Constraint solving on modular integers

Arnaud Gotlieb*, Michel Leconte**, Bruno Marre***

```
* INRIA Research center of Bretagne - Rennes Atlantique
```

^{**} ILOG Lab, IBM France

^{***} CEA List

Software Verification with CP

 Automatic verification of programs (e.g., a C function or a Java method) requires the generation of test input that reach given locations

- Constraint-Based Testing tools include techniques that address this problem with:
 - CP over Finite Domains techniques
 - Abstract domains computations (Intervals, Polyhedra, Congruences, ...)

Wrap-around integer computations

Most architectures implement wrap-around arithmetic (modular integers):

```
char (-128..127, 1 byte), unsigned char (0..255, 1 byte), short(-32768..32767, 2 byte), unsigned short (0..65535, 2 byte), long (-2147483648..2147483647, 4 byte), unsigned long (0..4294967295,4 byte), ...
```

Problem in the previously mentionned tools:

Expressions are interpreted using ideal integer arithmetic rather than wrap-around integer arithmetic

• Example:

```
the C expression short a,b,c; c=a+b should be interpreted as rather than just short a,b,c; c=a+b mod(2^{16}) in -32768..32767 in inf .. sup
```

Programs that suppose wrap-around integer computations

Good programming practices suggest taking care of integer overflows:

Typical analysis tools would incorrectly declare ... as being unreacheable!

NB: Simplifying buf + len < buf in len < 0 is forbidden in wrap-around integer arithmetic!

Bound-consistency for integer computations

Let a,b be unsigned over 4 bits a in 0..15, b in 0..15

b = 2 * a;

```
// Ideal Arithmetic
// a in 0..7 b in 0..14
```

```
// Wrap-around arithmetic
// a in 0..15 b in 0..14
```

Bound-consistency for integer computations

Let a, b be unsigned over 4 bits

```
a in 8..9, b in 0..15
b = 2 * a;

// Ideal Arithmetic
// fail

// Wrap-around arithmetic
// a in 8..9 b in 0..2
```

Can we implement wrap-around interval ideal arithmetic with modulo?

Yes, but results wouldn't be optimal

```
A = 8, B in 2..4, C #= A*B mod(16) (in SICStus clpfd)

gives C in 0..15 although C=9, C=10, ..C=15 have no support
```

• 8 * 2..4 =
$$\{8*2=0_{16}, 8*3=8_{16}, 8*4=0_{16}\}$$

 $\subset 0..8$

smallest interval that contains all the double products!

Our approach: to build an Interval Constraint Solver using *Clockwise Intervals*

Def 1: Clockwise Interval (CI)

Let $b=2^{\omega}$, x and y be two integers modulo b, a CI $[x,y]_b$ denotes the set $\{x, x+1 \mod b, ..., y-1 \mod b, y\}$

Ex: $[6,1]_8$ denotes the unordered set of integers modulo 8: $\{6,7,0,1\}$

Cardinality

Def 2: Cardinality

Let $[x,y]_b$ be a CI, then $card([x,y]_b)$ is an integer such that:

$$card([x,y]_b) = b$$
 if $[x,y]_b = [0, b-1]_b$
= $(y-x+1) \mod b$ otherwise

<u>Prop 1:</u> A CI $[x,y]_b$ contains exactly card($[x,y]_b$) elements

Hull

 The hull of a set of modular integers S is the smallest CI w.r.t. cardinality, that contains all the elements of S.

Def 3: (Hull) Let
$$S = \{x_1, ..., x_p\}$$
 be a subset of Z_b , the hull of S is a CI , noted $\Box S$, $\Box S = Inf_{card}(\{[x_i,x_j]_b\} \mid \{x_1,...,x_p\} \subseteq [x_i,x_j]_b)$

Prop 2: Let $S = \{x_1, ..., x_p\}$ be an ordered subset of Z_b , and let x_{-1} denotes x_{p-1} , then

 $\Box S = [x_i, x_{i-1}]$ where i such that $card([x_i, x_{i-1}])$ is minimized

Corollary:

Some computed in linear time w.r.t. the size of S

Clockwise interval arithmetic

```
[i,j]_b @ [k,l]_b = \Box \{(i @ k) \mod b, (i @ k+1) \mod b, ... (j @ l) \mod b\} for any @ in \{\oplus, \Theta, \otimes, ...\}
```

```
 \begin{array}{ll} (\text{Addition}) \\ & [i,j]_b \oplus [k,l]_b = [0,\,b-1]_b \\ & = [(i+k)\,\,\text{mod}\,\,b,\,(j+l)\,\,\text{mod}\,\,b]_b \end{array} \quad \begin{array}{ll} & \text{if } \operatorname{card}([i,j]_b) = b \,\,\text{or } \operatorname{card}([k,l]_b) = b \\ & \text{or } \operatorname{card}([i,j]_b) + \operatorname{card}([k,l]_b) \geq b \end{array} \\ & (\text{Substraction}) \\ & [i,j]_b \Theta \left[k,l\right]_b = [0,\,b-1]_b \qquad \qquad \text{if } \operatorname{card}([i,j]_b) = b \,\,\text{or } \operatorname{card}([k,l]_b) = b \\ & \text{or } \operatorname{card}([i,j]_b) + \operatorname{card}([k,l]_b) \geq b \end{array} \\ & = [(i-l)\,\,\text{mod}\,\,b,\,(j-k)\,\,\text{mod}\,\,b]_b \qquad \text{otherwise}
```

Where the things become more complicated!

