Introduction
Approach
Conclusion

CONJURE Revisited: Towards Automated
Constraint Modelling

Ozgur Akgun®,
Alan M. Frisch?, Brahim Hnich3, Chris Jefferson!, lan Miguel1

1 School of Computer Science, University of St Andrews, UK
2 Artificial Intelligence Group, Dept. of Computer Science, University of York, UK
3 Department of Computer Engineering, Izmir University of Economics, Turkey

ModRef 2010
The 9th International Workshop on
Constraint Modelling and Reformulation

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

@ Introduction
@ What is?
o ESSENCE
@ ESSENCE by example
@ ESSENCE’

@ Approach
@ The task

@ The pipeline

@ Non-deterministic Rewriting

@ Some rules

@ Matching expressions, not constraints

@ Conclusion
@ Coverage and limitations
@ Conclusion and future work

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



o ESSENCE: a high level problem specification language



is?
Introduction What 8¢

Approach
Conclusion

by example
v

What is?

@ ESSENCE: a high level problem specification language

e CONJURE: a tool to generate multiple CSP models given a
problem specification

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction WiES th

ESSENCE

Approach R
A ESSENCE by example

Conclusion -

ESSENCE

What is?

@ ESSENCE: a high level problem specification language

e CONJURE: a tool to generate multiple CSP models given a
problem specification

e ESSENCE': a solver independent, problem class level CSP
modelling language

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction WiES th

Approach
Conclusion

ESSENCE

What is?

@ ESSENCE: a high level problem specification language

e CONJURE: a tool to generate multiple CSP models given a
problem specification

e ESSENCE': a solver independent, problem class level CSP
modelling language

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



What is?
ESSENCE
Esst
ESSENCE

Introduction
Approach
Conclusion

by example
’

What is?

@ ESSENCE: a high level problem specification language

e CONJURE: a tool to generate multiple CSP models given a
problem specification

e ESSENCE': a solver independent, problem class level CSP
modelling language

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ A high level problem specification language



is?
Introduction e 5

ESSENCE
Approach o

A ESSENCE by example
Conclusion -
ESSENCE

ESSENCE

@ A high level problem specification language

@ Supports many type constructors that allow problems to be
specified in natural ways

e boolean, integer, enumeration, unnamed types,
e set, multi-set, function, relation, tuple,

e and arbitrary nestings of these type constructors

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction e 5

ESSENCE
Approach o

A ESSENCE by example
Conclusion -
ESSENCE

ESSENCE

@ A high level problem specification language

@ Supports many type constructors that allow problems to be
specified in natural ways

e boolean, integer, enumeration, unnamed types,
e set, multi-set, function, relation, tuple,

e and arbitrary nestings of these type constructors

@ No CSP modelling decisions involved

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

ESSENCE by example

@ Problem

e given n distinct items, with associated weights and values
o select a set out of these items maximising total value
e such that the total weight is not more than that of you can

carry

Ozgur Akgun, et al.

What is?
ESSENCE
ESSENCE by example
ESSENCE’

CONJURE Revisited: Towards Automated Constraint Modelling



What is?
ESSENCE
ESSENCE by example
ESSENCE’

Introduction
Approach
Conclusion

ESSENCE by example

given item: enum

given w: function item — int(0..)
given v: function item — int(0..)
given cap: int(0..)

find x: set of item

maximising sum i : x . v(i)
such that sum i : x . w(i) <= cap

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ Almost a subset of ESSENCE



@ Almost a subset of ESSENCE

@ Operates on problem class level



is?
Introduction e 5

Approach ESSENCE
Cosslusion ESSENCE by example
EsSENCE

ESSENCE’

@ Almost a subset of ESSENCE
@ Operates on problem class level

@ Supports boolean and integer decision variables, and
multi-dimensional matrices

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction e 5

Approach ESSENCE
COnP!:)Iusion ESSENCE by example
EsSENCE

ESSENCE’

@ Almost a subset of ESSENCE
@ Operates on problem class level

@ Supports boolean and integer decision variables, and
multi-dimensional matrices

