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Background
Background

Recently, SAT-based approaches become applicable for solving
hard and practical problems.

A SAT-based CSP solver Sugar became a winner of GLOBAL
categories of the 2008 and 2009 International CSP Solver
Competitions.

@ The order encoding used in Sugar shows a good performance
for a wide variety of problems.

Open Shop Scheduling [Tamura et al., CP2006]

Job Shop Scheduling [Koshimura et al., 2010]

Test Case Generation [Banbara et al., LPAR2010]

Two-Dimensional Strip Packing [Soh et al., RCRA2008]
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Background
Overview of Order Encoding

A propositional variable P(x < a) is introduced for each integer
variable x and its domain value a where P(x < a) is defined as
true iff x < a.

Advantage

@ It is more efficient than others such as the log encoding.
@ Because the Bounds Propagation of CSP solvers can be
achieved by the Unit Propagation of SAT solvers.
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Background
Overview of Order Encoding

A propositional variable P(x < a) is introduced for each integer
variable x and its domain value a where P(x < a) is defined as
true iff x < a.

Advantage

@ It is more efficient than others such as the log encoding.

@ Because the Bounds Propagation of CSP solvers can be
achieved by the Unit Propagation of SAT solvers.

@ It generates too large SAT instances when the domain size of
original CSP is large.

@ Because each ternary constraint is encoded into O(d?) clauses
where d is the maximum domain size of integer variables
while the log encoding requires O(log d) clauses.
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COE

Proposal of Compact Order Encoding

Proposal of Compact Order Encoding

In this talk, we propose a new SAT encoding method that is
compact and efficient.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Towards a Compact and Efficient SAT-Encoding of Finite Line:



COE

Proposal of Compact Order Encoding

Proposal of Compact Order Encoding

In this talk, we propose a new SAT encoding method that is
compact and efficient.

Compact Order Encoding (C.O.E.)

@ Each integer variable is represented by a numeric system of
base B > 2.
@ Each digit is encoded by using the order encoding.

@ It is an integration and generalization of the order and log
encodings.

e C.O.E. with B > d is equivalent to the order encoding.
e C.O.E. with B = 2 is equivalent to the log encoding.
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Summary of Compact Order Encoding

Order Compact Order Log
Encoding Encoding Encoding
(B> d) (B=2)
Representation of integers Unary Base B Binary
Size of SAT instance Large Small
#clauses 0(d?) O(B%logg d)  O(logd)
Propagation Fast Slow
#carry ripples 0 O(logg d) O(log d)

@ Scalability
o It requires O(B?logg d) clauses for each ternary constraint.
o Efficiency

o It enables the Bounds Propagation in the most significant digit.
o It requires O(logg d) carry ripples.
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Summary of Compact Order Encoding

Order Compact Order Log
Encoding Encoding Encoding
(B>d) (B=[Vd]) (B=2)

Representation of integers Unary Base [/d] Binary

Size of SAT instance Large Small
#clauses 0(d?) O(d) O(log d)

Propagation Fast Slow
#carry ripples 0 1 O(log d)

@ Scalability

o It requires O(d) clauses for each ternary constraint.
o Efficiency

e It enables the Bounds Propagation in the most significant digit.
e It requires only one carry ripple.
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ackground COE Summary Evaluation Conclusion Summary OSSP

Summary of experimental results

To confirm the effectiveness of C.O.E., we used the following
benchmarks.

Sequence Problem of length n

@ |t is the handmade problem to evaluate the basic performance
of C.0.E. for various bases.

@ Only C.O.E. with B = [ﬂ] solved all 5 instances within 2
hours while the order encoding (B > d) and the log encoding
(B = 2) solved 2 instances.

Open Shop Scheduling Problem (OSSP)

@ We evaluate the performance for a practical application.

o C.0.E. with B = [V/d ] is compared with other encodings and
the state-of-the-art CSP solvers, choco 2.11 and Mistral 1.550.

@ Among them, C.O.E. showed the best performance.
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Evaluation Summary OSSP

Summary of experimental results

To confirm the effectiveness of C.O.E., we used the following
benchmarks.

Sequence Problem of length n

@ |t is the handmade problem to evaluate the basic performance
of C.0.E. for various bases.

@ Only C.O.E. with B = [\H] solved all 5 instances within 2
hours while the order encoding (B > d) and the log encoding
(B = 2) solved 2 instances.

Open Shop Scheduling Problem (OSSP)

@ We evaluate the performance for a practical application.

o C.0.E. with B = [V/d ] is compared with other encodings and
the state-of-the-art CSP solvers, choco 2.11 and Mistral 1.550.