- Multiplication by a constant : $k \otimes [i,j]_b$
- Unlike in classical Interval Arithmetic, results cannot be computed using only the bounds

$$5 \otimes [2,7]_8 = \square \{10 \mod 8, ..., 35 \mod 8\} = [1,7]_8$$

- but, 1) in \mathbb{Z}_2^w , divisors of 0 are well-known
 - 2) Thanks to prop2, $\Box\{x_1, ..., x_p\}$ can be computed efficiently when $\{x_1, ..., x_p\}$ is ordered

```
• Prop3: Let k \neq 2^n, q1 = k*i div b, q2 = k*j div b, then  \text{Max}(k \otimes [i,j]_b) = b - d \quad \text{where } d = \text{Min}_{q1 < q \leq q2} \ (q*b \text{ mod } k)  and  \text{and}   \text{Min}(k \otimes [i,j]_b) = d' \quad \text{where } d' = \text{Min}_{q1 < q \leq q2} \ (-q*b \text{ mod } k)
```

For $k * [i, j]_b$

Prop3: Let $k \neq 2^n$, q1 = k*i div b, q2 = k*j div b, then $\text{Max}(k \otimes [i,j]_b) = b - d \quad \text{where } d = \text{Min}_{q1 < q \leq q2} \ (q*b \text{ mod } k)$ and $\text{Min}(k \otimes [i,j]_b) = d' \quad \text{where } d' = \text{Min}_{q1 < q \leq q2} \ (-q*b \text{ mod } k)$ $5 * [2,7]_8 = [1,7]_8$

Relations over Clockwise Intervals

 Inclusion, union and intersection of CIs are defined with their settheoretic counterparts

$$[i,j]_b \subseteq [k,l]_b \Leftrightarrow \{i,i+1,...,j\} \subseteq \{k,k+1,...,l\}$$

 However, union and more surprisingy intersection are not closed over CIs, e.g.,

$$[5, 2]_8 \cap [1, 6]_8 = \{1, 2, 5, 6\}$$

Hence, we define the meet and join operations using the hull operator

$$[5, 2]_8$$
 meet $[1, 6]_8 = [1, 2, 5, 6] = [1, 6]_8$

• X = Y leads to prune both CI(X) and CI(Y) using CI(X) meet CI(Y)

Three implementations of constraint solving over modular integers (in progress)

MAXC (INRIA):

- Developed for EUCLIDE, a plateform for verifying critical C programs
- In SICStus Prolog (700loc) + C (300loc)
- Direct implem. Of Clockwise Intervals over 1, 2, 3, 4, 8, 16, 32 bits only
- unsigned only, no conversions, few arithmetic and relations

JSOLVER (ILOG)

- Static analysis of rule-based programs (ILOG Rules)
- Domain and Bound-consistencies on ideal integer arithmetic and
- use of a cast function to map the results on wrap-around

· COLIBRI (CEA):

- Constraints library used by CEA test generation tools (GATeL for LUSTRE models, PathCrawler for C code, Osmose for binary code)
- Integer/Real/Floating points interval arithmetics (union of disjoint intervals), Congruences, Difference constraints
- signed and unsigned cases

COLIBRI (CEA): 2 extra ideas

• For each op in $\{+,-,*,div,rem\}$, COLIBRI provides a modular version op_2^n , modular constraint propagators are handled by non modular operations:

$$A op_2^n B = C \Leftrightarrow A op B = C + K * 2^n$$

The range of K varies according to signed/unsigned, n and op.

Example: $A +_{2}^{n} B = C$

- Signed: [A,B,C]:: $[-2^{n-1}..2^{n-1}-1]$, K:: [-1..1]
- Unsigned: [A,B,C]:: [0..2ⁿ-1], K:: [0..1]
- For each op_2^n , an extra argument UO :: [-1..1] allows to read / provoke an underflow (UO = -1), overflow (UO = 1) or a nominal behavior (UO = 0)

An extra constraint maintains the invariant sign(UO) = sign(K)When UO = K = 0, $A op_2^n B = A op B$

Example: n = 3, A,B,C unsigned, A :: [2..4], B :: [5..7], C :: [0..7], UO :: [0..1] $A +_{2}{}^{3}B =_{UO} C \rightarrow A + B = C + K*8 \text{ with } K :: [0..1] \text{ and } sign(K) = sign(UO)$ $\rightarrow C :: [0..3, 7]$

ILOG JSolver: A CP library in Java for Rule Program Analysis

For any arithmetic operator, compute intervals of Z and then project them on computer intervals using a cast function

Let [a, b] be an interval of Z and u,v represent a, b in a (m, M)
computer integer

```
 - a = u + k_u(M-m+1), m \le u \le M 
 - b = v + k_v(M-m+1), m \le v \le M 
 \cdot cast_{m,M}([a,b]) = \begin{cases} [u,v] \text{ if } k_u = k_v \\ [m,M] \text{ otherwise} \end{cases}
```

Further work

Finding optimal bounds for non-linear constraints is hard

```
\rightarrow practical solution: relaxing optimality using over-approximations, e.g., X in a..b, Y in c..d then Z = X*Y in min(a*Y, X*c)..max(b*Y,X*d)
```

- Finishing our three implementations and performing a serious experimental evaluation is indispensable → next step
- Deal with constraints where distinct basis are considered,