Constraint solving on modular integers

Arnaud Gotlieb*, Michel Leconte™*, Bruno Marre***

* INRIA Research center of Bretagne - Rennes Atlantigue
** TLOG Lab, IBM France
*** CEA List

ModRef'10 Workshop, 6/09/10

Software Verification with CP

Automatic verification of programs (e.%., a C function or a Java method)
requires the generation of test input that reach given locations

fC int i1, int j) Values of (i, j) to reach ... ?

requires to solve
i+j >i*j

Constraint-Based Testing tools include techniques that
address this problem with:

- CP over Finite Domains techniques
- Abstract domains computations (Intervals, Polyhedra, Congruences, ...)

2

Wrap-around integer computations

Most architectures implement wrap-around arithmetic (modular integers) :

char (-128..127, 1 byte), unsigned char (0..255, 1 byte),
short(- ~32768. 32767 2 byte) unsigned short (0..65535, 2 byte),
Iong (-2147483648. 2147483647 4 byte), unsigned long (0.. 4294967295,4 byte),

* Problem in the previously mentionned tools:

Expressions are interpreted using ideal integer arithmetic rather than
wrap-around integer arithmetic

« Example:

the C expression short a,b,c; c=a+b

should be interpreted as c=a+b mod(21%) in -32768..32767
rather than just c=a+b ininf .. sup

Programs that suppose wrap-around
integer computations

Good programming practices suggest taking care of integer overflows:
unsigned long len = 231;
int f(unsigned long buf) {
if (buf + len < buf) / Value of buf to reach ... ?

* Typical analysis tools would incorrectly declare ... as being unreacheable !

NB: Simplifying buf + len < buf in len < O
is forbidden in wrap-around integer arithmetic!

Bound-consistency for integer computations

Let a,b be unsigned over 4 bits
a In 0..15, b in 0..15
b =2 %* a;

// Ideal Arithmetic
> // a 1In o0..7 b 1IN 0..14

// Wrap-around arithmetic
// a In 0..15 b 1IN o0..14

Bound-consistency for integer computations

Let a,b be unsigned over 4 bits
a in 8..9, b In 0..15
b =2 %* a;

// Ideal Arithmetic
> /7 TFail

// Wrap-around arithmetic
// a In s..9 b 1IN o..2

Can we implement wrap-around interval
ideal arithmetic with modulo ?

 Yes, but results wouldn't be optimal

A =28, Bin 2..4, C #= A*B mod(16) (in SICStus clpfd)
Pives C in 0..15 although C=9,C=10, ..C=15 have no support

e 8 * 2..4 = {8%2=0,,, 8*3=8,, , 8*4=0,.}
c 0..8
smallest interval that contains all the double products!

Our approach: to build an Interval Constraint
Solver using Clockwise Intervals

Def 1. Clockwise Interval (CI)
Let b=2%, x and y be two integers modulo b,

a CI [x)y], denotes the set {x, x+1 mod b, .., y-1 mod b, y}

Ex: [6,1]; denotes the unordered set of integers modulo 8: {6,7,0,1}

[6/,1]8/\

By convention: [0, b-1], is the canonical representation of Z,

Cardinality

Def 2. cardinality
Let [x,y], be a CI, then card([x,y],) is an integer
such that:

card([x,y],) = b if [x,y], =[O, b-1],
=(y-x+1)modb otherwise

Prop 1: A CI [x,y], contains exactly card([x,y],) elements

Hull

The hull of a set of modular integers S is the smallest CT w.r.t.
cardinality, that contains all the elements of S.

Def 3: (Hull)Let S = {x,, .., x,} be a subset of Z,, the hull of S is a
CI, noted oS, oS-= Infcard({[x:. %16} | {xq,..x }c[x,,x Ib)

Prop 2: Let S = {x, .., X,} be an ordered subset of Z,, and let x

denotes Xp-1, then

0S = [x,,X.;] where i such that card([x;,x. ;]) is minimized

Corollary: oS can be computed in linear time w.r.t. the size of S

10

Clockwise interval arithmetic

[i.j], @ [k)], = o{(i @ k) mod b, (i @ k+1) mod b, ... (j @) mod b}

forany @ in{®, 0, ®, ..}

(Addition)

iLj1,@Lk.1], = [0, b-1 if card([i,j],)=b d([k,11,)=b
ool = [0, b1 ek st o L

= [(i+k) mod b, (j+|) mod b], otherwise

(SubS'TrCG()CTLOP) = [0, b-1 if card([i,jln)=b d([k.11,)=b
kO T, = (0, b1k et ol (e

= [(i-) mod b, (j-k) mod b], otherwise

11

Where the things become more
complicated |

Multiplication by a constant : k ® [i,jl,

Unlike in classical Interval Arithmetic,
results cannot be computed using only the bounds