@ Among them, C.O.E. showed the best performance.
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Evaluation Summary OSSP

Evaluation for efficiency: OSSP benchmark

Benchmark instances

@ A benchmark set by Brucker et al. is used for evaluation.

@ This is the most difficult benchmark set and it includes some
instances that were not closed until 2006.

@ As OSSP instances, j6-* and j7-* are chosen (18 instances).
@ The makespan is set to the most difficult (unsatisfiable) case.

@ Each OSSP instance is translated to XCSP format as used in
the CSP Solver Competition.
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Evaluation Summary OSSP

Evaluation for efficiency: OSSP benchmark

We compared the CPU times (including encoding times) of the
following solvers.

@ Order Encoding + MiniSat 2.0

e C.O.E. (B =[Vd]) + MiniSat 2.0

@ Log Encoding + MiniSat 2.0

@ choco 2.11 (with arguments used in the CSP Solver
Competition)

@ Mistral 1.550 (with no arguments)
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Evaluation Summary OSSP

Comparison of CPU times

Instance Size | Order C.O.E. Log choco Mistral
j6-per0-0 6x6 | 127.80  22.27  384.42 | 975.85 110.47
j6-per0-1 6x6 3.56 3.23 3.88 | 33.86 0.00
j6-per0-2 6x6 4.97 3.67 6.30 | 54.88 0.15
j6-per10-0 6x6 5.37 3.58 6.06 | 27.44 0.40
j6-per10-1 6x6 3.62 3.13 357 | 12.14 0.01
j6-perl0-2 6x6 4.06 3.28 4.65 | 98.65 0.14
j6-per20-0 6x6 3.56 3.46 4.04 0.42 0.01
j6-per20-1 6x6 3.54 3.28 3.51 0.43 0.01
j6-per20-2 6x6 3.93 3.34 3.81 0.44 0.01
j7-per0-0 =7 T.0. T.0. T.O. T.0. T.0.
j7-per0-1 7x7 | 56.16 11.18  119.52 T.O0. 27.10
j7-per0-2 <7 | 36.15 8.35 85.39 T.0. 49.92
j7-per10-0 7x7 | 56.01 15.47  100.07 T.0. 76.81
j7-perl0-1 X7 | 24.98 7.74 66.32 0.53 0.97
j7-per10-2 7x7 | 497.15 298.91 2804.06 T.0. 546.06
j7-per20-0 <7 4.43 4.17 5.18 0.54 0.12
j7-per20-1 7x7 | 13.38 5.54 19.80 T.O. 16.82
j7-per20-2 X7 | 24.38 7.91 32.37 T.O. 26.76

#solved 17 17 17 11 17

Average | 51.36 24.03 21483 | 80.53 50.34
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Evaluation Summary OSSP

Evaluation for scalability: OSSP benchmark

Benchmark instances

@ To evaluate the scalability, we also use the instances generated
by multiplying the process times by some constant factor c.

@ The factor c is varied within 1, 10, 50, 100, 200, and 1000.

@ We compared the number of solved instances of the following
solvers.

Order Encoding + MiniSat 2.0

C.0.E. (B = [V/d]) + MiniSat 2.0

Log Encoding + MiniSat 2.0

choco 2.11 (with arguments used in the CSP Solver

Competition)

Mistral 1.550 (with no arguments)

e © o o

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Towards a Compact and Efficient SAT-Encoding of Finite Linez



Evaluation Summary OSSP

Comparison of the number of solved instances

Factor c Domain size d | Order C.O.E. Log | choco Mistral
1 d~ 103 17 17 17 11 17

10 d ~ 10* 16 17 17 10 16

50 15 17 16 11 16

100 d ~ 10° 12 17 16 12 15

200 10 17 16 11 14
1000 d =~ 106 0 17 16 11 12
Total 70 102 98 66 90

@ C.O.E. solved 102 instances out of 108 instances.

@ C.0.E. can handle very large domain size such as d ~ 10°.

@ When ¢ = 1000, C.O.E. generates about 65 MB SAT
instances while the order encoding generates more than 13 GB
SAT instances in average.
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Evaluation Summary OSSP

Cactus plot of 108 instances
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Conclusion

Conclusion

@ In this talk, we presented a new SAT encoding method named
compact order encoding.
@ The feature of the compact order encoding is:

e It is a generalization of the order and log encodings.
o It is efficient. It is more efficient than the log encoding in

general because it requires less carry ripples.

o It is scalable. Each ternary constraint is encoded to
O(B?logg d) clauses where B is the base and d is the domain
size. It is much less than O(d?) clauses of the order encoding.

