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FD-MCP?

FD-MCP:
@ is a CP system for Finite-Domain (FD) problems

@ is a subsystem of MCP, a Haskell CP framework
@ provides an EDSL for writing FD problems




Introduction
.

Why an EDSL for CP Modelling?

EDSL

An EDSL (Embedded Domain Specific Language) is
@ more than an API: includes abstraction and syntactic sugar

@ still embedded in host language, and able to interact with it

The result allows advantages of both:

@ Concise notation
@ Declarative syntax (not a sequence of function calls)
o Full language feature set

@ Directly usable results
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Haskell and MCP

Haskell

Haskell:
@ Lazy, purely functional programming language
@ Support for first-class and higher-order functions
@ Uses monads to order stateful operations

@ Supports user-defined operators and overloading through type
classes

MCP
@ Framework for CP in Haskell

@ Does not fix variable domain, solver backend, search strategy,

A\
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Expressions: example

Example (x > 5 A x < 10 A x? = 49)

model = exists $ \x -> do -- request a variable x
x @ 5 -- state that x>5
x @< 10 -- state that x<10
x*x 0= 49 -- state that x*x=49

return x -- return X
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Expressions

Expressions

@ Everything is written as expressions
o Constraints are equivalent to boolean expressions

@ New variables are introduced by passing a function that takes
an expression representing the new variable as argument, to

exists |
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Parameters: example

Example (x > 5 A x < 10 A x> = p)

model p = exists $ \x -> do -- request a variable x
x @ 5 -- state that x>5
x @< 10 -- state that x<10
x*x 0= p -- state that x*x=p

return x -- return X
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Parameters

@ Problem classes are written as functions that take an
expression as parameter

@ Known values can be passed at runtime, to obtain a problem
instance

@ Model functions can be compiled as-is to C+ code
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Higher-order constructs: examples

Example (a4 b+ c+ d = 10 A a% + b? + ¢? + d? = 30)

model = exists $ \arr -> do
size arr 0= 4
csum arr ©@= 10
csum (cmap (\x -> x*x) arr) @= 30
return arr
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Higher-order constructs

Higher-order constructs

@ Use equivalents of typical higher-order functions as primitives:
o cmapf [ay,ap, as,...]: [f(a1),f(a2),f(a3),-. ]
o cfoldfilay,as, as,...]: ... f(F(f(i,a1),az),as)...

@ To build typical CP higher-order constructs on top of

forall c: fold (M) true c
csumc: cfold (+)0c
countv c: cfold(pi — p+(i=v))c
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Monadic bind

Monadic bind

@ Boolean expressions can be used as solver actions that enforce
their truth

@ Solver actions can be combined using monadic bind

@ Haskell provides syntactic sugar for this

These are equivalent:

model = exists $ \x -> do
x @> 5
x @< 10

model = exists (\x —>
(x @ 5) @&& (x @< 10))
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Building of expression tree

Building of expression tree

@ The EDSL: Haskell functions and operators

@ Syntactic sugar for boolean, integer and array expressions

@ Models are monadic actions that introduce variables and post
boolean expressions

@ Evaluate at runtime to an expression tree
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Building of expression tree

x+y+z @< z-y

Less (Plus x (Plus y z)) (Minus z y)

N




Translation process
®0

Expression tree simplifications

Simplifications
@ Simple pattern matching on the tree
@ Applies some mathematical identities

@ Attempts to minimize variable references and tree nodes
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Expression tree simplifications: examples

X+0—=X

X-X—=0

X+ X = 2*¥X

(a + (b + X)) = (a+b) + X
size [a] — 1
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Conversion to Constraint Network Graph

For optimization purposes:
@ We need information about a constraint’s variables.
@ We need information those variables’ constraints.
° ...
@ Syntax tree does not make this explicit
So we:
@ We merge identical leaf nodes together, resulting in a graph
@ ...or even whole identical subtrees (CSE)

@ We turn higher-order constructs without flattening into
subgraphs
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Conversion to Constraint Network Graph

xX+y+x @< z-y
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Graph-based optimizations

Graph-based optimizations

Certain subgraphs can be recognized and replaced:

@ A fold that sums values can become a sum

@ A fold that sums equalities against a constant can become a
count

@ A fold that sums expressions can become a sum of a map
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Mapping to solver-specific constraints

So far:
What we have

@ A graph representation of the problem (class)
@ Possibly still parametrized
@ Compact, not flattened

@ Independent of the solver's supported constraints

Next: mapping to solver-specific constraints
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Mapping to solver-specific constraints

Annotation algorithm
@ Try to write nodes in function of other nodes, absorbing edges
@ Start with options that may produce simple results
o Work recursively, but eager (no backtracking)

@ Store resulting information in annotations on nodes

When all nodes are annotated, the remaining edges are translated
to constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints
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Mapping to solver-specific constraints

“Linear” is not only possible annotation:

Supported annotations

@ Sizes of array variables
e Constant values (integers, arrays, booleans)
e Conditionals
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Evaluation
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Evaluation
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Future work

@ Extend system to labelling and search

@ Code generation for search
@ Further optimizations

@ More benchmarks
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The end

Any questions?
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