@ Supports several global constraints, in addition to common
arithmetic and logical ones

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction e 5

Approach ESSENCE
COnP!:)Iusion ESSENCE by example
EsSENCE

ESSENCE’

@ Almost a subset of ESSENCE
@ Operates on problem class level

@ Supports boolean and integer decision variables, and
multi-dimensional matrices

@ Supports several global constraints, in addition to common
arithmetic and logical ones

@ TAILOR compiles efficient CSP models to multiple target
solvers

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



is?
Introduction e 5

Approach ESSENCE
COnP!:)Iusion ESSENCE by example
EsSENCE

ESSENCE’

@ Almost a subset of ESSENCE
@ Operates on problem class level

@ Supports boolean and integer decision variables, and
multi-dimensional matrices

@ Supports several global constraints, in addition to common
arithmetic and logical ones

@ TAILOR compiles efficient CSP models to multiple target
solvers

o MINION
o Gecode
o FlatZinc

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



o Compile ESSENCE specifications to multiple ESSENCE’ models



o Compile ESSENCE specifications to multiple ESSENCE’ models
o Compilation process needs to be easily modifiable



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The task

o Compile ESSENCE specifications to multiple ESSENCE’ models
@ Compilation process needs to be easily modifiable

e A term rewriting infrastructure supported by a set of rewrite
rules

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ Parsing



@ Parsing

@ Type checking



@ Parsing

@ Type checking
@ Validating the input



@ Parsing

@ Type checking
@ Validating the input

@ Representations phase



Parsing

Type checking
Validating the input

Representations phase

Auto-Channelling phase



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline

Parsing

Type checking
Validating the input
Representations phase
Auto-Channelling phase

Adding structural constraints

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline

Parsing

Type checking
Validating the input
Representations phase
Auto-Channelling phase

Adding structural constraints

e 6 6 66 o6 o o

Expression rewriting

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline

Parsing
Type checking
Validating the input

Representations phase

Adding structural constraints

°
°

°

°

@ Auto-Channelling phase
°

@ Expression rewriting

°

Presentation

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Representations phase

@ One of the two kinds of modelling decisions
e Selecting the viewpoint

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Representations phase

@ One of the two kinds of modelling decisions
e Selecting the viewpoint

@ Select a representation for every parameter and decision
variable

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Representations phase

@ One of the two kinds of modelling decisions
e Selecting the viewpoint

@ Select a representation for every parameter and decision
variable

@ Possible to represent a variable in multiple ways
e if it appears in more than one constraint

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ Given: set (size 2) of int(1..3)



@ Given: set (size 2) of int(1..3)

o Explicit representation:
matrix indexed by [int(1..2)] of int(1..3)



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

2 representations for sets

o Given: set (size 2) of int(1..3)
e Explicit representation:
matrix indexed by [int(1..2)] of int(1..3)
e Occurrence representation:
matrix indexed by [int(1..3)] of bool

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example

given |b,ub,n: int
given s: set of int(lb..ub)
find x: set (size n) of int(lb..ub)

such that

x subseteq s,
forall i : x . k(i)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example

given |b,ub,n: int
given s: set of int(lb..ub)
find x_occr: set (size n) of int(lb..ub)

such that
x_occr subseteq s,
forall i : x_occr . k(i)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example

given |b,ub,n: int
given s: set of int(lb..ub)
find x_expl: set (size n) of int(lb..ub)

such that

x_expl subseteq s,
forall i : x_expl . k(i)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example

given |b,ub,n: int
given s: set of int(lb..ub)
find x_7: set (size n) of int(lb..ub)

such that

x_occr subseteq s,
forall i : x_expl . k(i)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Example

given |b,ub,n: int
given s: set
find x_expl:

find x_occr:

set (size
set (size

such that
x_occr subseteq s,
forall i x_expl

Ozgur Akgun, et al.

of int(lb..

