1st International Workshop on
Local Search Techniques in
Constraint Satisfaction

Toronto, Canada
September 27, 2004

Workshop Organisers

Justin Pearson, Uppsala University
Magnus Agren, Uppsala University
Markus Bohlin, SICS

Program Committee

Gilles Pesant, Ecole Polytechnique de Montréal
Steven Prestwich, Cork University College
Meinolf Sellmann, Brown University

Pascal Van Hentenryck, Brown University

Held in conjunction with
CP 2004
Tenth International Conference on
Principles and Practice of
Constraint Programming
September 27 - October 1, 2004

Toronto Marriott Downtown Eaton Centre

Toronto, Canada



Overview

Local search is an efficient method for solving hard combinatorial (optimisation) prob-
lems. Instances that are still infeasible for global search may be solvable using lo-
cal search techniques. Traditionally, the implementation of local search algorithms
was error-prone and time-consuming since this usually meant application-tailored al-
gorithms in some low-level imperative language. In recent years however, following
the spirit of constraint programming, systems providing high-level modelling abstrac-
tions together with efficient solving mechanisms have evolved. These systems provide
general frameworks for problem solving using neighbourhood techniques, resulting in
a more declarative solving approach for the user. Local search and constraint satisfac-
tion is an active area of research that attracts and unites many different fields such as
computer science and mathematics.

The First International Workshop on Local Search Techniques in Constraint Satis-
faction, LSCS 04, is held at the Tenth International Conference on Principles and Prac-
tice of Constraint Programming, CP *04, at Toronto Marriott Downtown Eaton Centre,
Toronto, Canada. It brings together recent research on local search and its integration
with constraint programming. The workshop focuses on any aspect concerning local
search. This includes, but is not limited to, new search heuristics, meta-heuristics, tech-
niques for (incremental) cost calculations, local search systems, comparing or combin-
ing global and local search, and applications solved using neighbourhood techniques.

The workshop organisers would like to thank all the people that attended the work-
shop as well as the contributing authors and the rest of the programme committee.

Workshop Organisers

Justin Pearson and Magnus Agren, Department of Information Technology,
Uppsala University, Box 337, S-751 05 Uppsala, Sweden.

Markus Bohlin Swedish Institute of Computer Science (SICS AB), IDt/MdH, Box
883, S-721 23 Visteras, Sweden.

Program Committee

Gilles Pesant, Ecole Polytechnique de Montréal, Montréal, Canada
Steven Prestwich, University College, Cork, Ireland

Meinolf Sellmann, Brown University, Providence, RI, USA
Pascal Van Hentenryck, Brown University, Providence, RI, USA



Contents

Iterative Forward Search: Combining Local Search with Maintain-
ing Arc Consistency and a Conflict-based Statistics
Tomés Miiller, Roman Barték, Hana Rudové

Stochastic solver for constraint satisfaction problems with learning
of high-level characteristics of the problem topography
Yehuda Naveh

On the impact of small-word constraint graphs on local search
Andrea Roli

Ezxploiting Relaxation in Local Search
Steven Prestwich

ii

1-16
17-31
33-47
49 -61






Iterative Forward Search: Combining Local
Search with Maintaining Arc Consistency and
a Conflict-based Statistics

Tomas Miiller', Roman Bartédk! and Hana Rudova?

! Faculty of Mathematics and Physics, Charles University
Malostranské ndm. 2/25, Prague, Czech Republic
{muller|bartak}@ktiml.mff.cuni.cz
2 Faculty of Informatics, Masaryk University
Botanicka 68a, Brno 602 00, Czech Republic
hanka@fi.muni.cz

Abstract. The paper presents an iterative forward search framework for
solving constraint satisfaction and optimization problems. This frame-
work combines ideas of local search, namely improving a solution by
local steps, with principles of depth-first search, in particular extending
a partial feasible assignment towards a solution. Within this framework,
we also propose and study a conflict-based statistics and explanation-
based arc consistency maintenance. To show the versatility of the pro-
posed framework, the dynamic backtracking algorithm with maintaining
arc consistency is presented as a special instance of the iterative forward
search framework. The presented techniques are compared on random
constraint satisfaction problems and a real-life lecture timetabling prob-
lem.

1 Introduction

Many real-life industrial and engineering problems can be modeled as finite con-
straint satisfaction problems (CSP). A CSP consists of a set of variables associ-
ated with finite domains and a set of constraints restricting the values that the
variables can simultaneously take. In a complete solution of a CSP, a value is
assigned to every variable from the variable’s domain, in such a way that every
constraint is satisfied. Algorithms for solving CSPs usually fall into one of two
main families: systematic search algorithms and local search algorithms.

Most algorithms for solving CSPs search systematically through the possi-
ble assignments of values to variables. Such algorithms are guaranteed to find
a solution, if one exists, or to prove that the problem has no solution. They
start from an empty solution (no variable is assigned) that is extended towards
a complete solution satisfying all the constraints in the problem. Backtracking
occurs when a dead-end is reached. The biggest problem of such backtrack-based
algorithms is that they typically make early mistakes in the search, i.e., a wrong
early assignment can cause a whole subtree to be explored with no success. There



are several ways of improving standard chronological backtracking. Look-back
enhancements exploit information about the search which has already been per-
formed, e.g., backmarking or backjumping [6]. Look-ahead enhancements exploit
information about the remaining search space via filtering techniques (e.g., via
maintaining arc consistency described in [1, 2]) or variable and value ordering
heuristics [13]. The last group of enhancements is trying to refine the search tree
during the search process, e.g., dynamic backtracking [8].

Local search algorithms [13] (e.g., min-conflict [14] or tabu search [7]) per-
form an incomplete exploration of the search space by repairing an infeasible
complete assignment. Unlike systematic search algorithms, local search algo-
rithms move from one complete (but infeasible) assignment to another, typically
in a non-deterministic manner, guided by heuristics. In general, local search al-
gorithms are incomplete, they do not guarantee finding a complete solution sat-
isfying all the constraints. However, these algorithms may be far more efficient
(wrt. response time) than systematic ones in finding a solution. For optimization
problems, they can reach a far better quality in a given time frame.

In this paper, we present an iterative forward search (IFS) framework (based
on our earlier work published in [15]) to solve CSPs. This framework is close to
local search methods; however, it maintains a partial feasible solution as opposed
to the complete conflicting assignment characteristic of local search. Similarly
to local search, we process local changes in the solution. We also describe how
to extend the presented algorithm with dynamic maintenance of arc consistency
and conflict-based statistics. New conflict-based statistics is proposed to improve
the quality of the final solution. Conflicts during the search are memorized and
their potential repetition is minimized. The presented framework is very close to
local search algorithms, but unlike them, it can be easily refined into a dynamic
backtracking algorithm by enforcement of several basic rules.

There are several other approaches which try to combine local search meth-
ods together with backtracking based algorithms. For example, the decision re-
pair algorithm presented in [11] repeatedly extends a set of assignments (called
decisions) satisfying all the constraints, like in backtrack-based algorithms. It
performs a local search to repair these assignments when a dead-end is reached
(i.e., these decisions become inconsistent). After these decisions are repaired,
the construction of the solution continues to the next dead-end. Unlike this ap-
proach, our algorithm operates more like the local search method — it does not
execute a local search after a dead-end is reached but it applies the same local
steps during search. A similar approach is used in the algorithm presented in [18]
as well.

One of the primary areas to which we intended to apply the proposed algo-
rithm is a course timetabling problem at Purdue University (USA), described in
details in [17]. It is a real-life large-scale problem that includes features of over-
constrained as well as optimization problems. The goal is to timetable more than
800 lectures to a limited number of lecture rooms (about 50) and to satisfy as
many as possible individual course requests of almost 30,000 students. Moreover,
the algorithm should be able to react to additional changes, in particular, the



algorithm should be capable of repairing a modified timetable where some hard
constraints are violated by the user changes. IFS satisfies all these requirements
and as we will show later, it produces better solutions than existing approaches.

The paper is organized as follows. In the next section, we will describe the
iterative search algorithm formally. Special subsections will be devoted to ex-
tensions of IFS, namely conflict-based statistics and maintaining dynamic arc
consistency. After that, we will show how dynamic backtracking with maintain-
ing arc consistency [10] can be rewritten as a special instance of IFS. A short
summary of the implementation together with the experimental results for ran-
dom CSPs and a real-life timetabling problem will conclude the paper.

2 TIterative Forward Search Algorithm

The iterative forward search algorithm, that we propose here, is based on ideas
of local search methods [13]. However, in contrast to classical local search tech-
niques, it operates over feasible, though not necessarily complete solutions. In
such a solution, some variables can be left unassigned. Still all hard constraints
on assigned variables must be satisfied. Similarly to backtracking based algo-
rithms, this means that there are no violations of hard constraints.

Working with feasible incomplete solutions has several advantages compared
to the complete infeasible assignments that usually occur in local search tech-
niques. For example, when the solver is not able to find a complete solution,
an incomplete (but feasible) one can be returned, e.g., a solution with the least
number of unassigned variables found. Moreover, because of the iterative char-
acter of the search, the algorithm can easily start, stop, or continue from any
feasible solution, either complete or incomplete.

The search processeds iteratively (see Fig. 1 for algorithm). During each step,

procedure SOLVE(initial) // initial solution is the parameter
iteration = 0; // iteration counter
current = initial; // current solution
best = initial; // best solution

while canContinue (current, iteration) do
iteration = iteration + 1;
variable = selectVariable (current);
value = selectValue (current, variable);
UNASSIGN(current, CONFLICTING_VARIABLES(current, variable, value));
ASSIGN(current, variable, value);
if better (current, best) then best = current

end while

return best

end procedure
Fig. 1. Pseudo-code of the search algorithm.

an unassigned or assigned variable is initially selected. Typically an unassigned
variable is chosen like in backtracking-based search. An assigned variable may be
selected when all variables are assigned but the solution is not good enough (for



example, when there are still many violations of soft constraints). Once a variable
is selected, a value from its domain is chosen for assignment. Even if the best
value is selected (whatever ‘best’ means), its assignment to the selected variable
may cause some hard conflicts with already assigned variables. Such conflicting
variables are removed from the solution and become unassigned. Finally, the
selected value is assigned to the selected variable.

The algorithm attempts to move from one (partial) feasible solution to an-
other via repetitive assignment of a selected value to a selected variable. During
this search, the feasibility of all hard constraints in each iteration step is enforced
by unassigning the conflicting variables. The search is terminated when the re-
quested solution is found or when there is a timeout, expressed e.g., as a maximal
number of iterations or available time being reached. The best solution found is
then returned.

The above algorithm schema is parameterized by several functions, namely

the termination condition (function canContinue),
the solution comparator (function better),

the variable selection (function selectVariable) and
the value selection (function selectValue).

Termination Condition. The termination condition determines when the al-
gorithm should finish. For example, the solver should terminate when the maxi-
mal number of iterations or some other given timeout value is reached. Moreover,
it can stop the search process when the current solution is good enough, e.g., all
variables are assigned and/or some other solution parameters are in the required
ranges. For example, the solver can stop when all variables are assigned and less
than 10% of the soft constraints are violated. Termination of the process by the
user can also be a part of the termination condition.

