Towards a
lightweight standard
search language

Horst Samulowitz, Guido Tack, Julien
Fischer, Mark Wallace, Peter Stuckey

ModRef 2010
September 6th 2010, St. Andrews, Scotland

Goals

® Define a search language for MiniZinc

o Lightweight: Balance expressiveness with
ease of implementation

® Basis for discussion and (eventually) wide
adoption

Why custom search!?

® Standard labeling sometimes not good enough
® Exploit problem structure
- problem decomposition

e Combine search procedures

- restarts, warm starts, backdoors, portfolios...

Why standard language!

e Compare different solvers and searches
e Exchange models (e.g. CSPLib)
o Communicate search strategies (e.g. papers)

® Fix good names
(independent of adoption as a standard!)

Approach

® Not: fully programmable search (too complex)

® | anguage for combining predefined search
strategies

® lLibrary of search templates that define the
strategies

Simple labeling
Template:

{int,bool,set} search(vars,varsel,domsplit)

variable selection domain splitting
varsel =

input order, random order, {min,max} {lb,ub},
{min,max} dom size,
{min,max} dom size welghted degree,

domsplit =
{assign,exclude} {lb,ub}, bisect {low,high},
{assign,exclude} impact {min,max},

Limit Strategies

limit search(measure,limit,search)

fails, nodes, solutions,
time, discrepancies

limit(solutions, 1, search)

once(search)

lds(d,search) = limit(discrepancies, d, search)

restart geometric(inc,init,measure,search)

restart luby(init,max,measure,search)

Composition

Sequential search:
seq search([searchl,...,searchN])

searchl

and
searchZ’

Parallel search:

par search([searchl,...,searchN])
| or

searchlAAsearchz

Example: Job Shop

constraint
forall(i in l..size) (
forall(j in l..size-1) (s[i,]]*td[1i,]] <= s[1,]+1])
/\ s[i,size] + d[i,size] <= end
/\ forall(j,k in 1..size where j < k) (
no_overlap(s[j,i], d[jli]l S[kli]l d[kli])
)
) i

solve ::search minimize end;

Search annotation

Example: Job Shop

Simple dom/wdeg search:

search = int search(s,
min dom size weighted degree,
bisect low)

Find first solution with LDS, then prove
optimality with IBS:
search = par search(]|

lds (3, int search(s,min 1lb,assign 1b)),
int search(s, max impact, assign_impact min)])

Example: Radiotherapy

var 0..Ints sum: Beamtime;
var 0..m*n: K;

array[BTimes] of var 0..m*n: N;
array[Rows, Columns, BTimes] of var 0..m*n: Q;

constraint

Beamtime = sum(b in BTimes) (b * N[Db])
/\ K = sum(b in BTimes) (N[b])
/\ forall(i in Rows, j in Columns)

(Intensity[i,j] = sum([b * Q[i,j,b] | b in BTimes]))

/\ forall(i in Rows, b in BTimes)
(ub_1i(N[b], [Q[1,],b] J in Columns]));

predicate ub i(var int: N b, array[int] of var int: L)

N b > L[1] + sum([max(L[Jj] - L[Jj-1]1, O0) | J in 2..n 1]);

solve ::search minimize (ub(K) + 1) * Beamtime + K;

Problem decomposition

Observation: after labeling the N, each row in

the Q is independent m

int search N

. . once int search Q[1]
if one row fails,
backtrack into N | ©Bc€ int_search Q[2]

once int search Q[3]

search = seq search

once int search Q[4]

Problem decomposition

Observation: after labeling the N, each row in
the Q is independent

search = J

seq search (if one row fails,

[int_search(N, min_dom .
bisect low)) Packtrackinto N

[once (1nt search (
[Q[i,]J,b] | j in Cols, b in BTimes],
max activity, bisect activity min))
| i in Rows])

Problem decomposition

Observation: after labeling the N, each row in
the Q is independent

search =
seq search(
[int search(N, min dom size weilghted degree,
bisect low)] ++

[once(1int search(
[Q[i,]J,b] | j in Cols, b in BTimes],
max activity, bisect activity min))

| i in Rows])

Implementation

® [wo prototypes for FlatZinc/Gecode
- code generator
- C++ library

® Many templates implemented

® Generic approach, (hopefully) easy to adapt to
other CP solvers

Future work

Full implementation

Define interaction with concurrent search
Symmetry breaking?

Shaving?

Local search?

Conclusions

Combinators and templates are expressive
enough for useful, complex custom searches

Proposed language can be implemented

Useful as a standard:
compare, exchange, communicate
search strategies

Independent of concrete modeling language:
let's fix good hames