The task

The pipeline

Non-deterministic Rewriting

Some rules

Matching expressions, not constraints

CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example

given |b,ub,n: int

given s: set of int(lb..ub)

find x_expl: set (size n) of int(Ib..ub)
find x_occr: set (size n) of int(lb..ub)

such that
x_occr subseteq s,
forall i : x_expl . k(i),
x_occr = x_expl

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Auto-Channelling phase

More than one representation for a decision variable
=>
pairwise equality constraints!

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Adding structural constraints

@ Now, representations for decision variables are known

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Adding structural constraints

@ Now, representations for decision variables are known
@ “Structural constraints” are added to the model

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

The pipeline: Adding structural constraints

@ Now, representations for decision variables are known
@ “Structural constraints” are added to the model

e an alldiff constraint for x_expl
e a cardinality constraint for x_occr

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example, structural constraints added

given |b,ub,n: int

given s: set of int(lb..ub)

find x_expl: set (size n) of int(lb..ub)
find x_occr: set (size n) of int(lb..ub)

such that
x_occr subseteq s,
forall i : x_expl . k(i),
x_occr = x_expl,
{ alldiff on x_expl’'s refinement },
{ cardinality on x_occr's refinement }

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Example, final

given |b,ub,n: int

given s_occr: matrix indexed by [int(Ilb..ub)] of bool

find x_expl: matrix indexed by [int(l..n)] of int(lb..ub)
find x_occr: matrix indexed by [int(lb..ub)] of bool

such that
forall i int(lb..ub) . x_occr[i] <= s_occr[i],
forall i : int(1 ) . k(x-expl[i]),
forall i : int(l. n) . x-occr[x_expl[i]] =1,
forall i int(lb..ub) . (

x_occr[i] => exists j : int(l..n) . x_expl[j] =i

alldiff (x_expl),
sum i : int(lb..ub) . x_occr[i] =n

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Non-deterministic Rewriting

@ Given a set of rewrite rules and a starting term, apply the
rules repeatedly.

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Non-deterministic Rewriting

@ Given a set of rewrite rules and a starting term, apply the
rules repeatedly.

e normal form

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Non-deterministic Rewriting

@ Given a set of rewrite rules and a starting term, apply the
rules repeatedly.

e normal form

@ More than one rule can match a term.

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Non-deterministic Rewriting

@ Given a set of rewrite rules and a starting term, apply the
rules repeatedly.

e normal form
@ More than one rule can match a term.
o Select one at random?

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Non-deterministic Rewriting

@ Given a set of rewrite rules and a starting term, apply the
rules repeatedly.

e normal form
@ More than one rule can match a term.

e Select one at random?
o Apply all matching rules? (produces a list of terms)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ Rules are represented as directed equations with guards.



@ Rules are represented as directed equations with guards.
A*B->A+ A, if B is 2
A/B->A , if Bis 1



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Rule representation

@ Rules are represented as directed equations with guards.
AxB->A+ A, if B is 2
A/ B->A , if B is 1

@ This is a partial mapping.

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Rule representation

@ Rules are represented as directed equations with guards.
AxB->A+ A, if B is 2
A/ B->A , if B is 1

@ This is a partial mapping.

@ Can combine multiple such rules, into a one-to-many
mapping.

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Rule representation

@ Rules are represented as directed equations with guards.
A *xB->A+ A, if B is 2
A/ B->A , if B is 1

@ This is a partial mapping.

@ Can combine multiple such rules, into a one-to-many

mapping.

Subterms: {A,B,C,D}
—
rulel: A to B

rule2: A to C

rule3: B to D

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Rule representation

@ Rules are represented as directed equations with guards.
A *xB->A+ A, if B is 2
A/ B->A , if B is 1

@ This is a partial mapping.

@ Can combine multiple such rules, into a one-to-many

mapping.

Subterms: {A,B,C,D}
—
rulel: A to B

rule2: A to C
rule3: B to D

@ Handle just one rule.

