Expressive Models for Monadic Constraint
Programming

Pieter Wuille Tom Schrijvers

ModRef’10
St. Andrews, September 6, 2010

FD-MCP?

FD-MCP:
@ is a CP system for Finite-Domain (FD) problems

@ is a subsystem of MCP, a Haskell CP framework
@ provides an EDSL for writing FD problems

Introduction
.

Why an EDSL for CP Modelling?

EDSL

An EDSL (Embedded Domain Specific Language) is
@ more than an API: includes abstraction and syntactic sugar

@ still embedded in host language, and able to interact with it

The result allows advantages of both:

@ Concise notation
@ Declarative syntax (not a sequence of function calls)
o Full language feature set

@ Directly usable results

Introduction
]

Haskell and MCP

Haskell

Haskell:
@ Lazy, purely functional programming language
@ Support for first-class and higher-order functions
@ Uses monads to order stateful operations

@ Supports user-defined operators and overloading through type
classes

MCP
@ Framework for CP in Haskell

@ Does not fix variable domain, solver backend, search strategy,

A\

Introduction
°

Structure

Haskell Program
FD-MCP model

Haskell compiler
(GHC)

Binary
executable

»| C++ code
»| Solutions

i

MCP Library

The FD-MCP Language
®0

Expressions: example

Example (x > 5 A x < 10 A x? = 49)

model = exists $ \x -> do -- request a variable x
x @ 5 -- state that x>5
x @< 10 -- state that x<10
x*x 0= 49 -- state that x*x=49

return x -- return X

The FD-MCP Language
oce

Expressions

Expressions

@ Everything is written as expressions
o Constraints are equivalent to boolean expressions

@ New variables are introduced by passing a function that takes
an expression representing the new variable as argument, to

exists |

The FD-MCP Language
0

Parameters: example

Example (x > 5 A x < 10 A x> = p)

model p = exists $ \x -> do -- request a variable x
x @ 5 -- state that x>5
x @< 10 -- state that x<10
x*x 0= p -- state that x*x=p

return x -- return X

The FD-MCP Language
oe

Parameters

@ Problem classes are written as functions that take an
expression as parameter

@ Known values can be passed at runtime, to obtain a problem
instance

@ Model functions can be compiled as-is to C+ code

The FD-MCP Language
®0

Higher-order constructs: examples

Example (a4 b+ c+ d = 10 A a% + b? + ¢? + d? = 30)

model = exists $ \arr -> do
size arr 0= 4
csum arr ©@= 10
csum (cmap (\x -> x*x) arr) @= 30
return arr

The FD-MCP Language
oe

Higher-order constructs

Higher-order constructs

@ Use equivalents of typical higher-order functions as primitives:
o cmapf [ay,ap, as,...]: [f(a1),f(a2),f(a3),-.]
o cfoldfilay,as, as,...]: ... f(F(f(i,a1),az),as)...

@ To build typical CP higher-order constructs on top of

forall c: fold (M) true c
csumc: cfold (+)0c
countv c: cfold(pi — p+(i=v))c

The FD-MCP Language
°

Monadic bind

Monadic bind

@ Boolean expressions can be used as solver actions that enforce
their truth

@ Solver actions can be combined using monadic bind

@ Haskell provides syntactic sugar for this

These are equivalent:

model = exists $ \x -> do
x @> 5
x @< 10

model = exists (\x —>
(x @ 5) @&& (x @< 10))

Translation process
0

Building of expression tree

Building of expression tree

@ The EDSL: Haskell functions and operators

@ Syntactic sugar for boolean, integer and array expressions

@ Models are monadic actions that introduce variables and post
boolean expressions

@ Evaluate at runtime to an expression tree

Translation process
oe

Building of expression tree

x+y+z @< z-y

Less (Plus x (Plus y z)) (Minus z y)

N

Translation process
®0

Expression tree simplifications

Simplifications
@ Simple pattern matching on the tree
@ Applies some mathematical identities

