Proving Symmetries by Model Transformation

C. Mears T. Niven

Faculty of IT Monash University

Workshop on Constraint Modelling and Reformulation, 2010

Symmetries In CSP Instances

- Symmetries can be used to improve CSP solving.
- It is good to know when your CSP has symmetries.

Finding Symmetries in CSP Instances

- There are many ways to find symmetries in CSP instances:
 - Try swapping variables around in the constraints.
 - Turn the CSP into a graph (with varying detail) and find the graph's symmetries.
 - Find all the solutions!
- The more accurate methods tend to be too slow for real-sized instances.

Symmetries in CSP Models Instead

- Instead of looking at big instances, examine the model itself.
- Symmetries in the model apply to all instances.
- Find once, use often.

Symmetry Detection Framework

- Find symmetries of small instances.
- Generalise those symmetries to the model.
- Gather the most promising symmetries.
- Prove that the symmetries hold on the model.

Symmetry Detection Framework

- Find symmetries of small instances.
- ② Generalise those symmetries to the model.
- Gather the most promising symmetries.
- Prove that the symmetries hold on the model.

CSP Models

What is a model?

A CSP Model: MiniZinc

```
% Latin Square
int: size;
set of int: range = 1..size;
% Decision variables
array[range, range, range] of var 0..1: x;
% Constraints
constraint forall (i, j in range)
           (sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, k in range)
           (sum (j in range) (x[i,j,k]) = 1);
constraint forall (j, k in range)
           (sum (i in range) (x[i,j,k]) = 1);
```

A CSP Model: MiniZinc

```
% N-queens
int : n;
set of int : rq = 1..n;
array[rq,rq] of var 0..1: x;
constraint forall (i in rg)
           (sum (j in rq) (x[i,j]) = 1);
constraint forall (j in rg)
           (sum (i in rq) (x[i,j]) = 1);
constraint forall (k in 3..2*n-1)
           (sum (i, j in rg where i+j=k) (x[i, j]) <= 1);
constraint forall (k in 2-n..n-2)
           (sum (i, j in rq where i-j=k) (x[i, j]) <= 1);
```

Our Method

Given a potential symmetry σ :

- **1** Apply σ to each constraint $c \in C$,
- ② Check if $\sigma(c)$ is in C.

If all $\sigma(c)$ are in C, then σ is a symmetry.

Applying a Symmetry

- Symmetries that manipulate indices.
- Examples:
 - Dimensions swap: $x[i, j] \Rightarrow x[j, i]$.
 - Indices inverted: $x[i] \Rightarrow x[N-i+1]$.
 - Values inverted: $x[i] \Rightarrow N x[i] + 1$.
 - Arbitrary index permutation: $x[i] \Rightarrow x[\varphi(i)]$.
- Find each $x[i_1, \cdots]$ occurrence and replace it.

Applying a Symmetry (examples)

```
aa(X, t([I,J,K]) \le aa(X, t([J,I,K]))).
constraint forall (i, j in range)
       (sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, j in range)
       (sum (k in range) (x[i,i,k]) = 1);
```

Applying a Symmetry (examples)

```
aa(X, t([I|R])) \le aa(X, t([U-I+L|R])).
(where L and U are the lower and upper bounds of the
index.)
constraint forall (i, j in range)
        (sum (k in range) (x[i,j,k]) = 1);
constraint forall (i, j in range)
        (sum (k in range) (x[n-i+1, j, k]) = 1);
```

Checking $\sigma(c) \in C$.

- For each $\sigma(c)$...
- ... is there a $c' \in C$ such that $c' \equiv \sigma(c)$?
- Probably not.

Normalisation

```
forall(j,k in range) (sum (i in range) (x[i,j,k]) = 1);

forall(i,j in range) (sum (k in range) (x[j,i,k]) = 1);

forall(i,k in range) (sum (j in range) (x[j,i,k]) = 1);

forall(j,k in range) (sum (i in range) (x[j,i,k]) = 1);
```

forall(i,j in range) (sum (k in range) (x[i,j,k]) = 1);forall(i,k in range) (sum (j in range) (x[i,j,k]) = 1);

Rule: put generators in alphabetical order.

Rule: make array indices single variables.

Rule:
$$(U - x + L) \in L..U \implies x \in L..U$$
.

```
decl(int, U-X+L, gen_var(L..U), VK, Ann) <=>
    decl(int, X, gen_var(L..U), VK, Ann).
```

Other rules:

```
X-Y \iff X+(-Y).

-(X+Y) \iff -(X) + -(Y).

-(-(X)) \iff X.

X+(-(X)) \iff term(X) \mid i(0).

i(0)+X \iff X.
```

Other rules:

```
permutation(P,permutation(inverse(P),X)) <=> X.
permutation(inverse(P),permutation(P,X)) <=> X.

alldifferent(permutation(P,X)) <=>
    alldifferent(X).

card(permutation(P,X)) <=>
    card(X).

permutation(P,X) != permutation(P,Y) <=> X != Y.
```

Results

- Problems:
 - Latin square
 - Steiner Triples
 - Balanced Incomplete Block Design
 - Social Golfers
 - N-queens
- Succeeds on most of the symmetries.

```
forall (k in 3..2*n-1)

(sum (i,j in rg where i+j=k) (x[i,j]) <= 1);

forall (k in 2-n..n-2)

(sum (i,j in rg where i-j=k) (x[i,j]) <= 1);
```

```
forall (k in 3..2*n-1)
  (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
  (sum (i,j in rg where i+j=k) (x[n-i+1,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (i,j in rg where i-j=k) (x[n-i+1,j]) <= 1);</pre>
```

```
forall (k in 3..2*n-1)
  (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
  (sum (n-a+1,j in rg where n-a+1+j=k) (x[a,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (n-a+1,j in rg where n-a+1-j=k) (x[a,j]) <= 1);</pre>
```

```
forall (k in 3..2*n-1)
  (sum (i,j in rg where i+j=k) (x[i,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (i,j in rg where i-j=k) (x[i,j]) <= 1);

forall (k in 3..2*n-1)
  (sum (a,j in rg where n-a+1+j=k) (x[a,j]) <= 1);
forall (k in 2-n..n-2)
  (sum (a,j in rg where n-a+1-j=k) (x[a,j]) <= 1);</pre>
```

Future Work

- Normalise pairs of constraints mutually.
 - (mostly done!)
- More flexibility/robustness.
- Apply more symmetries.

Thanks!

Questions?