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Some example rules

essence_expression ~» equivalent_expression
guards: properties that essence_expression must satisfy
declarations: mnewly created variables and
local alzases for expressions

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



a =b ~> a subseteq b /\ b subseteq a
guards: a ~ set of T,
b ~ set of 7



a subseteq b ~» forall i : a . i elem b
guards: a ~ set of T,
b ~ set of 7



e elem s ~» exists i : s . 1 =¢e
guards: e ~ T,
s ~ set of T



Example rules: ruleSetQuan

forall
exists
forall
forall
exists
exists

L A S T

Introduction
Approach
Conclusion

union b) . k ~» forall i
union b) . k ~» exists i

intersect b)
intersect b)
intersect b)
intersect b)

Ozgur Akgun, et al.

oW R W

~>

~>
~>
~>

The task

The pipeline

Non-deterministic Rewriting

Some rules

Matching expressions, not constraints

a . k /\ forall i b .k

a .k \/ existsi:b .k
forall i a (ielemb=>%k)
forall i : b (i elem a => k )
exists i a (ielemb /\ k)
exists i : b (i elem a /\ k)

CONJURE Revisited: Towards Automated Constraint Modelling



@ Some other tools reason about complete constraints



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ Some other tools reason about complete constraints
e including previous implementations of CONJURE

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ Some other tools reason about complete constraints
e including previous implementations of CONJURE

@ Now, can match with any subexpression, not necessarily
complete constraints

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ Some other tools reason about complete constraints
e including previous implementations of CONJURE

@ Now, can match with any subexpression, not necessarily
complete constraints

o Can work on a non-flat model

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ Some other tools reason about complete constraints
e including previous implementations of CONJURE

@ Now, can match with any subexpression, not necessarily
complete constraints

o Can work on a non-flat model
o Able to reason about structure

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ Some other tools reason about complete constraints
e including previous implementations of CONJURE

@ Now, can match with any subexpression, not necessarily
complete constraints
e Can work on a non-flat model
e Able to reason about structure
o Do more with fewer rules

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



o Consider: (a union b) subseteq c



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

o Consider: (a union b) subseteq c

o Flattened: aux subseteq c¢c /\ aux = a union b

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

o Consider: (a union b) subseteq c
o Flattened: aux subseteq c¢c /\ aux = a union b
e We could have: a subseteq ¢ /\ b subseteq c

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



o Flattening = lost information



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

e Flattening = lost information

@ We can still flatten things, but only if we want, using our
powerful rewrite rules!

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

e Flattening = lost information

@ We can still flatten things, but only if we want, using our
powerful rewrite rules!

@ A small problem, where to put helper constraints?

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

given |b,ub,n,mk : int
find t : set (size n) of int(lb..ub)
find A : set (size n) set (size m) of int(lb..ub)

such that
forall s : A

(max(s) — max(t) = k) = (k elem s)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



max(s) ~» max_s @ bubble
guards: s ~ set of int
declarations: max_s : int
bubble = (max_s elem s) /\ (forall i : s . i <= max_s)



@ forall s: A .
(max(s) - max(t) = k) => (k elem s)



@ forall s: A .
(max(s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - max(t) = k) => (k elem s)



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .
(max(s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .
(max(s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)
@ forall s: A .
(((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .
(max(s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)
@ forall s: A .
(((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)
@ forall s: A .
(((max_s-max_t=k) @ (bubble_s /\ bubble_t))) => (k elem s)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .

(max(s) - max(t) = k) => (k elem s)
@ forall s: A .

((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .

((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)
@ forall s: A .

(((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)
@ forall s: A .

(((max_s-max_t=k) @ (bubble_s /\ bubble_t))) => (k elem s)
@ forall s: A .

(((max_s-max_t=k) => (k elem s)) @ (bubble_s /\ bubble_t))

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .

(max(s) - max(t) = k) => (k elem s)
@ forall s: A .

((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .

((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)
@ forall s: A .

(((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)
@ forall s: A .

(((max_s-max_t=k) @ (bubble_s /\ bubble_t))) => (k elem s)
@ forall s: A .

(((max_s-max_t=k) => (k elem s)) @ (bubble_s /\ bubble_t))
@ forall s: A .