5® [2,7]s = o{10 mod 8, ..., 35 mod 8} = [1, 7]

but, 1)inZ,v, divisors of O are well-known

2) Thanks to prop2, o{xy, .., X,} can be computed efficiently
when {x,, .., X,} is ordered

12

Prop3: Let k= 2n, gl = k*i divb, q2 = k*j div b, then
Max(k®[i,j]p) = b-d where d = Min 1., ..» (9*b mod k)

and

Min(k®[i,j],) =d' where d' = Min ;.. <> (- 9*b mod k)

13

For k™*Ti,jl,

computing the upper bound can be
done modulo k instead of modulo b |

k*i
k*p

qg*b=qg*2*=0mod b

O (mod b)

k*(p+1)

k*j

d = Min gz (b - K*p)

Max(k* [i,jlp)

Then, d = Min ;. ..» (@*b mod k)
and
Max(k®[i,jl,) = b-d

14

v

Prop3: Let k= 2", ql = k*idivb, q2 = k*j div b, then

)) Max(k®[i,jl,) = b-d where d = Min . , <> (*b mod k)
k=5, i=2, J:7, b=8 and Min(k®[i,jl,) = d' where d' = Min 1., <> (- ¢*b mod k)

5*[2,71g=1[1,7]4

1
0 24 32

10 15 20 2
=2(8) =7(8) =4 (8) =1

d = Min 1.2 (§%b mod k)X d'=Min ;... (- 9*b mod K),

q=2, 16mod5=1, -Teémodb5=4
g=3, 24modb5=4, -24mod5=1
qg=4, 32mod5=2, -32mod5=3

15

Relations over Clockwise Intervals

Inclusion, union and intersection of CIs are defined with their set-
theoretic counterparts

[l © k)], (ii+l,.j} (k. k+1, .1}

However, union and more surprisingy intersection are not closed
over CIs, eg.,

[5,21sn[1,613=(1,2,5,6}

Hence, we define the meet and join operations using the hull
operator

[D, 2] meet [1,6]5=c0fl,2,5,6}=[1,6]
X =Y leads to prune both CI(X) and CI(Y) using CI(X) meet CI(Y)

16

Three implementations of constraint
solving over modular integers (in progress)

MAXC (INRIA):

- Developed for EUCLIDE, a plateform for verifying critical C programs
- In SICStus Prolog (700loc) + € (300loc)

- Direct implem. Of Clockwise Intervals over 1,2, 3, 4, 8, 16, 32 bits only
- unsigned only, no conversions, few arithmetic and relations

JSOLVER (ILOG)

- Static analysis of rule-based programs (ILOG Rules)

- Domain and Bound-consistencies on ideal integer arithmetic and
- use of a cast function to map the results on wrap-around

COLIBRI (CEA):
- Constraints library used by CEA test generation tools (6ATelL for LUSTRE
models, PathCrawler for C code, Osmose for binary code)

- Integer/Real/Floating points interval arithmetics (union of disjoint intervals),
Congruences, Difference constraints

- signed and unsigned cases

17

COLIBRI (CEA): 2 extra ideas

For each op in {+-* div,rem}, COLIBRI provides a modular version op,",
modular constraint propagators are handled by non modular operations:

Aop"B=C & AopB=C+K*2n
The range of K varies according to signed/unsigned, /7 and op.

Example: A +,"B=C
- Signed: [AB/C]:: [-2n1 2m1-1], K [-1.1]
- Unsigned : [A,B,C]:: [0..2"-1], K :: [0..1]

For each op,", an extra argument UO :: [-1..1] allows to read / provoke an
underflow (UO = -1), overflow (UO = 1) or a nominal behavior (UO = 0)

An extra constraint maintains the invariant sign(UO) = sign(K)
WhenUO=K=0, Aop,"B=AopB

Example: n= 3, A,B,C unsigned, A :: [2..4],B :: [5..7], € :: [0..7], VO :: [0..1]
A+,3B=z,,C> A+B=C+K*8 with K::[0.1] and sign(K) = sign(UO)
> C:[0.3,7]

18

ILOG JSolver: A CP library in Java for
Rule Program Analysis

For any arithmetic operator, compute intervals of Z and then project
them on computer intervals using a cast function

Let [a, b] be an interval of Z and u,v represent a, b in a (m, M)
computer integer

-a=u+k,(M-m+l), mcuc M
- b=v+k,(M-m+l), mc< ve M
[u, v]if k, = K,
» cast, u(la, b)) =
[m, M] otherwise

19

Further work

Finding optimal bounds for non-linear constraints is hard

- practical solution: relaxing optimality using over-approximations,
e.g., Xina.b,Yinc.dthenzZ = X*Y in min(a*Y, X*c)..max(b*Y ,X*d)

Finishing our three implementations and performing a serious experimental
evaluation is indispensable 2> next step

Deal with constraints where distinct basis are considered,
e.g., short X ;

long y ;
X = (short) vy ;

20

