
Optimising Quantified Expressions

Optimising Quantified Expressions in Constraint
Models

Ian P. Gent, Ian Miguel and Andrea Rendl

University of St Andrews, UK
AIT Austrian Institute of Technology, Austria

September 2010
Workshop on Modelling and Reformulation

Optimising Quantified Expressions

Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages
restriction: no decision variables in i1, . . . , im and int(lb..ub)

Optimising Quantified Expressions

Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages
restriction: no decision variables in i1, . . . , im and int(lb..ub)

Optimising Quantified Expressions

Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages
restriction: no decision variables in i1, . . . , im and int(lb..ub)

Optimising Quantified Expressions

Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages

restriction: no decision variables in i1, . . . , im and int(lb..ub)

Optimising Quantified Expressions

Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages
restriction: no decision variables in i1, . . . , im and int(lb..ub)

Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies

Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies

Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies

Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies

Optimising Quantified Expressions

Loop-invariant Expressions

1 Loop-invariant Expressions

2 Weak Guards

3 Summary

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Idea: analyse equivalent representations of quantified
expressions

Example: (x = 0) ⇒ ∀i∈D . (x [i] = i)
≡

∀i∈D . (x = 0)⇒ (x [i] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Idea: analyse equivalent representations of quantified
expressions

Example: (x = 0) ⇒ ∀i∈D . (x [i] = i)

≡
∀i∈D . (x = 0)⇒ (x [i] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Idea: analyse equivalent representations of quantified
expressions

Example: (x = 0) ⇒ ∀i∈D . (x [i] = i)
≡

∀i∈D . (x = 0)⇒ (x [i] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Idea: analyse equivalent representations of quantified
expressions

Example: (x = 0) ⇒ ∀i∈D . (x [i] = i)
≡

∀i∈D . (x = 0)⇒ (x [i] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Idea: analyse equivalent representations of quantified
expressions

Example: (x = 0) ⇒ ∀i∈D . (x [i] = i)
≡

∀i∈D . (x = 0)⇒ (x [i] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Many different cases....
1 A∧∀IEI ≡ ∀IA∧EI

2 A∨∃IEI ≡ ∃IA∨EI
3 mA+

∑
IEI ≡

∑
I A+EI where m = |I |

4 A∨(∀IEI)) ≡ ∀IA∨EI
5 etc

Intuitively, we expect the outside-representation to be better...
is this true for all cases?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Many different cases....
1 A∧∀IEI ≡ ∀IA∧EI
2 A∨∃IEI ≡ ∃IA∨EI
3 mA+

∑
IEI ≡

∑
I A+EI where m = |I |

4 A∨(∀IEI)) ≡ ∀IA∨EI
5 etc

Intuitively, we expect the outside-representation to be better...
is this true for all cases?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Many different cases....
1 A∧∀IEI ≡ ∀IA∧EI
2 A∨∃IEI ≡ ∃IA∨EI
3 mA+

∑
IEI ≡

∑
I A+EI where m = |I |

4 A∨(∀IEI)) ≡ ∀IA∨EI
5 etc

Intuitively, we expect the outside-representation to be better...

is this true for all cases?

Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions

Many different cases....
1 A∧∀IEI ≡ ∀IA∧EI
2 A∨∃IEI ≡ ∃IA∨EI
3 mA+

∑
IEI ≡

∑
I A+EI where m = |I |

4 A∨(∀IEI)) ≡ ∀IA∨EI
5 etc

Intuitively, we expect the outside-representation to be better...
is this true for all cases?