(((max_s-max_t=k) => (k elem s)) /\ bubble_s /\ bubble_t)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



The task

Introduction The pipeline
Approach Non-deterministic Rewriting
Conclusion Some rules

Matching expressions, not constraints

Matching expressions, not constraints

@ forall s: A .
(max(s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - max(t) = k) => (k elem s)
@ forall s: A .
((max_s@bubble_s) - (max_t@bubble_t) = k) => (k elem s)

@ forall s: A .
(((max_s-max_t) @ (bubble_s /\ bubble_t))=k) => (k elem s)

@ forall s: A .

(((max_s-max_t=k) @ (bubble_s /\ bubble_t))) => (k elem s)
@ forall s: A .

(((max_s-max_t=k) => (k elem s)) @ (bubble_s /\ bubble_t))
@ forall s: A .

(((max_s-max_t=k) => (k elem s)) /\ bubble_s /\ bubble_t)

@ bubble_t /\ forall s: A .
(((max_s-max_t=k) => (k elem s)) /\ bubble_s)

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ KSSENCE has 7 core type constructors
e matrix, set, mset, partition, tuple, function, relation



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Coverage of ESSENCE

@ ESSENCE has 7 core type constructors
e matrix, set, mset, partition, tuple, function, relation

@ Type constructors supported: all except partition

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Coverage of ESSENCE

@ ESSENCE has 7 core type constructors
e matrix, set, mset, partition, tuple, function, relation

@ Type constructors supported: all except partition

@ Also we haven't yet implemented support for enumerated and
unnamed types

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Coverage of ESSENCE

@ ESSENCE has 7 core type constructors
e matrix, set, mset, partition, tuple, function, relation

@ Type constructors supported: all except partition

@ Also we haven't yet implemented support for enumerated and
unnamed types

@ There are nearly 30 operators defined on these type
constructors

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Coverage of ESSENCE

@ ESSENCE has 7 core type constructors
e matrix, set, mset, partition, tuple, function, relation
@ Type constructors supported: all except partition
@ Also we haven't yet implemented support for enumerated and
unnamed types
@ There are nearly 30 operators defined on these type
constructors
@ Almost all of them implemented

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ Broader coverage of ESSENCE



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Differences to the prototype implementation

@ Broader coverage of ESSENCE

@ Representation decisions

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Differences to the prototype implementation

@ Broader coverage of ESSENCE
@ Representation decisions

@ Auto-channelling becomes very easy

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Differences to the prototype implementation

Broader coverage of ESSENCE
Representation decisions

Auto-channelling becomes very easy

No flattening

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Differences to the prototype implementation

Broader coverage of ESSENCE
Representation decisions
Auto-channelling becomes very easy
No flattening

Easier rule authoring

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



@ New version of CONJURE with far greater coverage of the
ESSENCE language



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Conclusion and future work

@ New version of CONJURE with far greater coverage of the
ESSENCE language

@ Immediate future work, covering all of the types and
operations in ESSENCE

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Conclusion and future work

@ New version of CONJURE with far greater coverage of the
ESSENCE language

@ Immediate future work, covering all of the types and
operations in ESSENCE

@ Capture best modelling practices

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Conclusion and future work

@ New version of CONJURE with far greater coverage of the
ESSENCE language

@ Immediate future work, covering all of the types and
operations in ESSENCE

@ Capture best modelling practices

@ Model selection

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



Introduction
Approach
Conclusion

Coverage and limitations
Conclusion and future work

Conclusion and future work

@ New version of CONJURE with far greater coverage of the
ESSENCE language

@ Immediate future work, covering all of the types and
operations in ESSENCE

Capture best modelling practices

Model selection

Investigate multi-model search techniques

Ozgur Akgun, et al. CONJURE Revisited: Towards Automated Constraint Modelling



	Introduction
	What is?
	Essence
	Essence by example
	Essence'

	Approach
	The task
	The pipeline
	Non-deterministic Rewriting
	Some rules
	Matching expressions, not constraints

	Conclusion
	Coverage and limitations
	Conclusion and future work