@ We confirmed these observations through some experimental
results.
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0SS(cont) SeqProblem A
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0SS(cont) SeqProblem Args DE

Generated SAT instances (MB)

Factor c | Order C.O.E. Log
1 9.43 1.68 1.24

10 107.77 5.66 1.80

50 59454 1355 2.12

100 | 121220 19.37 2.27

200 | 2499.86 27.64 243
1000 | 13467.21  65.46 2.78

@ When ¢ = 1000, C.O.E. generates about 65 MB SAT instance
while the order encoding generates more than 13 GB SAT
instances in average.
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0SS(cont) SeqProblem Args DE

Runtime memory consumption (MB)

Factor c | Order C.O.E Log
1 40.79 11.89 20.71

10 | 383.25 2574 27.17

50 | 1906.92 4591 25.97

100 | 3369.82  62.87 26.15

200 | 6272.71  87.40 28.25
1000 - 187.57 32.19

@ When ¢ = 200, C.O.E. uses about 87 MB while the order
encoding uses more than 6 GB in average.

Tomoya Tanjo, Naoyuki Tamura, Mutsunori Banbara Towards a Compact and Efficient SAT-Encoding of Finite Linez



0OSS(cont) SeqProblem Args DE
Sequence Problem

To evaluate the basic performance of C.O.E., we use the following
handmade problem.

Sequence Problem

A sequence problem of length n is defined as follows.

xi€{0.n—1} (0<i<n)
n—1

/\ xi +1< x4
i=0

@ This problem is unsatisfiable for any n since there are n+ 1
variables to be arranged in the range of size n.

@ To compare the performance of various bases, | {/n|
(m e {1,2,3,4}) and 2 are chosen as a base B.

@ The length n is varied within 5000, 8000, 10000, 20000, and
30000.
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0OSS(cont) SeqProblem Args DE

Comparison of the CPU times

Order C.O.E. Log
n (m=1)| m=2 m=3 m=4|(B=2)
5000 14.29 64.78 76.58  103.33 | 596.80
8000 47.02 | 189.03 212.21  384.93 | 2611.44
10000 M.O. | 38295 650.58 526.52 T.0.
20000 M.O. | 1527.46 4889.55 6311.37 T.0O.
30000 M.O. | 4631.40 T.0. T.O. T.O.

@ Only C.O.E. solved all given instances.

@ The order and log encodings could not solve the instance
when n > 10000.

@ Choosing m =2 (i.e. B = [4/n]) is the most effective choice
for this problem.
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0OSS(cont) SeqProblem Args DE

Comparison of generated SAT instances (MB)

Order C.O.E. Log
n (m=1)| m=2 m=3 m=4|(B=2)
5000 | 1005.64 | 56.46 28.93 21.36 16.54
8000 | 2643.70 | 122.94 51.89  38.37 26.74
10000 | 4155.76 | 173.65 7235 48.11 37.46
20000 | 17955.93 | 509.32 201.49 119.19 81.99
30000 | 40954.37 | 977.52 35253 227.37 127.40

@ C.O.E. generates much smaller SAT instances even when
m=2.

@ When n = 30000, the size of the order encoding is more than
40 GB.
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0SS(cont) SeqProblem Args

Runtime memory consumption (MB)

Length n Order C.O.E. Log

Encoding m=2 m=3 m =4 | Encoding
5000 | 4827.61 | 231.84 12157 104.86 200.80
8000 | 13073.18 | 435.35 221.14 194.59 502.07

10000 M.O. | 62210 377.71  261.69 T.O.
20000 M.O. | 1795.87 1028.27 1035.88 T.O.
30000 M.O. | 3220.83 T.O. T.O. T.O.

@ When n = 5000 and 8000, the order encoding proved
satisfiability with no decision.

@ When n = 8000, C.O.E. uses less memory than the log
encoding.
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0SS(cont) SeqgProblem Args DE

Arguments of CSP solvers

We use the command line arguments used in the 2009
International CSP Solver Competition.
@ choco
-randval true -h 1 -ac 32 -saclim 60 -s true -verb 0 -seed
11041979
@ Mistral
No arguments
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0OSS(cont) SeqProblem Args DE

Comparison of the size of encoded-SAT instance

Let d be the maximum domain size of x, y,z and B > 2 be a base.

Constraint | Direct  Order C.OE Log
x<a O(d) 0(1) O(loggd)  O(log, d)
x<y | O0(d®) 0O(d) O(Bloggd) Olog,d)
O(log, d)

O

z=x+a | 0(d?) O(d) O(Bloggd) log,
z=x+y | O(d®) O(d?) O(B?loggd) log, d)

@ Each ternary constraint can be encoded O(B2logg d) SAT
clauses by using C.O.E. in the worst case.

@ It is much less than O(d®) SAT clauses of the direct encoding.
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