattening into
subgraphs

Introduction The FD-MCP Language Translation process Evaluation Future work

Conversion to Constraint Network Graph

x+y+x @< z-y

Introduction The FD-MCP Language Translation process Evaluation Future work

Graph-based optimizations

Graph-based optimizations

Certain subgraphs can be recognized and replaced:

A fold that sums values can become a sum

A fold that sums equalities against a constant can become a
count

A fold that sums expressions can become a sum of a map

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

So far:

What we have

A graph representation of the problem (class)

Possibly still parametrized

Compact, not flattened

Independent of the solver’s supported constraints

Next: mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Annotation algorithm

Try to write nodes in function of other nodes, absorbing edges

Start with options that may produce simple results

Work recursively, but eager (no backtracking)

Store resulting information in annotations on nodes

When all nodes are annotated, the remaining edges are translated
to constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

Introduction The FD-MCP Language Translation process Evaluation Future work

Mapping to solver-specific constraints

“Linear” is not only possible annotation:

Supported annotations

Sizes of array variables

Constant values (integers, arrays, booleans)

Conditionals

. . .

Introduction The FD-MCP Language Translation process Evaluation Future work

Evaluation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 7 8 9 10 11 12 13 14 15

tim
e

(s
)

problem size

Benchmark allinterval

Original C++
MCP Gecode srch.
MCP Gecode run.

MCP Generated C++

Introduction The FD-MCP Language Translation process Evaluation Future work

Evaluation

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 6 7 8 9 10 11

tim
e

(s
)

problem size

Benchmark golombruler

Original C++
MCP Gecode srch.
MCP Gecode run.

MCP Generated C++

Introduction The FD-MCP Language Translation process Evaluation Future work

Evaluation

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 10 15 20 25 30 35

tim
e

(s
)

problem size

Benchmark partition

Original C++
MCP Gecode srch.
MCP Gecode run.

MCP Generated C++

Introduction The FD-MCP Language Translation process Evaluation Future work

Evaluation

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

(s
)

problem size

Benchmark magicseries

Original C++
MCP Gecode srch.
MCP Gecode run.

MCP Generated C++

Introduction The FD-MCP Language Translation process Evaluation Future work

Future work

Future work

Extend system to labelling and search

Code generation for search

Further optimizations

More benchmarks

Introduction The FD-MCP Language Translation process Evaluation Future work

The end

Any questions?

	Introduction
	Why an EDSL for CP Modelling?
	Haskell and MCP
	Structure

	The FD-MCP Language
	Expressions
	Parameters
	Higher-order constructs
	Monadic bind

	Translation process
	Building of expression tree
	Expression tree simplifications
	Conversion to Constraint Network Graph
	Graph-based optimizations
	Mapping to solver-specific constraints

	Evaluation
	Evaluation

	Future work
	Future work