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

We compare representations at solver level (flat
representation)

We assume the solver provides:
(reifyable) n-ary conjunction (∀)
(reifyable) n-ary disjunction (∃)
n-ary sum (

∑
)

Let’s look at one case (see paper for other cases):
A⇒(∀IEI) ≡ ∀IA⇒EI

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

We compare representations at solver level (flat
representation)
We assume the solver provides:

(reifyable) n-ary conjunction (∀)
(reifyable) n-ary disjunction (∃)
n-ary sum (

∑
)

Let’s look at one case (see paper for other cases):
A⇒(∀IEI) ≡ ∀IA⇒EI

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

We compare representations at solver level (flat
representation)
We assume the solver provides:

(reifyable) n-ary conjunction (∀)
(reifyable) n-ary disjunction (∃)
n-ary sum (

∑
)

Let’s look at one case (see paper for other cases):
A⇒(∀IEI) ≡ ∀IA⇒EI

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation Outside-Representation
Original (∀IA⇒ EI) A⇒ (∀IEI)

Unrolled (A⇒ E1) ∧ A⇒ (E1 ∧ · · · ∧ Ek)
. . .
(A⇒ Ek)

Flat a⇒ e1 aux ⇔ (e1 ∧ · · · ∧ ek)
(unnested) . . . a⇒ aux

a⇒ ek
0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation Outside-Representation
Original (∀IA⇒ EI) A⇒ (∀IEI)

Unrolled (A⇒ E1) ∧ A⇒ (E1 ∧ · · · ∧ Ek)
. . .
(A⇒ Ek)

Flat a⇒ e1 aux ⇔ (e1 ∧ · · · ∧ ek)
(unnested) . . . a⇒ aux

a⇒ ek
0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation Outside-Representation
Original (∀IA⇒ EI) A⇒ (∀IEI)

Unrolled (A⇒ E1) ∧ A⇒ (E1 ∧ · · · ∧ Ek)
. . .
(A⇒ Ek)

Flat a⇒ e1 aux ⇔ (e1 ∧ · · · ∧ ek)
(unnested) . . . a⇒ aux

a⇒ ek

0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation Outside-Representation
Original (∀IA⇒ EI) A⇒ (∀IEI)

Unrolled (A⇒ E1) ∧ A⇒ (E1 ∧ · · · ∧ Ek)
. . .
(A⇒ Ek)

Flat a⇒ e1 aux ⇔ (e1 ∧ · · · ∧ ek)
(unnested) . . . a⇒ aux

a⇒ ek
0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation: more constraints (increasing with k),
no additional variables

Outside-Representation: only two constraints but 1
additional variable
Let’s compare the representations in an example!

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation: more constraints (increasing with k),
no additional variables
Outside-Representation: only two constraints but 1
additional variable

Let’s compare the representations in an example!

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Representations

Inside-Representation: more constraints (increasing with k),
no additional variables
Outside-Representation: only two constraints but 1
additional variable
Let’s compare the representations in an example!

Optimising Quantified Expressions

Loop-invariant Expressions

Example: Peaceful Army of Queens

Place two equally-sized armies of queens on a chess board such
that they do not attack another, maximising the army size

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.

white queen at field(i ,j) ⇒
forall k .

no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)

∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)

∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:

forall fields(i,j) on the chess board.

forall k .
white queen at field(i ,j) ⇒

no black queen at field(i,k) (column)
∧ forall k .

white queen at field(i ,j) ⇒
∧ no black queen at field(k,j) (row)

∧ forall k .
white queen at field(i ,j) ⇒

∧ no black queen at field(i+k,j+k) (NW-diagonal)
...

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:

forall fields(i,j) on the chess board.
forall k .
white queen at field(i ,j) ⇒

no black queen at field(i,k) (column)

∧ forall k .
white queen at field(i ,j) ⇒

∧ no black queen at field(k,j) (row)
∧ forall k .

white queen at field(i ,j) ⇒
∧ no black queen at field(i+k,j+k) (NW-diagonal)

...

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:

forall fields(i,j) on the chess board.
forall k .
white queen at field(i ,j) ⇒

no black queen at field(i,k) (column)
∧ forall k .

white queen at field(i ,j) ⇒
∧ no black queen at field(k,j) (row)

∧ forall k .
white queen at field(i ,j) ⇒

∧ no black queen at field(i+k,j+k) (NW-diagonal)
...

Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Inside Representation

Alternatively, moving loop-invariant expression inside:

forall fields(i,j) on the chess board.
forall k .
white queen at field(i ,j) ⇒

no black queen at field(i,k) (column)
∧ forall k .

white queen at field(i ,j) ⇒
∧ no black queen at field(k,j) (row)

∧ forall k .
white queen at field(i ,j) ⇒

∧ no black queen at field(i+k,j+k) (NW-diagonal)
...

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence’)

2 We translated both models to solvers Gecode and Minion
(using Tailor), generating:

outside-representation
inside-representation

for both models
3 We solved both representations using the same solving setup

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence’)
2 We translated both models to solvers Gecode and Minion

(using Tailor), generating:

outside-representation
inside-representation

for both models
3 We solved both representations using the same solving setup

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence’)
2 We translated both models to solvers Gecode and Minion

(using Tailor), generating:
outside-representation
inside-representation

for both models

3 We solved both representations using the same solving setup

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Inside- and Outside-Representation

What did we do?
1 We modelled two different PAQ models (in Essence’)
2 We translated both models to solvers Gecode and Minion

(using Tailor), generating:
outside-representation
inside-representation

for both models
3 We solved both representations using the same solving setup

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Number of Constraints

Inside-Representation has far more constraints than
Outside-Representation

 0.7

 1

 2

 5

 10

 15

 500 1000 5000 10000 30000

C
o

n
st

ra
in

t
R

ed
u

ct
io

n
 w

it
h

 I
n

si
d

e
R

ep
re

se
n

ta
ti

o
n

Constraints with Inside Representation (Forall-Impl)

Problem Classes
paq1 with CSE (Minion)

paq1 with CSE (Gecode)

paq3 with CSE (Minion)

paq3 with CSE (Gecode)

same #constraints

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Number of Auxiliary Variables

Inside-Representation has 30% less auxiliary variables than
Outside-Representation

 0.5
 0.7

 1

 2

 5

 10

 15

 50 100 1000 2000

A
u

x
 V

ar
ia

b
le

 R
ed

u
ct

io
n

 w
it

h
 I

n
si

d
e

R
ep

re
se

n
ta

ti
o

n

Number of Aux Variables with Inside-Representation

Problem Classes
paq1 with CSE (Minion)

paq1 with CSE (Gecode)

paq3 with CSE (Minion)

paq3 with CSE (Gecode)

same number of aux variables

Optimising Quantified Expressions

Loop-invariant Expressions

Comparing Number Solving Performance

 0.5

 0.7

 1

 1.3

 1.5

 2

 2.5

 3

 0.01 0.1 1 10 50 100 1000

S
o
lv

in
g
 T

im
e

R
ed

u
ct

io
n
 w

it
h
 I

n
si

d
e

R
ep

re
se

n
ta

ti
o
n

Solving Time with inside-representation (sec)

Problem Classes
paq1 with CSE (Minion)

paq1 with CSE (Gecode)

paq3 with CSE (Minion)

paq3 with CSE (Gecode)

same solving time

Inside-Rep. better in Minion (speedup of max. 300%)
Inside-Rep. slightly better in Gecode (speedup of max. 30%)

Optimising Quantified Expressions

Loop-invariant Expressions

Conclusion on Loop-Invariant Expressions

Against our expectations: it can be beneficial to move
loop-invariant expressions into quantifications

Difficult to make a general statement
depends on solver (provided propagators, architecture, etc)
depends on problem structure

Tailor can automatically reformulate quantifications to
inside/outside-representation

user can choose preferable representation (for each case) in
translation settings

Optimising Quantified Expressions

Loop-invariant Expressions

Conclusion on Loop-Invariant Expressions

Against our expectations: it can be beneficial to move
loop-invariant expressions into quantifications

Difficult to make a general statement
depends on solver (provided propagators, architecture, etc)
depends on problem structure

Tailor can automatically reformulate quantifications to
inside/outside-representation

user can choose preferable representation (for each case) in
translation settings