@ Attempts to minimize variable references and tree nodes

Translation process
oe

Expression tree simplifications: examples

X+0—=X

X-X—=0

X+ X = 2*¥X

(a + (b + X)) = (a+b) + X
size [a] — 1

Translation process
®0

Conversion to Constraint Network Graph

For optimization purposes:
@ We need information about a constraint’s variables.
@ We need information those variables’ constraints.
° ...
@ Syntax tree does not make this explicit
So we:
@ We merge identical leaf nodes together, resulting in a graph
@ ...or even whole identical subtrees (CSE)

@ We turn higher-order constructs without flattening into
subgraphs

Translation process
oe

Conversion to Constraint Network Graph

xX+y+x @< z-y

Translation process
.

Graph-based optimizations

Graph-based optimizations

Certain subgraphs can be recognized and replaced:

@ A fold that sums values can become a sum

@ A fold that sums equalities against a constant can become a
count

@ A fold that sums expressions can become a sum of a map

Translation process
©0000000

Mapping to solver-specific constraints

So far:
What we have

@ A graph representation of the problem (class)
@ Possibly still parametrized
@ Compact, not flattened

@ Independent of the solver's supported constraints

Next: mapping to solver-specific constraints

Translation process
0®000000

Mapping to solver-specific constraints

Annotation algorithm
@ Try to write nodes in function of other nodes, absorbing edges
@ Start with options that may produce simple results
o Work recursively, but eager (no backtracking)

@ Store resulting information in annotations on nodes

When all nodes are annotated, the remaining edges are translated
to constraints

Translation process
00®00000

Mapping to solver-specific constraints

Translation process
00000000

Mapping to solver-specific constraints

Translation process
00008000

Mapping to solver-specific constraints

Translation process
00000800

Mapping to solver-specific constraints

Translation process
00000000

Mapping to solver-specific constraints

Translation process
0000000e

Mapping to solver-specific constraints

“Linear” is not only possible annotation:

Supported annotations

@ Sizes of array variables
e Constant values (integers, arrays, booleans)
e Conditionals

Evaluation
©000

Evaluation

Benchmark allinterval

100 : — :
lo] ‘//‘/’ -
1t o]
D 0.1 F S 1
g L »
= 0.01 1
0.001 f e]
Original C++
0.0001 MCP Gecode srch. -------- 4
; MCP Gecode run. -
MCP Generated C++
le-05 1 1 b ! |
7 8 9 10 11 12 13 14 15

problem size

Evaluation

—~
0
~
(9]
£
=

100

0.001

0.0001

le-05

Evaluation
000

Benchmark golombruler

0.01

Original C++

MCP Gecode srch.
MCP Gecode run.
MCP Glenerated C++

8 9 10
problem size

11

Evaluation
[eYe] Yo

Evaluation

Benchmark partition

100 : . . .
10 ¢]
l i -
z
Q 0.1 ¢]
£
Original C++
000t MCP Gecode srch. - 7
MCP Gecode run. -
MCP Generated C++
0.0001 L . :

10 15 20 25 p” .
problem size

Evaluation
oooe

Evaluation

Benchmark magicseries

10 ————————————
1
0.1
@ 0.01
£
= 0.001
0.0001
! Original C++
1e-05 p MCP Gecode srch. - 1
: MCP Gecode run. -
MCP Generated C++
1le-06 L L 1 1 h ! h f

0 100 200 300 400 500 600 700 800 900 1000
problem size

Future work
0

Future work

@ Extend system to labelling and search

@ Code generation for search
@ Further optimizations

@ More benchmarks

Future work
oe

The end

Any questions?

	Introduction
	Why an EDSL for CP Modelling?
	Haskell and MCP
	Structure

	The FD-MCP Language
	Expressions
	Parameters
	Higher-order constructs
	Monadic bind

	Translation process
	Building of expression tree
	Expression tree simplifications
	Conversion to Constraint Network Graph
	Graph-based optimizations
	Mapping to solver-specific constraints

	Evaluation
	Evaluation

	Future work
	Future work