Solution Comparator. The solution comparator compares two solutions: the
current solution and the best solution found. This comparison can be based on
several criteria. For example, it can lexicographically order solutions according
to the number of unassigned variables (smaller number is better) and the number
of violated soft constraints.

Variable Selection. As mentioned above, the presented algorithm requires
a function that selects a variable to be (re)assigned during the current iteration
step. This problem is equivalent to a variable selection criterion in constraint
programming. There are several guidelines for selecting a variable [5]. In local
search, the variable participating in the largest number of violations is usually
selected first. In backtracking-based algorithms, the first-fail principle is often
used, i.e., a variable whose instantiation is most complicated is selected first. This
could be the variable involved in the largest set of constraints or the variable
with the smallest domain, etc.

We can split the variable selection criterion into two cases. If some variables
remain unassigned, the “worst” variable among them is selected, i.e., first-fail
principle is applied.



The second case occurs when all variables are assigned. Because the algorithm
does not need to stop when a complete feasible solution is found, the variable
selection criterion for such case has to be considered as well. Here all variables
are assigned but the solution is not good enough, e.g., in the sense of violated
soft constraints. We choose a variable whose change of a value can introduce the
best improvement of the solution. It may, for example, be a variable whose value
violates the highest number of soft constraints.

Value Selection. After a variable is selected, we need to find a value to be
assigned to the variable. This problem is usually called “value selection” in con-
straint programming [5]. Typically, the most useful advice is to select the best-fit
value. So, we are looking for a value which is the most preferred for the variable
and which causes the least trouble as well. This means that we need to find
a value with the minimal potential for future conflicts with other variables. For
example, a value which violates the smallest number of soft constraints can be
selected among those values with the smallest number of hard conflicts.

2.1 Conflict-based Statistics

Conflict-based statistics were successfully applied in earlier works [6, 11]. In our
approach, the conflict-based statistics works as an advice in the value selection
criterion. It helps to avoid repetitive, unsuitable assignments of the same value
to a variable by memorizing conflicts caused by this assignment in the past. In
contrast to the weighting-conflict heuristics proposed in [11], conflict assignments
are memorized together with the causal assignment which impacted them. Also,
we propose the presented statistics to be unlimited, to prevent short-term as
well as long-term cycles.

The main idea behind conflict-based statistics is to memorize conflicts and
prohibit their potential repetition. When a value vy is assigned to a variable
Vo, hard conflicts with previously assigned variables (e.g., V1 = vy, Vo = va, ...
Vin = vpm) can occur. These variables V1,...V,,, have to be unassigned before the
value v is assigned to the variable V{y. These unassignments, together with the
reason for their unassignment (e.g., assignment Vo = vg), and a counter tracking
how many times such an event occurred in the past, is stored in memory.

Later, if a variable is selected for an assignment again, the stored information
about repetition of past hard conflicts can be taken into account, e.g., in the value
selection heuristics. For example, if the variable Vj is selected for an assignment
again, we can weight the number of hard conflicts created in the past for each
possible value of the variable. In the above example, the existing assignment
Vi = vy can prohibit the selection of the value vy for the variable Vj if there is
again a conflict with the assignment V; = v;.

Conflict-based statistics is a data structure that memorizes hard conflicts
which have occurred during the search together with their frequency (e.g., that
assignment Vj = vy caused ¢; times an unassignment of Vi = vy, co times of
Vo =g ... and ¢, times of V,,, = v,,). More precisely, it is an array

Stat[Vy = va, Vi 7 0] = Cab,



saying that the assignment V, = v, caused c,}, times unassignment of V;, = v in
the past. Note that in case of n-ary constraints (where n > 2), this does not imply
that the assignments V, = v, and V;, = v, cannot be used together. The pro-
posed conflict-based statistics does not actually work with any constraint, it only
memorizes the unassignments together with the assignment which caused them.
Let us consider a variable V, selected by selectVariable function, a value v,
selected by selectValue. Once an assignment Vj, = vy, is selected by CONFLICT-
ING_VARIABLES to be unassigned, the array Stat[V, = v,, V} # vp] is incremented
by one.

The data structure is implemented as a hash table, storing information for
conflict-based statistics. A counter is maintained for the tuple A = a and B # b.
This counter is increased when the value a was assigned to the variable A and b
needed to be unassigned from B. The example of this structure

3xB#b
4xB#c
2xC+#a
120x D #a

A=a=

expresses that variable B lost its assignment b three times and its assignment ¢
four times, variable C' lost its assignment a two times and D lost its assignment a
120 times, all because of later assignments of value a to variable A. This structure
is being used in the value selection heuristics to evaluate existing conflicts with
the assigned variables. For example, if there is a variable A selected and if the
value a is in conflict with an assignment B = b, we know that a similar problem
has already occurred 3x in the past, and the conflict A = a is weighted with
this number.

For example, a min-conflict value selection criterion, which selects a value
with the minimal number of conflicts with the existing assignments, can be
easily adapted to a weighted min-conflict criterion. The value with the smallest
sum of the number of conflicts multiplied by their frequencies is selected.

Stated in another way, the weighted min-conflict approach helps the value
selection heuristics to select a value that might cause more conflicts than an-
other value, but these conflicts occurred less frequently, and therefore they have
a lower weighted sum. This can considerably help the search to get out of a local
minimum.

We plan to study the following extensions of the conflict-based statistics:

— If a variable is selected for an assignment, the above presented structure can
also tell how many potential conflicts a value can cause in the future. In the
above example, we already know that four times a later assignment of A = a
caused that value ¢ was unassigned from B. We can try to minimize such
future conflicts by selecting a different value of the variable B while A is still
unbound.

— The memorized conflicts can be aged according to how far they have occurred
in the past. For example, a conflict which occurred 1000 iterations ago can
have half the weight of a conflict which occurred during the last iteration or
it can be forgotten at all.



Let us study the space complexity of the above data structure for storing
conflict-based statistics. At a maximum, there could be a counter for each pair
of possible assignments V, = v, and V;, = v, where V, # V; and there is a
constraint between variables V, and V; which can prohibit concurrent assign-
ments V, = v, and V, = v,. However, note that each increment of a counter
in the statistics means an unassignment of an assigned variable. Therefore each
counter Stat[V, = vq, Vi # vp] = n in the statistics means that there was an
assignment V;, = v, which was unassigned n times when v, was assigned to V.
Together with the fact, that there is only one assignment done in each iteration,
the following invariant will be always true during the search: The total sum of all
counters in the statistics plus the current number of assigned variables is equal
to the number of processed iterations. Therefore, if the above described hash
table (which is empty at the beginning and does not contain empty counters)
is used, the total number of all counters in it will never exceed the number of
iterations processed so far.

The presented approach can be successfully used in other search algorithms as
well. For example, in the local search, we can memorize the assignment V,, = v,
which was selected to be changed (re-assigned). A reason for such selection can
be retrieved and memorized together with the selected assignment V, = v, as
well. Note that typically an assignment which is in a conflict with some other
assignments is selected.

Furthermore, the presented conflict-based statistics can be used not only
inside the presented algorithm. Its constructed ‘implications’ together with the
information about frequency of their occurrences can be easily used by users or
by some add-on deductive engine to identify inconsistencies® and/or hard parts
of the input problem. The user can then modify the input requirements in order
to eliminate the found problems and let the solver continue to search with such
a modified input problem.

2.2 Maintaining Arc Consistency Using Explanations

Because the presented algorithm works with partial feasible solutions, it can be
easily extended to dynamically maintain arc consistency during the search. This
can be done by using well known dynamic arc consistency (MAC) algorithms
(e.g., by AC|DC algorithm published in [16] or DnAC6 published in [4]) which
are widely used in Dynamic CSPs [12].

Moreover, since the only constraints describing assignments (constraint Vari-
able=value) can be added and removed during the search, approaches based on
explanations [9, 10] can be used as well. In this section, we present how these
explanations, which are traditionally used in systematic search algorithms, can
be used in our iterative forward search approach in order to maintain arc con-
sistency.

An explanation, V; # v; <= (Vi = v1&Va = v2..&V; = v;) describes that
the value v; cannot be assigned to the variable V; since it is in a conflict with

3 Actually, this feature allows to discover all inconsistent inputs during solving the
Purdue University timetabling problem [17].



the existing assignments V; = v, Vo = v9, ... V; = v;. This means that there
is no complete feasible assignment containing assignments Vi = vy, Vo = vg, ...
V; = v; together with the assignment V; = v; (these equalities form a no-good
set [9]).

During the arc consistency maintenance, when a value is deleted from a vari-
able’s domain, the reason (forming an explanation) can be computed and at-
tached to the deleted value. Once a variable (say V, with the assigned value v;)
is unassigned during the search, all deleted values which contain a pair V, = v,
in their explanations need to be recomputed. Such value can be either still in-
consistent with the current (partial) solution (a different explanation is attached
to it in this case) or it can be returned back to its variable’s domain. Arc con-
sistency is maintained after each iteration step, i.e., the selected assignment is
propagated into the not yet assigned variables. When a value v, is assigned to
a variable V,,, an explanation V, # v, < V, = v, is attached to all values v/, of
the variable V., different from v,.

In the case of forward checking, computing explanations is rather easy. A value
v, is deleted from the domain of the variable V, only if there is a constraint
which prohibits the assignment V, = v, because of the existing assignments
(e.g., Vy = vy,..V. = v;). An explanation for the deletion of this value v, is
then V; # vy <= (V, = v,&..V, = v,), where V,, = v,&...V, = v, are assign-
ments contained in the prohibiting constraint. In case of arc consistency, a value
v, 18 deleted from the domain of the variable V, if there is a constraint which
does not permit the assignment V, = v, with other possible assignments of
the other variables in the constraint. This means that there is no support value
(or combination of values) for the value v, of the variable V, in the constraint.
An explanation is then a union of explanations of all possible support values
for the assignment V, = v, of this constraint which were deleted. The reason is
that if one of this support values is returned to its variable’s domain, this value
v, may be returned as well (i.e., the reason for its deletion has vanished, a new
reason needs to be computed).

As for the implementation, the above described algorithm schema (see Fig. 1)
can remain as it is, we only need to enforce arc consistency of the initial solution
and to extend UNASSIGN and ASSIGN methods. Procedure ASSIGN(solution, vari-
able, value) should enforce arc consistency of the solution with the selected as-
signment variable=value and the procedure UNASSIGN(solution, variable, value)
should ‘undo’ the assignment variable=value. It means that explanations of all
values which were deleted and which contain assignment variable = value in
their explanations needs to be recomputed. This can be done via returning all
these values into their variables’ domains followed by arc consistency mainte-
nance over their variables.

Using the presented explanations-based approach gives us more flexibility
than dynamic arc consistency algorithms (e.g., AC|DC, DnAC, ...) where the
value selection function can choose only among the values in the current domain
of the variable, i.e., among the values that are not pruned by arc consistency.
The values which were deleted via MAC can be selected as well (actually they are



only marked as no-good values in the implementation). If a deleted variable is
selected, it can become feasible by repeatedly unassigning a selected value from
its explanation until the value is returned to the selected variable’s domain. This
cannot be done as easily as in the case of dynamic arc consistency algorithms,
since we do not know the cause of deletion of a deleted value. For instance, there
are several possibilities how to treat a case when there is a variable with an empty
domain (i.e., all its values were deleted via MAC). We discuss two of them below,
see Sec. 4. Note that we might want to compute the largest feasible solution (in
the number of assigned variables) in case of over-constrained problem.