Optimising Quantified Expressions

Loop-invariant Expressions

Conclusion on Loop-Invariant Expressions

Against our expectations: it can be beneficial to move
loop-invariant expressions into quantifications

Difficult to make a general statement
depends on solver (provided propagators, architecture, etc)
depends on problem structure

Tailor can automatically reformulate quantifications to
inside/outside-representation

user can choose preferable representation (for each case) in
translation settings

Optimising Quantified Expressions

Weak Guards

1 Loop-invariant Expressions

2 Weak Guards

3 Summary

Optimising Quantified Expressions

Weak Guards

Weak Guards

A guard B for an expression E has to hold to enforce E
B ⇒ E

Often used in modelling, mostly to restrict quantifying
variables

Example:

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

Optimising Quantified Expressions

Weak Guards

Weak Guards

A guard B for an expression E has to hold to enforce E
B ⇒ E

Often used in modelling, mostly to restrict quantifying
variables

Example:

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

Optimising Quantified Expressions

Weak Guards

Weak Guards

A guard B for an expression E has to hold to enforce E
B ⇒ E

Often used in modelling, mostly to restrict quantifying
variables

Example:

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

Optimising Quantified Expressions

Weak Guards

Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
etc

Optimising Quantified Expressions

Weak Guards

Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
etc

Optimising Quantified Expressions

Weak Guards

Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
etc

Optimising Quantified Expressions

Weak Guards

Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
etc

Optimising Quantified Expressions

Weak Guards

Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
etc

Optimising Quantified Expressions

Weak Guards

Addressing Weak Guards

Option1: remove duplicate constraints after quantification is
unrolled

problem: only possible when quantification can be unrolled,
i.e. all parameters are known

Option2: strengthen the guard!

Optimising Quantified Expressions

Weak Guards

Addressing Weak Guards

Option1: remove duplicate constraints after quantification is
unrolled

problem: only possible when quantification can be unrolled,
i.e. all parameters are known

Option2: strengthen the guard!

Optimising Quantified Expressions

Weak Guards

Addressing Weak Guards

Option1: remove duplicate constraints after quantification is
unrolled

problem: only possible when quantification can be unrolled,
i.e. all parameters are known

Option2: strengthen the guard!

Optimising Quantified Expressions

Weak Guards

Strengthening Guards

Our Idea: use unification to strengthen guards

Unification Example:

What is the unifier for ‘x + i ’ and ‘x + 3’?

u = {3/i} (i substituted with 3)

We want to demonstrate the algorithm on an example...

Optimising Quantified Expressions

Weak Guards

Strengthening Guards

Our Idea: use unification to strengthen guards

Unification Example:

What is the unifier for ‘x + i ’ and ‘x + 3’?

u = {3/i} (i substituted with 3)

We want to demonstrate the algorithm on an example...

Optimising Quantified Expressions

Weak Guards

Strengthening Guards

Our Idea: use unification to strengthen guards

Unification Example:

What is the unifier for ‘x + i ’ and ‘x + 3’?

u = {3/i} (i substituted with 3)

We want to demonstrate the algorithm on an example...

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

A Golomb Ruler has n ticks such that the distance between each
tick is different, minimising the length of the ruler.

Sample Golomb Ruler with 4 ticks and length 6:

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

A Golomb Ruler has n ticks such that the distance between each
tick is different, minimising the length of the ruler.

Sample Golomb Ruler with 4 ticks and length 6:

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

‘The distances between all ticks are different’-Constraint:

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4)) ⇒

(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

‘The distances between all ticks are different’-Constraint:

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4)) ⇒

(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)

(1) If EI ’s root node corresponds to a binary commutative
operator then continue, otherwise stop.

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4)) ⇒

(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)

(1) If EI ’s root node corresponds to a binary commutative
operator then continue, otherwise stop.

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4)) ⇒

(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)

(1) If EI ’s root node corresponds to a binary commutative
operator then continue, otherwise stop.

