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Context of this Work

Quantified expressions in solver-independent constraint
modelling languages

Example:
forall i,j:int(1..n) .

(i6=j) ⇒ (q[i]-i 6= q[j]-j)

powerful means to compactly represent a set of expressions

same structure in all constraint modelling languages
restriction: no decision variables in i1, . . . , im and int(lb..ub)
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Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies



Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies



Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies



Optimising Quantified Expressions

Goal and Contributions

Our Observation:
quantified expressions can contain redundancies, often when
formulated by novices

Our Goal:
automatically improve poorly formulated quantified
expressions

Our Contributions:

we consider 2 kinds of redundancies

we propose means to detect and address those redundancies



Optimising Quantified Expressions

Loop-invariant Expressions

1 Loop-invariant Expressions

2 Weak Guards

3 Summary



Optimising Quantified Expressions

Loop-invariant Expressions

Loop-invariant Expressions
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Example: (x = 0) ⇒ ∀i∈D . (x [i ] = i)
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∀i∈D . (x = 0)⇒ (x [i ] = i)

we call ‘(x = 0)’ loop-invariant

Question: which representation is better?
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Loop-invariant Expressions

Many different cases....
1 A∧∀IEI ≡ ∀IA∧EI

2 A∨∃IEI ≡ ∃IA∨EI
3 mA+

∑
IEI ≡

∑
I A+EI where m = |I |

4 A∨(∀IEI )) ≡ ∀IA∨EI
5 etc

Intuitively, we expect the outside-representation to be better...
is this true for all cases?
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We compare representations at solver level (flat
representation)

We assume the solver provides:
(reifyable) n-ary conjunction (∀)
(reifyable) n-ary disjunction (∃)
n-ary sum (

∑
)

Let’s look at one case (see paper for other cases):
A⇒(∀IEI ) ≡ ∀IA⇒EI
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(unnested) . . . a⇒ aux
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0 auxiliary variables 1 auxiliary variable
k constraints 2 constraints
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Loop-invariant Expressions

Example: Peaceful Army of Queens

Place two equally-sized armies of queens on a chess board such
that they do not attack another, maximising the army size
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Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.

white queen at field(i ,j) ⇒
forall k .

no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)



Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)



Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)

∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)



Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)

∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)



Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Outside Representation

Non-attacking Constraints in model based on Smith et al (2004):

forall fields(i,j) on the chess board.
white queen at field(i ,j) ⇒

forall k .
no black queen at field(i,k) (same column)
∧ no black queen at field(k,j) (same row)
∧ no black queen at field(i+k,j+k) (NW-diagonal)
∧ no black queen at field(i-k,j+k) (SW-diagonal)
∧ no black queen at field(i+k,j-k) (NE-diagonal)
∧ no black queen at field(i-k,j-k) (SE-diagonal)



Optimising Quantified Expressions

Loop-invariant Expressions

Peaceful Army of Queens: Inside Representation
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What did we do?
1 We modelled two different PAQ models (in Essence’)

2 We translated both models to solvers Gecode and Minion
(using Tailor), generating:

outside-representation
inside-representation

for both models
3 We solved both representations using the same solving setup
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Comparing Number of Constraints

Inside-Representation has far more constraints than
Outside-Representation
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Comparing Number of Auxiliary Variables

Inside-Representation has 30% less auxiliary variables than
Outside-Representation
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Comparing Number Solving Performance
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Conclusion on Loop-Invariant Expressions

Against our expectations: it can be beneficial to move
loop-invariant expressions into quantifications

Difficult to make a general statement
depends on solver (provided propagators, architecture, etc)
depends on problem structure

Tailor can automatically reformulate quantifications to
inside/outside-representation

user can choose preferable representation (for each case) in
translation settings
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A guard B for an expression E has to hold to enforce E
B ⇒ E

Often used in modelling, mostly to restrict quantifying
variables

Example:
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Weak Guards

If guards are weak they yield duplicate constraints

forall i , j in (1..n).
(i 6= j) ⇒ queen[i] + i 6= queen[j] + j

is unrolled to:
queen[1]+1 != queen[2]+2, queen[1]+1 != queen[3]+3,
queen[2]+2 != queen[1]+1, queen[2]+2 != queen[3]+3,
queen[3]+3 != queen[2]+2, queen[3]+3 != queen[1]+1,
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Option1: remove duplicate constraints after quantification is
unrolled

problem: only possible when quantification can be unrolled,
i.e. all parameters are known

Option2: strengthen the guard!
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Strengthening Guards

Our Idea: use unification to strengthen guards

Unification Example:

What is the unifier for ‘x + i ’ and ‘x + 3’?

u = {3/i} (i substituted with 3)

We want to demonstrate the algorithm on an example...
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A Golomb Ruler has n ticks such that the distance between each
tick is different, minimising the length of the ruler.

Sample Golomb Ruler with 4 ticks and length 6:
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(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])
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STRENGTHEN_GUARD(∀I : D.BI ⇒ EI )

(1) If EI ’s root node corresponds to a binary commutative
operator then continue, otherwise stop.
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Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI )
(2) Compute the set of unifiers U for the two children of EI ,
e1 and e2.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

u1 = {i1/i3 ∧ i2/i4} u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4} u4 = {i1/i3 ∧ i4/i2}
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Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI )
(3) Search U for unifiers from which we can deduce
equivalence of the quantifying variables.

UNIFY (ruler[i1]-ruler[i2], ruler[i3]-ruler[i4]):

u1 = {i1/i3 ∧ i2/i4} u2 = {i3/i1 ∧ i4/i2}
u3 = {i3/i1 ∧ i2/i4} u4 = {i1/i3 ∧ i4/i2}

we deduce that (i1 = i3) ∧ (i2 = i4)
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Strengthening the Guard in Golomb Ruler

STRENGTHEN_GUARD(∀I : D.BI ⇒ EI )
(4) Add lex-ordering constraint C on all quantifying variables
whose equivalence renders e1 and e2 equivalent

C : i1, i2 ≤lex i3, i4
hence (i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4)
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Yielding the constraint with strengthend guard:

forall i1, i2, i3, i4 : TICKS.
((i1>i2) ∧ (i3>i4) ∧ (i26=i4) ∧
(i1 ≤ i3) ∧ (i1 < i3 ∨ i2 ≤ i4))
⇒
(ruler[i1]-ruler[i2] 6= ruler[i3]-ruler[i4])

However: we have not implemented the algorithm yet!
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Effects of Duplicate constraints

How bad is the effect of duplicate constraints due to weak
guards?

in other words: is it worth putting energy into strengthening
guards?

We analyse the effects on two naive models in solver Minion
and Gecode:

Naive n-Queens
Naive Golomb Ruler
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The Number of Duplicate Constraints

For both solvers: constant for n-Queens, linear within Golomb
Ruler
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Effect on Solving Performance

strong effect in Gecode, mild effect in Minion

 0.5

 0.9
 1

 1.1

 1.5

 2

 2.5

 3

 3.5

 0.0001  0.001  0.01  0.05  0.1  1  10  100  1200

S
o
lv

in
g
 T

im
e 

In
cr

ea
se

 F
ac

to
r

Solving Time with eliminated duplicates (sec)

Problem Classes
golomb (Minion)

golomb (Gecode)

nQueensNaive (Minion)

nQueensNaive (Gecode)

same solving time



Optimising Quantified Expressions

Weak Guards

Conclusions for Weak Guards

Duplicate constraints can impair the solving performance

We have an idea on how to strengthen guards to address
this redundancy

We still need to implement/test/refine the algorithm..
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Thank You.
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