3 IFS as Dynamic Backtracking with MAC

In this section, we describe how the presented iterative forward search framework
can be used for modeling of dynamic backtracking (DB) search with the arc
consistency maintenance (MAC). In some sense, the presented IFS algorithm
with MAC can be seen as an extension of DB with MAC, e.g., described in [10],
towards the local search based methods.

Dynamic backtracking with MAC can come out of the above presented IFS
with MAC via the following modifications and/or restrictions:

— Variable selection function selectVariable always returns an unassigned
variable. If there are one or more variables with empty domains, one of them
is returned in the variable selection function.

— Value selection function selectValue always returns a value from the se-
lected variable’s domain (i.e., not-deleted value), if there is no such value, it
returns null.

— When all the variables are assigned the solver terminates and returns the
found solution (termination condition function canContinue). In case of
branch&bound technique an existence of a complete solution should lower
the bound so that a conflict arises, which leads to some unassignments.

— If the selected value is null (which means that the selected variable has
an empty domain), a union of all assignments which prohibits all the values
of the selected variable (a union of assignments of all values’ explanations) is
computed. The last made assignment of them is selected (each variable can
memorize an iteration number, when it was assigned for the last time). This
assignment has to be unassigned, all other assignments from the computed
union are taken as an explanation for this unassignment. If the computed
explanation is empty (e.g., V, # v, < &), the value can be permanently
removed from its variable’s domain because it can never be a part of a com-
plete solution. If the computed union is empty, there is no complete solution
and the algorithm returns fail.

— If a value v, is assigned to a variable V, an explanation V, # v, <V, = v,
is attached to all values from the domain of the variable V different from v,,.
Note that in contrast to the IFS MAC algorithm described in the previous
section, the already deleted values from the variable’s V, domain leave its
original explanation (it is not changed to V,, # v}, < V,, = v,). This can be



done, because the last assigned variable from the variables which prohibits
values from a variable with an empty domain is always unassigned.

Like in the above presented IFS MAC algorithm, arc consistency maintenance
and its undo is called automatically after each assignment and unassignment,
respectively.

4 Experiments

The above described algorithm together with its presented extensions has been
implemented in Java. It contains a general implementation of the iterative search
algorithm. The general solver operates over abstract variables and values with
a selection of available extensions, basic general heuristics, solution comparators,
and termination functions. It may be customized to fit a particular problem
(e.g., as it has been extended for Purdue University timetabling, see Sec. 4.2) by
implementing variable and value definitions, adding hard and soft constraints,
and extending the parametric functions of the algorithm. The results presented
here were computed on 1GHz Pentium IIIm PC running Windows 2000, with
512 MB RAM and J2SDK 1.4.2.

Because we attempt to solve large scale problems, maintaining arc consis-
tency is based on AC3 algorithm (e.g., see [19]). In the Purdue University
timetabling problem we have almost 830 variables (there is a variable for each
course) with the total number of more than 200,000 values (there is a value for
each location of a course in the timetable, including a selection of time(s), room
and instructor). Furthermore, nearly every two variables are related by some
constraint, e.g., typically there is at least one room they can both use. Due to
the memory reasons, this prohibits any consistency method which is based on
memorizing values for each pair of values or for each pair of value and variable.

In the following experiments we compare several mutations of the above pre-
sented algorithm and its improvements. For all these variants, an unassigned
variable is selected randomly and the value selection is based on min-conflict
strategy. This means that a value is randomly selected among the values whose
assignment will cause the minimal number of conflicts with the existing assign-
ments. The search is terminated when a complete solution is found or when the
given time limit is reached. As for the solution comparator, a solution with the
highest number of assigned variables is always selected. The compared algorithms
are:

— IFS MCRW ... min-conflict selection of values with 2% random walk*

— IFS TABU ... tabu list of the length 20 is used to avoid cycling®

— IFS ConfStat ... min-conflict value selection where conflicts are weighted
according to the conflict-based statistics (as described in Sec. 2.1)

4 With the given probability, a value is selected randomly from all values of the selected
variable’s domain.

5 Repeated selection of the same pair (variable,value) is prohibited for the given
number of following iterations.

10



— IFS MAC ... arc-consistency maintenance; if there is a variable with an empty
domain, a variable which caused a removal of one or more of values is selected
and unassigned.®

— IFS MAC+ ... arc-consistency maintenance; the algorithm continues ex-
tending the solution even when there is a value with an empty domain. If
the selected variable has an empty domain (pruned by MAC) then one of
values deleted by MAC is selected (via min-conflic value selection).

— DBT MAC ... dynamic backtracking algorithm with arc consistency main-
tenance (as described in Sec. 3)

— DBT FC ... dynamic backtracking algorithm with forward checking

4.1 Random CSP

In this section, we present results achieved on the Random Binary CSP with
uniform distribution [3]. A random CSP is defined by a four-tuple (n,d, p1,p2),
where n denotes the number of variables and d denotes the domain size of each
variable, p; and po are two probabilities. They are used to generate randomly
the binary constraints among the variables. p; represents the probability that
a constraint exists between two different variables (tightness) and po represents
the probability that a pair of values in the domains of two variables connected
by a constraint are incompatible (density).

Figure 2 presents the number of assigned variables in percentage to all vari-

100%

90% { x,

o “x o PR ?@ IFSI TABU
X, X BN
80% : 3 wiﬂ\;_\! IFS MCR
b > .
70% s T IFS ConfStat
"-x.x £y 2N
5 6% | Yo
c
250% -
0 N
2 %, IFS MAC+
< 40% - g
\4 DBT FC f
30% 1 -
AC 3‘
20% 1 M :
10% i\h\- \;\‘\.\_
DBT MAC By,

X'X. X Wy X <
x x v X -
0% : : : By ni -

44% 47% 50% 53% 56% 59% 62% 65% 68% 71% 74% 77% 80% 83% 86% 89%

Tightness
--0-- IFS MCRW --a-- IFS TABU —e—IFS ConfStat --0-- IFS MAC
-%-- IFS MAC+ —=—DBT MAC ——DBT FC

Fig. 2. CSP(20,15,43%, p2), number of assigned variables (in percentage to all vari-
ables), the best achieved solution within 60 seconds, average from 10 runs.

% This is done so that a value v, of such a variable with an empty domain V, is

selected randomly and a randomly selected assignment from the explanation V, # v,
is unassigned.

11



ables wrt. the probability ps representing tightness of the generated problem
CSP(20,15,43%, p2). The average values of the best achieved solutions from 10
runs on different problem instances within the 60 second time limit are presented.

Each of the compared algorithms was able to find a complete solution within
the time limit for all the given problems with a tightness under 46%. Achieved
results from min-conflict random walk, tabu-list and the presented conflict-based
statistics seem to be very similar for this problem. Also, it is not surprising that
a usage of consistency maintenance techniques lowers the maximal number of as-
signed variables, e.g., both dynamic backtracking with MAC and IFS with MAC
extend an incomplete solution only when it is arc consistent with all unassigned
variables. As we can see from the Figure 2, we can get much better results when
we allow the search to continue even if there is a variable with an empty domain.

For the results presented in Figure 3, we turned the random CSP into an op-

450

50

0 T T T T T T T T
10% 11% 12% 13% 14% 15% 16% 17% 18% 19% 20% 21% 22% 23% 24% 25%

Tightness
-0+ IFS MCRW @+ IFS TABU —e—IFS ConfStat -0+ IFS MAC
%+ IFS MAC+ —=—DBT MAC ——DBT FC

Fig. 3. minCSP(40,30,43%, p2), the sum of all assigned values of the best solution
within 60 seconds wrt. problem tightness, average from 10 runs.

timization problem where we are searching for a complete feasible solution with
the smallest total sum of the assigned values. Recall that each variable has d gene-
rated values from 0,1, ...d — 1. For the comparison we used C'SP(40, 30,43%, p2)
problems with the tightness p, taken so that every measured algorithm was able
to find a complete solution for each of 10 different generated problems within
the given 60 second time limit. The min-conflict value selection criterion was
adapted to take the smallest value from the values which cause the minimum
number of conflicts. For DBT, the smallest value from a domain of a selected
variable was taken as well. As for conflict-based statistics, each value is weighted
by itself added to the number of weighted conflicts. For example, value 7 with
4 conflicts has a weight 7+ 4 = 11. If value 3 has 9 conflicts, so its weight is
12, then the value 7 will be preferred over 3. For all the measured algorithms,

12



the solver continues even if a complete solution is found until the time limit is
reached. A complete solution with the smallest sum of the assigned values is
then returned. For this problem, the presented conflict-based statistics was able
to give much better results than other compared algorithms. The algorithm is
obviously trying to stick much more with the smallest values than the others, but
it is able to find a complete solution since the conflict counters are rising during
the search. Such behaviour can be very handy for many optimization problems,
especially when optimization criteria (expressed either by some optimization
function or by soft constraints) go against the hard constraints.

Conclusion. For the tested random constraint satisfaction problems, IFS MAC
does not seem to be suitable: it produces very similar results to DBT MAC, but
unlike DBT MAC, it can not guarantee finding a complete solution, if one exists,
or to prove that the problem has no solution.

Since IFS MAC+ can continue extending a partial solution even when there
is a variable with an empty domain, it can produce much better results than
IFS MAC in case that the given problem is over-constrained (i.e., there is no
complete solution). For some tasks, it can be an interesting compromise between
backtrack-based search and local search.

For pure, not-optimization constraint satisfaction problems (e.g., results from
Fig. 2), the presented IFS with conflict-based statistics returns very similar re-
sults to other tested traditional local search principles preventing cycles (i.e.,
tabu-list and random walk). However the presented conflict-based statistics can
be very useful when optimization criteria are considered.

4.2 Real-Life Application: Purdue University Timetabling

In this section, we present some results achieved on the large lecture timetabling
problem from Purdue University. The following tests were performed on the
complete Fall 2004 data set” which consists of 826 classes (forming 1782 meetings,
4050 half-hours) that must fit into 50 lecture rooms with capacities up to 474
students. In this problem, 89,633 course demands of 29,808 students must be
considered.

The timetable maps classes (students, instructors) to meeting locations and
times. A primary objective is to minimize the number of potential student course
conflicts which occur during this process. Other major constraints on the problem
solution are instructor availability and a limited number of rooms with sufficient
capacity, specific equipment, and a suitable location. Some of these constraints
must be satisfied; others are introduced within an optimization process in order
to avoid an over-constrained problem.

Figure 4 presents some results achieved with the presented framework. Ave-
rage values together with their RMS (root-mean-square) variances of the best
achieved solutions from 10 different runs found within 30 minute time limit are
presented. Time refers to the amount of time required by the solver to find the
presented solution.