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4)) ⇒

(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)
(2) Compute the set of unifiers U for the two children of EI ,
e1 and e2.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

u1 = {i1/i3 ∧ i2/i4} u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4} u4 = {i1/i3 ∧ i4/i2}

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)
(3) Search U for unifiers from which we can deduce
equivalence of the quantifying variables.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

u1 = {i1/i3 ∧ i2/i4} u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4} u4 = {i1/i3 ∧ i4/i2}

we deduce that (i1 = i3) ∧ (i2 = i4)

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI)
(4) Add lex-ordering constraint C on all quantifying variables
whose equivalence renders e1 and e2 equivalent

C : i1, i2 ≤lex i3, i4
hence (i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4)

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

Yielding the constraint with strengthend guard:

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4) ∧
(i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4))
⇒
(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

However: we have not implemented the algorithm yet!

Optimising Quantified Expressions

Weak Guards

Strengthening the Guard in Golomb Ruler

Yielding the constraint with strengthend guard:

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4) ∧
(i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4))
⇒
(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

However: we have not implemented the algorithm yet!

Optimising Quantified Expressions

Weak Guards

Effects of Duplicate constraints

How bad is the effect of duplicate constraints due to weak
guards?

in other words: is it worth putting energy into strengthening
guards?

We analyse the effects on two naive models in solver Minion
and Gecode:

Naive n-Queens
Naive Golomb Ruler

Optimising Quantified Expressions

Weak Guards

Effects of Duplicate constraints

How bad is the effect of duplicate constraints due to weak
guards?

in other words: is it worth putting energy into strengthening
guards?

We analyse the effects on two naive models in solver Minion
and Gecode:

Naive n-Queens
Naive Golomb Ruler

Optimising Quantified Expressions

Weak Guards

The Number of Duplicate Constraints

For both solvers: constant for n-Queens, linear within Golomb
Ruler

 0.95
 1

 1.1

 1.5

 2

 2.5

 25 50 100 1000 2500

C
o
n
st

ra
in

t
In

cr
ea

se
 F

ac
to

r

Number of Constraints (when duplicates eliminated)

Problem Classes
golomb (Minion)

golomb (Gecode)

nQueensNaive (Minion)

nQueensNaive (Gecode)

same number of constraints

Optimising Quantified Expressions

Weak Guards

Effect on Solving Performance

strong effect in Gecode, mild effect in Minion

 0.5

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 0.0001 0.001 0.01 0.05 0.1 1 10 100 1200

S
o
lv

in
g
 T

im
e

In
cr

ea
se

 F
ac

to
r

Solving Time with eliminated duplicates (sec)

Problem Classes
golomb (Minion)

golomb (Gecode)

nQueensNaive (Minion)

nQueensNaive (Gecode)

same solving time

Optimising Quantified Expressions

Weak Guards

Conclusions for Weak Guards

Duplicate constraints can impair the solving performance

We have an idea on how to strengthen guards to address
this redundancy

We still need to implement/test/refine the algorithm..

Optimising Quantified Expressions

Weak Guards

Conclusions for Weak Guards

Duplicate constraints can impair the solving performance

We have an idea on how to strengthen guards to address
this redundancy

We still need to implement/test/refine the algorithm..

Optimising Quantified Expressions

Weak Guards

Conclusions for Weak Guards

Duplicate constraints can impair the solving performance

We have an idea on how to strengthen guards to address
this redundancy

We still need to implement/test/refine the algorithm..

Optimising Quantified Expressions

Summary

Summary

There is scope for optimisations in quantifications

We can already provide some enhancement

But there is still a lot to investigate!

Optimising Quantified Expressions

Summary

Summary

There is scope for optimisations in quantifications

We can already provide some enhancement

But there is still a lot to investigate!

Optimising Quantified Expressions

Summary

Summary

There is scope for optimisations in quantifications

We can already provide some enhancement

But there is still a lot to investigate!

Optimising Quantified Expressions

Summary

Thank You.

	Loop-invariant Expressions
	Weak Guards
	Summary