7 Similar results were achieved also on a complete data set from Fall 2001, used in our
previous work [17].

13



Test cases IFS ConfStat IFS TABU IFS MCRW
Assigned variables [%]| 100.00 £ 0.00  97.67 £ 0.15  98.29 £ 0.16
Time [min] 24.11 £ 4.42 24.17 £ 3.62 24.52 £ 3.83
Student conflicts [%)] 1.97 + 0.06 1.97 £ 0.07 2.05 £ 0.19
Preferred time [%] 85.64 £ 1.57 89.86 £+ 0.69 89.63 £ 1.06
Preferred room [%] 50.39 £ 5.34  66.48 £ 3.42  64.84 + 3.86

Fig. 4. Purdue University Timetable, characteristics for the best achieved solutions
within 30 minutes, average values and RMS variances from 10 runs.

The value selection criterion was extended to take into account three op-
timization criteria. Student conflicts give the percentage of unsatisfied require-
ments for the courses chosen by the students. One student conflict means that
there are two courses required by a student that cannot be both attended, e.g.,
because they overlap in time. Preferred time and preferred room estimate the sat-
isfaction of time and room preferences respectively. These preferences are given
by the instructors individually for each class. In our heuristics, room preferences
are considered much less important than time preferences and student conflicts.

IFS with conflict-based statistics was able to find a complete solution of
a good quality in each run; the first complete solution was found after 6 —
10 minutes. Moreover, it was able to significantly improve the first complete
solution with approximately 2.3% of violated student requirements and 80%
of time preferences satisfied. On the other hand, neither tabu search nor min-
conflict random walk were able to find any complete solution within the given 30
minute time limit; at least 17 variables for TABU and 12 variables for MCRW
remained unassigned after each run.

Dynamic backtracking with either MAC or FC (not included in Figure 4) was
able to assign in average approximately 93% of variables, with almost 3% violated
student requirements and only approximately 40% of time preferences satisfied.
IFS MAC was able to assign only about 65% of variables. IFS MAC+ assigned
about 94% variables, with approximately 2.2% student conflicts and around 75%
of time preferences. Consistency was maintained over all hard constraints.

We plan to use MAC+ only over the “additional” constraints, e.g. a prece-
dence constraint between two or more courses or not-overlap constraint between
a lecture and its seminars. However, the used data set contains only 203 of
such constrains, so there is no significant difference between a solution with and
without MAC+ (IFS ConfStat versus IFS ConfStat with MAC+ on additional
constraints). Currently we work on solving other Purdue University timetabling
problems where the number of these constraints significantly increases.

Conclusion. The general consensus, that local search is more suited for opti-
mization problems than backtrack-based search, is valid also for our large lecture
timetabling problem. Unlike the other tested algorithms, the presented conflict-
based statistics is capable to produce high quality and stable results. Further-
more, if there is any time available after the first complete solution is found, the
solver is also able to gradually improve this solution. We believe that the arc

14



consistency maintenance can help us solve some complicated situations which
can arise in our timetabling problem.

5 Conclusions and Future Work

We have presented a promising iterative forward search framework which is,
as we believe, together with the presented improvements, capable of solving
various constraint optimization problems. We have presented some results on
random CSP and on Purdue University timetabling problem. Our solver is able to
construct a demand-driven timetable, which satisfies approximately 98% course
requests of students together with about 85% of time preferences.

Our future research will include extensions of the proposed general algorithm
together with improvements to the implemented solver. We would like to do
an extensive study of the proposed framework and its possible application to
other, non timetabling-based problems. As for Purdue University timetabling,
we are currently extending the CLP solver [17] with some of the features included
here to present a fair comparison. However, the CLP solver was not yet able to
find a complete solution in the accomplished preliminary experiments.

Acknowledgements

This work is partially supported by the Czech Science Foundation under the
contract No. 201/04/1102 and by Purdue University.

References

[1] C. Bessitre and J. C. Régin. Arc consistency for general constraint networks:
Preliminary results. In Proceedings of 15th International Joint Conference on
Artificial Intelligence (IJCAI-97), pages 398-404, Nagoya, Japan, 1997.

[2] C. Bessiere and J. C. Régin. Refining the basic constraint propagation algorithm.
In Proceedings IJCAI’01, pages 309-315, Seattle WA, 2001.

[3] Christian Bessiere. Random uniform csp generators, 1996. http://www.lirmm.
fr/~bessiere/generator.html.

[4] R. Debruyne. Arc-consistency in dynamic csps is no more prohibitive. In Pro-
ceedings of 8th Conference on Tools with Artificial Intelligence (TAI’96), pages
299-306, 1996.

[5] Rina Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[6] Rina Dechter and Daniel Frost. Backjump-based backtracking for constraint sat-
isfaction problems. Artificial Intelligence, 136(2):147-188, 2002.

[7] Philippe Galinier and Jin-Kao Hao. Tabu search for maximal constraint satis-
faction problems. In Proceedings 3rd International Conference on Principles and
Practice of Constraint Programming, pages 196-208. Springer-Verlag LNCS 1330,
1997.

[8] Matthew L. Ginsberg. Dynamic backtracking. Journal of Artificial Intelligence
Research, pages 23—46, 1993.

[9] Narendra Jussien. The versatility of using explanations within constraint pro-
gramming. In Habilitation thesis of Universit de Nantes, France, 2003.

15



[10]

[11]
[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Narendra Jussien, Romuald Debruyne, and Patrice Boizumault. Maintaining arc-
consistency within dynamic backtracking. In Principles and Practice of Constraint
Programming, pages 249-261, 2000.

Narendra Jussien and Olivier Lhomme. Local search with constraint propagation
and conflict-based heuristics. Artificial Intelligence, 139(1):21-45, 2002.
Narendra Jussien and Gérard Verfaillie. Dynamic constraint solving. In A tutorial
including commented bibliography presented at CP 2003, Kinsale.

Zbigniew Michalewicz and David B. Fogel. How to Solve It: Modern Heuristics.
Springer, 2000.

Steven Minton, Mark D. Johnston, Andrew B. Philips, and Philip Laird. Minimiz-
ing conflicts: a heuristic repair method for constraint satisfaction and scheduling
problems. Artificial Intelligence, 58:161-205, 1992.

Tomas Muller and Roman Bartdk. Interactive timetabling: Concepts, techniques,
and practical results. In PATAT 2002 — Proceedings of the 4th international con-
ference on the Practice And Theory of Automated Timetabling, pages 58-72, 2002.
B. Neveu and P. Berlandier. Maintaining arc consistency through constraint re-
traction. In Proceedings of the IEEE International Conference on Tools for Arti-
octal Intelligence (TAI), pages 426-431, New Orleans, LA, 1994.

Hana Rudova and Keith Murray. University course timetabling with soft con-
straints. In Practice And Theory of Automated Timetabling, Selected Revised
Papers, pages 310-328. Springer-Verlag LNCS 2740, 2003.

Andrea Schaerf. Combining local search and look-ahead for scheduling and con-
straint satisfaction problems. In Proceedings of 15th International Joint Con-
ference on Artificial Intelligence (IJCAI-97), pages 1254-1259, Nagoya, Japan,
1997.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

16



Stochastic solver for constraint satisfaction
problems with learning of high-level
characteristics of the problem topography

Yehuda Naveh

IBM Research Labs in Haifa, Haifa University, Haifa 31905, Israel
naveh@il.ibm.com

Abstract. A new generic method for solving constraint satisfaction
problems is presented. The method is based on stochastic search which
is non-local in the sense that at any point in the search, the next state
sampled may be arbitrarily far from the current state. The solver relies
heavily on knowledge of the high-level characteristics of the topography
defining the problem. It obtains these characteristics in two complemen-
tary ways. First, it continuously and automatically learns the topogra-
phy in the course of the search. Second, it accepts domain-knowledge
from the user if such knowledge is available. We describe experiments
performed with this solver on a set of hard arithmetical CSPs adopted
from practical hardware verification problems, as well as on the well-
known low-autocorrelation binary sequence problem. The experiments
confirmed the strength of the method.

1 Introduction

1.1 Background

Constraint satisfaction problems appear in many knowledge domains from staffing
and scheduling, to radio-frequency partitioning, to functional verification of
hardware designs. A constraint satisfaction problem (CSP) is a triplet (V, D, C)
consisting of a set of variables V', a corresponding set of domains D, and a set
of constraints C on the variables in V. A solution to a CSP is a complete as-
signment to V from domains D such that all constraints in C are satisfied. A
CSP solver is an algorithm that accepts a CSP as input and returns one of three
outputs: (1) a solution to the CSP, (2) 'unsat’ if there is no such solution, or
(3) 'time-out’. Existing CSP solvers fall into two basic categories: systematic
search solvers and stochastic search solvers.

1.2 Systematic Search

Systematic solvers typically move between partial assignments to V, at each
step either adding an assignment to a not-yet-assigned variable (normal step), or
removing assignments from already-assigned variables (backtrack). The strength

17



2 Yehuda Naveh

of such solvers stems from their ability to reduce ('prune’) large fractions of the
variable domains by enforcing some level of consistency on the problem after
each assignment to a variable.

In many cases, systematic algorithms are very effective. However, this frame-
work is not suitable for some broad classes of CSPs. One such class is the case
where the size of the domain of some of the variables remains very large even
after enforcing consistency. The time-complexity in this case is of the order of
the size of the domain divided by the number of satisfying assignments. In some
cases this ratio is exponentially large. Another class of CSPs that is hard for sys-
tematic search involves cases where consistency cannot be enforced efficiently.

1.3 Stochastic Search and Topographic View of the CSP

The second class of solvers are complete-assignment solvers, e.g., min-conflicts
[17], GSAT [24], Walksat [22], or Tabu Search [11, 6]. Here, the solver does not
move between partial assignments to V', but rather between complete assign-
ments. Since searching all complete assignments may be a prohibitively large
task, the solver must decide which complete assignments to check. In order to
do so, two metrics are invariably defined: first a ’distance’ is defined between any
two complete assignments. This distance satisfies the ordinary requirements on
distance relations (symmetry, positive definiteness, and triangle relation). Sec-
ond, a ’cost’ is defined for every complete assignment. The cost satisfies one
strong requirement and one weak requirement. The strong requirement states
that the cost of a complete assignment is non-negative, and it is zero if and only
if the assignment satisfies the CSP. The weak requirement is for some fitness-
distance correlation [4] to exist between the cost and the distance.

The two metrics define a topography whose hyper-plane represents the set
of all complete assignments to V', and whose elevation is provided by the cost
of each complete assignment. Thus, the CSP is mapped into an optimization
problem, with the difference being that we are only interested in reaching a
global minimum of value 0 (or proving that such a minimum does not exist).

As with any optimization problem, the problem reduces to the ability to
escape local minima in the course of the search. In particular, CSPs that can
be mapped into topographies with few or no local minima are easily solvable
within such an approach. Most practical problems, however, are mapped into
topographies that contain a substantial number of local minima (see [8] for a
detailed analysis of the topographies of random SAT problems). Various broad
strategies have been created in order to escape the local minima. In some cases
(e.g., GSAT), the solver checks a local neighborhood of the current complete
assignment, and chooses a new complete assignment at random out of all checked
assignments that have the lowest cost. In others (e.g., simulated annealing [14],
random-walk [23]), the solver makes a random decision about whether to move to
a neighboring complete assignment even if it has a higher cost than the current
one. All those strategies share two characteristics. First, part of the decision
about which complete assignments to explore is made stochastically. Second, in
order for these strategies to work, the move from one complete assignment to

18



Stochastic solver with learning of topography characteristics 3

the next is done locally, i.e., involving a distance that is much smaller than the
typical size of the full problem (although may be larger than the minimal ’single
assignment’ distance, as in variable-neighborhood search [12]). In fact, these
two characteristics are so prevalent that ’stochastic methods’ and ’local-search
methods’ have become the common names for search methods going through
complete assignments.

Stochastic local-search methods are suitable for some classes of problem
topographies. For example, simulated annealing works best in the case where
sequences of asymmetric local minima surrounded by barriers of gradually de-
creasing heights eventually lead to global minima [14]. In general, however, many
practical topographies are hard for any of these methods. Most critically, local-
search methods are usually inefficient on problems for which the typical barriers
surrounding local minima are wide and high [10].

In this paper, we present a CSP solver that relies on a different strategy
for escaping local minima. Through automatic learning, the solver attempts to
gain high-level information about the topography of the problem. It applies
this information when moving from one complete assignment to another. These
moves are non-local in nature, and hence may result in efficient solutions even
for problems characterized by wide or high barriers. Learning was previously
applied to stochastic local search only in the ’cost’ direction — see, e.g., [10,7].
In these works, which deal with SAT problems, clauses that are found to be hard
to satisfy have their costs increased during the course of the solution. However,
learning of the problem characteristics in the planar directions is significantly
more complex, and is discussed here for the first time.

In order to appreciate how learning the characteristics of the topography
may be beneficial in terms of solvability, consider the following hypothetical
example. Suppose that the problem topography is composed of many regions.
Each of these regions is similar in its high-level structure to all other regions -
and is characterized by many local minima separated by roughly the distance
Ly from each other. In addition, the regions are separated from each other by
roughly Lo > L; (so the spectral composition of the topography is characterized
by two values in any of a number of directions). Finally, suppose that the number
of global minima (i.e., solutions) is small compared to the number of regions.
During the solution process, any stochastic search algorithm is likely to reach
the quasi-global minimum of one of the regions (the point with the lowest cost
in that region). However, once stuck in such a minimum, only a large hop of
the order of Ly may be of any benefit. Therefore, by learning the length-scales
characterizing the topography, the algorithm may bias its moves towards ones
which are multiples of Lo, and by doing so critically enhance its ability to escape
macroscopically large but infeasible regions.

We conjecture that many CSPs of practical origin can be represented by
topographies which feature well defined high-level characteristics as in the above
example. The results of section 3 support this conjecture.

19



4 Yehuda Naveh
2 Simulated Variable Range Hopping

2.1 Terminology

In what follows, we consider a CSP (V, D, C'), where each variable in V' is binary-
encoded into a bit string, the domains D are represented as unary constraints
on V', and each constraint (either from C, or implied by D) is defined by a cost
function. With this view of the CSP, we use the following terminology:

bit size: Total number of bits representing all variables.

state: A particular assignment from {0, 1} to all bits in the problem. A state is
a complete assignment of values to all variables in V', not necessarily out of D.
current state: The state the solver is currently at, used for reference with other
states.

cost: The total cost of a given state. This is the sum of costs of all constraints
on that state. The cost is zero if and only if the state is a solution of the CSP.

current cost: the cost of the current state.

flip: A change of the value of a single bit.

attempt: A set of bits, usually in the context of flipping all bits in the set, and
comparing the cost of the resulting state with the current cost.

step size: Number of bits in an attempt.

successful attempt: an attempt which leads to a cost lower than the current
cost.

attempt list: A set of attempts.

difficulty: An integer characterizing how difficult it is to escape the current
state.

hop: A move from one state to another.

distance: The Hamming distance between two given states.

topography characteristic: Any of a given set of characteristics used by the
solver to characterize the topography. Examples are "length scales’ and "preferred
directions’.

attempt type: A string characterizing the origin of a given attempt. Attempt
types are “stochastic”, “user-defined”, and an additional ’learned’ type for each
topography characteristic (e.g., “learned-step-size”, “learned-direction”).

2.2 Outline of the Algorithm

In broad terms, the heart of the solver works as follows: At each round, an
attempt list is chosen according to the procedure outlined in the next paragraph.
All successful attempts in the list are saved (without distorting the current
state), and their characteristics are learned. Then the state hops to a better
state according to one of the successful attempts with the lowest cost, and the
next attempt list is chosen and similarly processed. If at any stage a state with
zero cost is found, the solver terminates with success. On the other hand, if no
successful attempt was found in the list, the difficulty is raised, which means
that the next round would try a larger number of attempts from the same state.

20



Stochastic solver with learning of topography characteristics 5

The wisdom of the solver is encapsulated in the way it chooses attempt lists.
This choice relies heavily on the learned characteristics of the topography, on
available domain-knowledge from the user, and on randomness. When choosing
an attempt, the solver first decides which attempt type it wants. This high-level
choice is itself based on previous learning. Still, even when past experience has
shown that all successful attempts were of the ’learned’ or 'user-defined’ types,
the solver never completely abandons purely random attempts.

As in previous works [9, 20, 16, 13], our modeling scheme is object-oriented,
and definitions of domain-knowledge, as well as cost calculations and initializa-
tion policies, are encapsulated within independent user-defined structures.

The learning mechanism we implemented is simple—the values of all charac-
teristics of successful attempts are saved, and when the solver needs a learned
value of some characteristic it chooses randomly from the vicinity of all saved
values. The random choice is weighted according to the frequency of occurrence
of the value. So, if all past successful attempts had the following step sizes (1, 1,
1,1,5,5, 15, 15), then, when the solver creates an attempt of type “learned-step-
size”, the new attempt has a probability 0.5 to have a step-size close to 1, and
probability 0.25 each to have a step-size close to 5 or close to 15 (in our experi-
ments, the 'close to’ parameter was set to 1, so the chosen step-size may be any
of the set of values {1,2,4,5,6,14,15,16}). Note that while simple, this mecha-
nism provides for a positive feedback loop and therefore strengthens successful
characteristic values. The mechanism also requires saving parameters of only
successful hops, which means that space-complexity, as well as time-complexity
in maintaining the learned lists, do not pose a problem. All results reported be-
low were based on learning of two topography parameters: characteristic length
scales and preferred directions (through correlated bits).

The step sizes of attempts are not limited. In fact, in the example topography
described in Section 1.3, we expect attempts of step sizes close to L and Lo
to be relatively successful. Therefore, the solver is automatically biased towards
further choosing a relatively large number of those step sizes. Hence the non-
locality of the solver. Note also that a hop from one state to another is performed
only if the new state is of lower cost than the original. Hence, the solver is strictly
Zelro—temperatulre1 .

Our approach to the problem is reminiscent in many ways of the well known
physical problem of an excited localized electron in a disordered material at zero-
temperature [19]. In both cases, many meta-stable states are formed between
high barriers, the positions of those states do not form a regular array, and their
costs (energies) are distributed more or less uniformly on some energy scale. In
both problems, the zero-cost (ground) states are scarce compared to the number
of meta-stable states, and in general there may be a strong mixture of high and
low-cost states in the same spatial vicinity. There are also similarities between
the dynamics of the physical electron and the dynamics of the current state in

! In some cases (depending on previous statistics, and according to predefined heuris-

tics), we restart the algorithm, while keeping all previously-learned values. Such
restarts may be viewed as finite-temperature moves, but in practice they are rare.

21



6 Yehuda Naveh

our case. First, in both cases, the state evolves only through cost-reducing hops.
Second, it can be shown that in both cases, a rapid, linear reduction of the cost
is followed by a much slower, sub-linear reduction. Finally, in both problems,
hops of various length scales are taken in no predictable order. The dynamics of
localized electrons in disordered materials is known as ’variable-range hopping’;
therefore, we name this algorithm ’simulated variable range hopping’ (SVRH).
(One important difference between the two problems is that the physical elec-
tron cannot learn the topography or otherwise gain knowledge about it. This is
compensated by a very rapid attempt rate compared to the simulated problem?).

2.3 Input to the Algorithm

The input to SVRH is twofold: it comprises of the CSP and, possibly, user
domain-knowledge.

CSP The CSP (V, D, C) is input to the algorithm in the following way:
(1) Variables V are in the form of bit strings of varying lengths, and (2) con-
straints C' and domains D are both in the form of constraints on V. Each such
constraint sees one or more of the input variables. Each constraint is associated
with a function Cost() that returns 0 if the state of the variables satisfies the
constraint, and a positive integer otherwise. In addition, through a function Ini-
tialize(), each constraint has the ability to initialize the variables it sees into
values consistent with the constraint.

As an example, consider an integer-equality constraint acting on two variables
A and B, where A is encoded to a bit string of length 7, and B to a bit string
of length 4. In this case, the function Cost() may return the Hamming distance
between the four least significant bits of A and B, plus the number of ’1’ bits
in the three most significant bits of A. The function Initialize() may set both A
and B to have the same arbitrary integer value.

User Domain Knowledge User domain knowledge is presented to the solver
by implementation of a family of functions (indexed by i) CreateUserAttemptList (7,
difficulty d). Each function returns a list of attempts believed by the user to be
beneficial in their particular domain. The size of the list (i.e., the number of
attempts returned) grows with the difficulty parameter d.

One example for use of user-defined lists is to enforce invariants of the prob-
lem. For example, in the queens problem, each variable may represent a single
row in the checkerboard (so that each bit in the variable represents a single
square, and a ’1’ bit represents an occupied square). A user function may then
return a list of combinations of bits within a variable that, if flipped, each com-

bination will result in exactly a single '1’ bit in the variable.
2 Still, even with an attempt rate of 10*2 sec™!, an electron may spend months or
years until it reaches the ground state in a typical disordered material.

22



Stochastic solver with learning of topography characteristics 7

algorithm SVRH(V,C,F)

global V,C,F

RandomizeVariables|()

for all ¢ in C do
c.InitializeVariables()

repeat
attempt := ChooseBestAttempt/()
Hop(attempt)

until Cost() =0

return V

Fig. 1. Algorithm SVRH: accepts as input variables V', constraints C, and a family F’
of CreateUserAttemptList() functions, and returns variables at a zero-cost state (time-
outs are not considered here). Note that constraints may override the default random
initialization, as well as each other’s initialization. Hence, an heuristic initialization
order which initializes the tightest constraints last is sometimes implemented.

function Cost()
totalCost := 0
for all c in C do
totalCost := totalCost + c¢.Cost()
return totalCost
function Hop(attempt)
for all bit in attempt do
o(bit) :=1- o(bit)
function AttemptCost(attempt)
Hop(attempt)
cost := Cost()
Hop(attempt)
return cost

Fig. 2. Basic functions: Cost, Hop, and AttemptCost. AttemptCost() returns the cost
of the state reached from the current state by attempt. o (bit) is the value of bit bit.

2.4 Algorithm

Figures 1-8 show pseudo-code for SVRH. Together with the terminology of Sec-
tion 2.1, they provide a formal description of the algorithm which was outlined
and discussed in Section 2.2. In Figure 1, variables are first initialized, and the
state then hops between best attempts, until reaching a zero-cost state. Figure 2
shows some basic functions used extensively by the algorithm. Figures 3-5 show
how the solver chooses attempts, including its decision on whether to choose
completely stochastic, user-defined, or learned attempts. Figure 6 shows how
non-user-defined attempts are created. Finally, in Figures 7 — 8 attempts are
tried, and if successful their characteristics are learned.

23



8 Yehuda Naveh

function ChooseBestAttempt()
difficulty := 0
bestAttempts 1= ()
while bestAttempts = () do
bestAttempts := FindBest Attempts(difficulty)
difficulty := difficulty + 1
return (a random attempt from bestAttempts)

Fig. 3. Function ChooseBestAttempt.

function FindBestAttempts(difficulty)
best := )
for all 7 in F do
userAttempts := CreateUser AttemptList (i, difficulty)
for all attempt in userAttempts do
best := TryAndLearn(attempt, best, “user-defined”)
for all ¢t in attempt-types except “user-defined” do
otherAttempts := GetAttemptsPerUserDefined Attempt(¢)
best := TryAndLearn(otherAttempts, best, t)
return best

Fig. 4. Function FindBestAttempts. User-defined attempts are obtained here from
CreateUserAttemptList() functions according to the level of difficulty. Stochastic and
learned attempts are then obtained from GetAttemptsPerUserDefined Attempt() in rel-
ative numbers reflecting previous successes of these types of attempts. All attempts are
tried and, if successful, learned. We assume here that F' # (). Otherwise the algorithm
takes a slightly different form.

3 Experimentation and Analysis

3.1 General

The two experiments described below made use of learning of two topography
characteristics: length scales (manifested in the step-sizes of successful attempts)
and preferred directions (manifested in correlation between the bits forming
successful attempts).

3.2 Floating Point Unit Verification

Problem, Motivation, and Model This stage of experiments involved a
problem taken from the realm of functional hardware verification [3]. Here, we
experimented with many CSPs designed for the verification of floating point
units of high-end microprocessors [2].

All CSPs contained two variables, A and B, each consisting of 32, 64, or
128 bits. Constraints were of three types: mask (forcing some of the bits to be
0 or 1), range (forcing the variable to be within some range), and number-of-
ones (forcing the variable to have exactly some number of bits with value 1,
but not specifying which bits they are). Modeling these types of constraints

24



Stochastic solver with learning of topography characteristics 9

function GetAttemptsPerUserDefined Attempt(t)

successT := Previous success rate for attempts of type ¢
successUser := Previous success rate for “user-defined” attempts
if successT > successUser then

numOfAttempts := min(successT | successUser, K)

attempts 1= ()

for i:=0 to numOfAttempts do

attempts := attempts U CreateAttempt(t)

else
prob := max(successT [ successUser, 1/K)
attempts := ()

With probability prob
attempts := CreateAttempt(¢)
return attempts

Fig. 5. Function GetAttemptsPerUserDefinedAttempt. If the previous success rate of
attempts of type t was better then the user-defined attempts, the function returns a
corresponding number of these attempts. Otherwise, it returns a single attempt of this
type with a corresponding probability. K is a heuristic cutoff, taken to be 20 in our
experiments.

function CreateAttempt(t)
if t = “stochastic” then
stepSize := a random integer smaller than bit-size
attempt := a random attempt with stepSize bits
else
learnVal := a learned value for characteristic ¢
attempt := a random attempt with value close to learnVal for ¢
return attempt

Fig. 6. Function CreateAttempt. See section 2.2 for details on how learned values are
chosen, and how the corresponding attempts are generated.

for SVRH (i.e., implementing their cost functions and initialization policies) is
straightforward, and is not described here because of space considerations. Any
of the three constraints may apply either to A or B, or to the result of some
operation® between them, e.g., to A x B. For example, a full mask on the result
of A x B reduces to the factorization problem A x B = C, where C is the
constant value of the mask. In addition, if we require (by adding an additional
constraint) that the number of ’1’ bits in A is exactly some k, the problem
becomes even harder.

This problem is hard for CSP solvers based on systematic search because
there is no possibility of efficient pruning. For example, consider the factorization
problem. While we have only two variables, there is no fast way to prune either of
their domains in order get rid of domain values inconsistent with the constraint

Ax B=C.

3 By operations in this section we mean IEEE floating-point operations [2].

25



10 Yehuda Naveh

function TryAndLearn(attempts, bestAttempts, t)
newBestAttempts := bestAttempts
currentCost := Cost()
for all attempt in attempts do
bestAttempt := choose any attempt from bestAttempts
bestCost := AttemptCost(bestAttempt)
cost = AttemptCost(attempt)
if cost < currentCost then
successful Tries[t] := successful Tries[t] + 1
LearnCharacteristics(attempt)
if cost < bestCost then
newBestAttempts := ()
if cost < bestCost then
newBestAttempts ;= newBestAttempts U attempt
else
unsuccessful Tries[t] := unsuccessful Tries[t] + 1
return newBestAttempts

Fig. 7. Function TryAndLearn. If an attempt in the list leads to lower cost than the
current cost, learn its characteristics. If, in addition, its cost is lower than or equal to
the best cost found so far then keep this attempt (if truly lower then discard of all
previous best attempts). In any case keep account of how many of the attempts of the
input type t where successful and how many were unsuccessful.

function LearnCharacteristics(attempt)
for all tc in topography characteristics do
value := value of tc for attempt
add walue to the set of learned values corresponding to tc

Fig. 8. Function LearnCharacteristics. This function implements the learning mecha-
nism described in section 2.2. For example, for tc = ’length-scales’, the corresponding
learned value is ’step-size’, so the number of bits in attempt is added to the set of
learned step-size values.

Furthermore, these problems also fall under the class of problems which are
hard for local-search methods, as described in Section 1.3. To understand why
this is so, consider again the factorization problem. Now, suppose A X B is
relatively close to C' (but not equal to it). At this stage changing either A or B
by any small value is likely to make the cost (e.g., |A x B — C|) large (because
each of A and B are typicaly very large numbers). Hence, in the topographic
view, local minima are narrow and contained within high barriers.

Results Our SVRH solver confronted these types of problems with surprising
ease. Most problems were solved in a fraction of a second, and the rest were
solved within a few minutes. The user-defined input functions we used returned
all combinations of bits lying in some vicinity from each other on the same
operand, where the vicinity grows with the difficulty parameter. The rationale

26



Stochastic solver with learning of topography characteristics 11

behind these functions is that some specific combinations may eliminate the
propagation of carry bits, which are responsible for a long range effect on the
result of any small disturbance of an operand. However, neither these functions
nor the initialization process of Figure 1 were sufficient to solve the problem.
In all hard cases, without the random large-step-size hops, and the repetition of
similar hops through learning, the problem was not solved.

We summarize this experiment in Tables 1 and 2. In Table 1, we compare the
results of the SVRH solver with the results of using zChaff [18], a general purpose,
state-of-the-art SAT solver. The translation of the CSP to a SAT problem was
done in two stages: transformation of the mathematical expressions into Boolean
logic expressions on the bits of the operands, the result, and an auxiliary carry-
bit vector, followed by a transformation to CNF-SAT. To our best judgement,
this is the most efficient translation scheme possible for this problem. It is clear
from Table 1 that under this scheme, SVRH outperforms zChaff by orders of
magnitudes. We attribute this large difference in performance to the fact that
zChaff is systematic, and is, therefore, inherently unsuitable for this problem.
In Table 2, we compare the results of the SVRH solver to zChaff and to two
special-purpose solvers specifically designed and maintained to solve CSPs of
the form in question?. We see that SVRH, despite the fact that it is a general-
purpose solver, finds more solutions than either of the SP solvers, as well as than
zChaff. This advantage of SVRH over the other solvers is attributed to its unique
combination of ’brute force’ non-local stochastic search together with learning
of advantageous steps in the particularly complex and highly-non-monotonic
topography of this problem. (note that in Table 2, the average time per solution
is not a good parameter for comparison because the tasks solved by SVRH and
not solved by SP1 are considerably harder than the tasks solved by both).

Table 1. Comparison between SVRH and zChaff on a benchmark of 133 satisfiable
floating-point unit verification tasks containing multiply operation. All tasks were
solved by both engines. All times are in seconds. Problems in this benchmark are
not suitable for the special purpose solvers SP1 and SP2.

| |[SVRH|zChaif]
Average solution time 0.97 | 200.5
Solution time, largest ratio case | 0.3 | 2861
Solution time, smallest ratio case| 5.7 25

3.3 Low Autocorrelation Binary Sequences

General In order to further evaluate our solver, it was important to examine its
capabilities against well-known benchmarks. Three aspects are relevant in this

4 The special-purpose solvers are described in [2]. SP1 is the best available solver of
its type.

27



12 Yehuda Naveh

Table 2. Comparison between SVRH, two special-purpose (SP) solvers, and zChaff on
a benchmark of 150 satisfiable and unsatisfiable floating-point-unit verification tasks
containing various operations. Time-out was 600 seconds. All times are in seconds.
Note that since SVRH is incomplete, it succeeded only on satisfiable instances.

| [SVRH]|SP1[zChaff[SP2]

Number of successes 93 | 8| 54 |29
Average solution time per success| 9 3 65 |0.3

evaluation. First, since the SVRH solver is generic, it is important to verify that
new problems can be conveniently modeled for its input, so that once a problem
is specified, the total bring-up time of the solver on that problem does not exceed
a few hours. Second, and again related to the genericity of the solver, it should
be verified that new problems do not require changes to the algorithm, and that
all solution strategies and heuristics suitable for a given problem may be input to
the solver through the constraints’ cost and initialization functions, and the user
domain-knowledge input functions. Third, we should confirm that the solution
abilities of the solver (both in finding solutions, and in run-time performance)
are at least comparable to abilities of dedicated solution algorithms.

The evaluation process was performed using benchmark problems from CSPLib
[1]. We checked the generic aspects of the solver (bring-up time and possibility to
apply heuristics) on many of the problems in [1]. In virtually all cases, bring up
time was short, and we were able to incorportate almost all necessary solution
strategies through the input functions to the solver.

Problem and Motivation As for evaluation of solution abilities, we chose
to concentrate on the ’low autocorrelation binary sequences’ (LABS) problem
(prob005 in [1]). Here, a sequence of N bits, each with value o; € {+1,—1},
is considered, and a minimum over all configuration of bits is sought for the
autocorrelation parameter £ = 22;11 C?, where Cy, = vaz_ok_l OiCitk-

The main reasons we chose this problem for our experiments was that on one
hand, this problem was studied extensively (see [15,21] and references therein),
and on the other hand, it poses a significant challenge for stochastic methods [25].
This is because the topography of the problem consists of many local minima,
with global minima extremely scarce and confined to single-bit neighborhoods
(“golf-course topography”).

To the best of our knowledge, the best results reported to date for the LABS
problem were obtained [21] using Constrained Local Search (CLS), which is a
hybrid prune-based /stochastic algorithm designed for this problem®. Below, we
will compare our results with the results of Ref. [21].

® Note added: results for N larger than considered here were recently reported in [5].

28



Stochastic solver with learning of topography characteristics 13

Model We have modeled the LABS problem as follows. For a given N, a single
bit string variable v of length N is defined. In addition, n — 1 constraints are
constructed, each defined by a cost function returning C’,f, where the values o;
in the definition of C}, are equal to 2v; — 1, v; being the value of the i*" bit in v.
v is initialized randomly. We have not implemented any special input functions
for this problem, but rather used the same functions as in section 3.2.

LABS is not, strictly speaking, a CSP, but rather an optimization problem.
Nevertheless, SVRH treats LABS as a CSP, with the only addition that we
monitor the evolving cost of the state, at any time keeping the lowest-cost state
found so far. No other modifications are done to SVRH when applying it to
optimization problems.

Results We performed experiments on instances of LABS with 45 < N < 48
(these are the four hardest instances for which results are reported in Ref. [21]).
Results of these experiments are summarized in Table 3: for each N, the table
shows the number of restarts, the total number of attempts tried, the number
of successful attempts according to the type of the attempt, and the run timeS.
Detailed examination of the learned data shows a large preference to small step
sizes, but also distinguished preference to some large step size values (e.g., for
N = 45, a relatively large success rate for steps of size 35-40, and a very low
success rate for steps of size 10-15). In addition, a clear preference is seen to
some unique combination of bits, indicating the existence of preferred directions.
Similar behavior was noticed also in the floating point verification problem.

The table also shows numbers of backtracks and run times in the CLS ex-
periment [21]. With the exception of N = 48, SVRH shows results which are
comparable to or better than those obtained by CLS (when comparing SVRH
attempts with numbers of CLS backtracks, we should remember that for each
backtrack step there is at least one forward step). These results are remarkable
for three main reasons: first, SVRH is purely stochastic, while CLS has a strong
pruning component. As mentioned earlier, LABS is expected to be a particularly
hard problem for stochastic search. Second, SVRH is a highly generic algorithm,
while CLS was optimized for LABS, and third, no special domain knowledge was
provided to SVRH for this problem.

4 Discussion

We have presented SVRH, a stochastic CSP solver that relies heavily on stochas-
tic moves and on learning of the high-level structure of the topography of the
CSP. The solver may also accept user-domain knowledge. The algorithm was
outlined and then detailed. This algorithm is based on, and mimics, a zero-
temperature physical process governing the dynamics of localized electrons in
disordered materials.

5 Runs were performed on a mid-end IBM PowerPC workstation.

29



14 Yehuda Naveh

Table 3. SVRH results on the LABS problem. The actual sequences found are
82121121231234321111111 for N = 45, 111111112212112132134328 for N = 46, and
242124213131131411121114 for N = 47. (Numbers in the sequence indicate maximal
lengths of contiguous series of +1’s and -1’s, so + + + + — — + — + — — is represented
by 421112) For N = 45 and N = 46 those sequences were already found in Refs. [21]
and [15], respectively. However, the sequence for N = 47 is new. SVRH failed to find
a solution for N = 48 within the time limit of 5 hours.

Attempts Successful attempts CLS results [21]
N| E |restarts| x10° |random user-defined learned|hours|  backtracksx10° hours
45(118| 3677 136 4931 37158 23248 | 1.32 368 14.70
46(131| 13991 179 18959 135935 86825 | 1.74 35 1.44
47|135| 18144 242 24757 184964 118036 2.35 165 7.30
48] — - - - - - - 78 3.36

In some sense, the solver may be viewed as a brute-force stochastic solver (the
fact that typically only 107°~10~3 of attempts lead to hops supports this view).
Still, in all problems we experimented on, the solver sampled only a minute
fraction of the state space (a fraction much smaller than the reciprocal of the
number of solutions). The only reason the solver could eventually reach a solution
is the policy it uses regarding when to hop, and the advantageous learning of the
problem (as concluded from the observed repeated choice of previously successful
step-sizes and directions).

The SVRH algorithm is of particular value for classes of CSPs that are hard
for systematic algorithms. Still, there are such cases that are hard also for SVRH.
For example, CSPs with constraints for which any natural choice of a cost func-
tion would return a constant (or nearly constant) cost for all states violating the
constraint (inequality constraint is one example). In the future we intend to add
to the solver the ability to do implications (and thus pruning) after stochastic
hops the solver takes. Other future functionality which may enhance the solver is
the ability to use static learning databases for classes of similar CSPs, and more
sophisticated dynamic learning schemes. Finally, a more convenient modeling
scheme may be designed to deal with integer domains.

5 Acknowledgments
I am grateful to Gil Shurek for many valuable discussions and to Raviv Nagel

for educating me on the floating-point verification problem, and for providing
me with benchmarks for this problem.

References

1. Csplib, www.csplib.org.

30




10.
11.
. P. Hansen and N. Mladenovic. introduction to variable neighbourhood search. In
13.
14.
15.
16.

17.

18.
19.
20.
21.

22.

23.
24.

25.

Stochastic solver with learning of topography characteristics 15

. M. Aharoni, S. Asaf, L. Fournier, A. Koyfman, and R. Nagel. A test generation

framework for datapath floating-point verification. In HLDVT-03, 2003.

E. Bin, R. Emek, G. Shurek, and A. Ziv. Using constraint satisfaction formulations
and solution techniques for random test program generation. IBM Systems Journal,
41(3):386-402, 2002.

K. D. Boese, A. B. Kahng, and S. Muddu. A new adaptive multi-start technique
for combinatorial global optimizations. Operations Res. Lett., 16(3):101-113, 1994.
F. Brglez, X. Y. Li, M. F. Stallmann, and B. Militzer. Reliable cost predictions for
finding optimal solutions to labs problem: Evolutionary and alternative algorithms.
In Workshop on Frontiers in Evolutionary Algorithms (FEA’2003), 2003.

P. Codognet and D. Diaz. Yet another local search method for constraint solving.
In Proceedings of SAGA’01, 2001.

Jeremy Frank. Learning short-term weights for GSAT. In [JCAI-97, pages 384—
391, 1997.

Jeremy Frank, Peter Cheeseman, and John Stutz. When gravity fails: Local search
topology. Journal of Artificial Intelligence Research, 7:249-281, 1997.

P. Galinier and J.-K. Hao. A general approach for constraint solving by local
search. In CP-AI-OR’00, 2000.

Ian P. Gent and Toby Walsh. Towards an understanding of hill-climbing procedures
for SAT. In AAAI-93, pages 28-33, 1993.

F. Glover and M Laguna. Tabu Search. Kluwer, 1997.

Metaheuristics: Advances and Trends in Local Search Procedures for Optimization,
pages 433-458, 1999.

Pascal Van Hentenryck and Laurent Michel. Control abstractions for local search.
In CP 2003, 2003.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-
ing. Science, 220:671-680, 1983.

Stephan Mertens. The bernasconi model. hitp://odysseus.nat. uni-
magdeburg.de/mertens/bernasconi/.

Laurent Michel and Pascal Van Hentenryck. A constraint-based architecture for
local search. In OOPSLA 2002, 2002.

S. Minton, M.D. Johnston, A.B. Phillips, and P. Laird. Solving large-scale con-
straint satisfaction and scheduling problems using a heuristic repair method. In
AAAI-90, pages 17-24, 1990.

M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering
an efficient sat solver. In DAC-01: 89th Design Automation Conference, 2001.
N.F. Mott and E.A. Davis. FElectronic Processes in Non-Crystalline Materials.
Oxford: Clarendon, 1979.

A. Nareyek. Using global constraints for local search. In Constraint Programming
and Large Scale Discrete Optimization, DIMACS Vol. 57, pages 9-28, 2001.
Steven Prestwich. A hybrid search architecture applied to hard random 3-sat and
low-autocorrelation binary sequences. In CP 2000, 2000.

Bart Selman, Henry Kautz, and Bram Cohen. Local search strategies for satisfiabil-
ity testing. In DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, Vol. 26, 1996.

Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving
local search. In AAAI-94, pages 337-343, 1994.

Bart Selman, Hector Levesque, and David Mitchell. A new method for solving
hard satisfiability problems. In AAAI-92, pages 440-446, 1992.

Toby Walsh. low autocorrelation binary sequences. wwuw.csplib.org prob005 /results.

31



32



On the impact of small-world
constraint graphson local search

Andrea Roli

Dipartimento di Scienze
Universita degli Studi “G. D’Annunzio”
Pescara — Italia
a.roli@nich.it

Abstract. The impact of problem structure on search is a relevant issue in arti-
ficial intelligence and related areas. Among the possible approaches to analyze
problem structure, the one referring to constraint graph enables to relate graph
parameters and characteristics with search algorithm behavior. In this work, we
investigate the behavior of local search applied to SAT instances associated to
graphs with small-world topology. Small-world graphs, such as friendship net-
works, have low characteristic path length and high clustering. In this work, we
first present a procedure to generate SAT instances characterized by a constraint
graph with a small-world topology. Then we show experimental results concern-
ing the behavior of local search algorithms applied to this benchmark.

1 Introduction

The impact of problem structure on search is a relevant issue in artificial intelligence
and related areas. In order to design and tune effective and efficient algorithms for Con-
straint Satisfaction Problems (CSPs), the relations between structural problem features
and algorithm performance have to be investigated. These relations have been studied
from different perspectives. Studies on the impact of problem structure on heuristic
search can be found, for example, in [2, 31, 28, 15]. Important results and observations
on structure and problem hardness are reported in [10, 8,9]. The effects of problem
encoding on instance structure are discussed in [14, 3]. Finally, the search algorithms
behavior w.r.t. graph properties of some constraint satisfaction problems and combina-
torial optimization problems has been discussed in [27, 26].

The definition of structure emerging from the literature on CSPs is usually based
on the informal notion of a property enjoyed by non-random problems. Thus, struc-
tured is used to indicate that the instance is derived from a real-world problem or it
is an instance generated with some similarity with a real-world problem. Commonly,
we say structured for a problem that shows, at a given level of abstraction, regularities
such as well defined subproblems, patterns or correlations among problem variables.
Quantitative measures of structure can also be introduced, such as entropy (see for ex-
ample [11]), small-world proximity [26] and compression ratio [23].

In this work, we focus on one among the possible ways of characterizing the struc-
ture of a problem: We analyze the structure of links among its components, i.e., the

33



network that connects the components. Some problems suggest a natural structural de-
scription, since they have a representation that can be directly used for structure anal-
ysis. A classical example are problems defined on graphs, such as the Graph Coloring
Problem and the k-Cardinality Tree Problem. In general, for CSPs a constraint graph
can be defined, in which nodes correspond to variables and edges connect two variables
if there exists a constraint involving them®. Hence, the structure of any CSP can be
characterized by a graph.

Relevant features of a graph that can affect search behavior are, for example, the
average node degree and its distribution, the path length and the clustering. The impact
of node degree distribution on search has been studied in [27, 18, 22, 19]. In this work,
we investigate the relations between the small-world property and search algorithm per-
formance. Small-world graphs [29, 30] are characterized by the simultaneous presence
of two properties: the average number of hops connecting any pair of nodes is low and
the clustering is high. Social networks defined on the basis of friendship relationships
are a typical example of graphs with a small-world topology.

The impact of small-world topology on search problems (e.g., Graph Coloring Prob-
lem) has been discussed in [26], where it is shown that many Constraint Satisfaction
Problems and Combinatorial Optimization Problems have a small-world topology and
the search cost can be characterized by a heavy-tail distribution.

In this work, we report experimental results concerning the behavior of local search
applied to instances of the Satisfiability Problem (SAT) with a constraint graph char-
acterized by a small-world topology. The aim of these experiments is to answer the
question whether small-world SAT instances are harder to solve than the others and if
this behavior is common to different local search algorithms.

The contribution of this work is twofold. First, we define a procedure to construct
SAT instances with a lattice structure, along with a method to generate small-world SAT
instances. Then, we test three local search algorithms on the generated benchmark.
Results show that the behavior strongly differentiates across the algorithms. In some
cases, results show that many harder instances are located in the small-world area. This
empirical analysis shows that, even if local search can be affected by instance structure,
an important role is played by the actual search space exploration strategy.

This paper is structured as follows. Sec.2 introduces the basic concepts of small-
world graphs and graphs associated to SAT instances. In Sec.3, we describe the prop-
erties of the instances composing the testbed and the procedure used to generate them.
Sec.4 presents experimental results obtained by applying three different local search
algorithms, namely WalkSAT, GSAT and Iterated local search. We conclude by briefly
discussing the results obtained and outlining future work.

2 Preliminaries

In this section, we succinctly introduce small-world graphs and the graph associated to
SAT instances.

Given a graph G = (V,E), where V is the set of nodes and E the set of edges, the
characteristic path length L(G) of G is formally defined as the median of the means

1 We restrict our considerations to binary constraints.

34



Fig. 1. Constraint graph associated to the SAT instance (aV —=b) A(bVd)A(cV—dV —e)

of the shortest paths connecting each node v € V to all other nodes. The clustering
coefficient is defined on the basis of the notion of neighborhood. The neighborhood Iy
of a node v €V is the subgraph consisting of the nodes adjacent to v (not including v
itself). The clustering of a neighborhood is defined as:

Vo= |E(<5§>\ |
2

where |E(Ty)| is the number of edges in 'y and ky is the number of neighbors of
v. Therefore, vy is the ratio between the number of edges of the neighborhood and
the maximum number of edges it can have. The clustering coefficient y of a graph G is
defined as the average of the clustering values y; for all v € V.. For example, we compute
L and y for the graph depicted in Fig.1. The characteristic path length is the median of
the average path lengths of the nodes a, b, ¢, d and e, i.e., L = median{3,%, 7,2 7} =
% = 1.75. The clustering y is the average of the neighborhood clustering values, i.e.,
v=3(0/(5) +0/(3) +1/(5) +1/(5) +1/(3)) = 0.467.

Typically, random graphs are characterized by low characteristic path length and
low clustering, whilst regular graphs (such as lattices) have high values for L and v.
Conversely, small-world graphs are characterized by low L and high y.

In this work, we apply the notion of small-world to a graph associated to SAT in-
stances. SAT belongs to the class of NP-complete problems [5] and can be stated as
follows: given a set of clauses, each of which is the logical disjunction of k > 2 literals
(a literal is a variable negated or not), we ask whether an assignment to the variables
exists that satisfies all the clauses.

The graph we associate to a SAT instance is an undirected graph G = (¥/,A), where
each node v; € 7 corresponds to a variable and edge (vi,vj) € A (i # j) if and only
if variables v; and v; appear in a same clause?. For instance, in Fig.1 the graph corre-
sponding to the formula F; = (aVV —b) A (b d) A (cV —d V —e) is depicted.

Observe that the same graph corresponds to more than one formula, since nodes are
connected by only one arc even if the corresponding variables belong to more than one
clause. For brevity, in the following we will refer to this simple graph we defined to as
SATgraph. Having a set of clauses associated to the same graph, makes this representa-
tion quite rough. Nevertheless, in the following, it will be shown that some properties of
the SATgraph can strongly affect the behavior of local search applied to SAT instances.

2 This graph has apparent similarities with the constraint graph defined for constraint satisfaction
problems.

35



Regular Small-world Random

Increasing randomness

Fig. 2. Morphing between a lattice graph and a random graph. Small-world graphs can be ob-
tained by randomly rewiring just a few links between nodes.

3 Small-world SAT instances

In order to explore the behavior of search algorithms on small-world SAT instances, we
generated a benchmark by morphing between instances constructed on lattice graphs
and random instances. The core idea of the morphing procedure is derived from [6],
wherein a method that enables to generate instances gradually morphing from a source
to a destination instance is presented. This procedure is also quite similar to the one
used in [30] to generate small-world graphs by interpolating between lattice and ran-
dom graphs (see Fig.2). Starting from a lattice graph, links are randomly removed and
rewired. Small-world graphs can be obtained by randomly rewiring just a few links
between nodes.

SAT instances with a small-world graph topology can be obtained by morphing be-
tween a SAT instance associated to a lattice graph and a random SAT instance. There-
fore, we have first to define a procedure to construct SAT instances associated to a
lattice graph. Instead of starting from a SAT formula, expressed as a conjunction of
clauses, we start from a graph with the desired topology and we use it as a skeleton for
generating a SAT formula.

The starting graph is a lattice graph. Lattice graphs have a very regular topology and
every node is connected to a fixed (usually quite small) number of neighbors. Examples
of lattice graphs are ring lattices (also called cycles) and hypercubes. For instance, a
lattice graph in which every node has four neighbors is depicted in Fig.3. Observe that
the graph can be seen as a circular structure with adjunctive links connecting neighbors
at distance 2.

Once obtained the graph with the given topology, we have to assign variables to
nodes and to generate the clauses of the formula. The first step can be completed very
easily by assigning variables in order: variable x; is assigned to node i, fori=1,...,n.
The generation of clauses, i.e., of a formula that can be mapped into the given lattice
graph, is a bit more complex. First of all, we remind that the graph associated to a

36



Fig. 3. Example of lattice graph. Each node has 4 neighboring nodes.

Fig. 4. Construction of the first clause involv-  Fig.5. Construction of the second clause in-
ing variable x;. volving variable x;.

SAT instance, as previously defined, corresponds to a set of SAT instances. Therefore,
it is important to define a given structure for the formula. Our choice is to follow the
usual experimental settings for random generated SAT instances: 3-SAT formulas with
controlled ratio m/n, where n is the number of variables and m the number of clauses.

In the following, we describe the algorithm to generate 3-SAT instances with given
ratio m/n on a lattice graph. The generalization of the algorithm to k-SAT instances
is straightforward. The high level algorithm is described in Alg.1. The algorithm is
structured in two phases. In the first phase, a minimal set of clauses is generated to
obtain a formula that can be represented by the given lattice graph. In the second phase,
the additional required number of clauses is generated by adding clauses randomly
chosen from the first set and by randomly changing the sign of literals.

In the first phase, clauses of three literals are constructed, by taking in turn each
variable as a pivot and adding two subsequent variables (see Fig.4 and Fig.5). In order
to avoid repetitions of clauses, for every variable x; only subsequent variables xj, j > i
(modulo n) are considered. Indeed, given the symmetry of the graph, the clauses involv-
ing the symmetric part of neighbors will be generated by using those neighbors as pivot
(see Fig.6 and Fig.7).

A complete example of a lattice-3-SAT instance with n = 6, m = 12 and nodes with
4 neighbors is the following:

37



Algorithm 1 Generation of a 3-SAT instance on a lattice graph
INPUT: n, m, y {y is the number of neighbors}
OUTPUT: 3-SAT formula @ = {C;,...,Cm} with n variables and m clauses associated to a
lattice graph with n nodes with y neighbors each.

Build a lattice graph G(n,y) (on a circle) with n nodes with y neighbors each;
Assign variables (clockwise) to nodes;
d—0
fori=1ton—1do
The neighbors of x; are AL = {Xj. 1,. .. Xigy/2} (modn)and AL~ = {Xi—1,...,X_y/2} (mod
n);
for each pair xj,Xj+1 in ALt do
Construct the clause C = Xj VXj VXj41
Negate each variable in C with probability 0.5;
®«— duC
end for
end for
{Now the number of clauses is |®| =n(y/2—-1) }
while |®| < mdo
repeat
Pick randomly a clause C’ in @;
Negate each variable in C’ with probability 0.5;
until a new clause C’ is generated
@ — duUC’
end while

Fig. 6. Construction of the third clause involv-  Fig.7. Construction of the fourth clause in-
ing variable x1. The pivot is variable Xg. volving variable x1. The pivot is variable x7.

P = {(—xX1 VX2V X3),(X2V X3V Xa),(—X3V X4V X5), (—Xa V X5 V Xg), (X5 V Xg V
X1), (X6 VX1V X2), (—X5 VX6V —X1), (X3 V X4V —X5), (—X5 VX V X1), (X2 VX3V —Xa), (X6 V
—X1 \/Xz)7 (—\Xz V X3 \/X4)}.

38



Smallworld parameters (500 variables, 1500 clauses)

T T
characteristic length (norm.)  +
. clustering (norm.) x o
proximity ratio (rescaled) --------

0.9
0.8
0.7 |
0.6 |
05 +

04 | +
03 | =+

02} % |
i M |

1 10 100 1000 10000
Number of clauses from RandomSAT

Char. Length, Clustering and Proximity

Fig. 8. Characteristic path length L, clustering y and proximity ratio p for instances generated
by morphing from a lattice SAT instance to a random SAT instance of 500 variables and 1500
clauses.

The instances composing the benchmark are generated by morphing between a lat-
tice SAT instance and a random one. Each instance is obtained by taking from the lattice
SAT instance all the clauses except for a prefixed number which are randomly chosen
from a random SAT instance with the same number of variables and clauses. This pro-
cedure is indeed very similar to the morphing procedure described in [6], but in this
case we control the exact number of clauses taken from the destination instance. In this
way it is possible to smoothly interpolate from lattice to random and observe the arising
of small-world properties in SAT instances.

In order to have a quantitative measure of the small-world characteristic, we intro-
duce the proximity ratio | [26], defined as the ratio between clustering and characteris-
tic path length, normalized with the same ratio corresponding to a random graph, i.e.,
U= (Y/L)/(Yrand/Lrand)- In Fig.8, the clustering and the characteristic path length of
SAT instances gradually interpolating from lattice to random are plotted (in semi-log
scale). We observe that L drops very rapidly with the introduction of clauses from the
random instance. Conversely, y maintains a relatively high value for a higher amount
of perturbation. The instances with low length and high clustering are characterized
by the small-world property. This is also indicated by the proximity ratio curve, which
approximately assumes its maximum in correspondence of that region.

We generated four sets of instances (respectively with 100, 200, 500 and 800 vari-
ables), each obtained by morphing between a lattice 3-SAT and a random 3-SAT with
same number of variables and clauses. All the generated instances are satisfiable (unsat-
isfiable instances have been filtered by means of a complete solver). The ratio between
the number of clauses and the number of variables is 3, lower than the so-called critical
ratio (which is close to 4.3 for 3-SAT instances [1, 17, 12]). This is due to the structure
of lattice SAT instances which turned out to be almost all unsatisfiable at the critical
ratio.

39



100 variables, 300 clauses 200 variables, 600 clauses

4.5 T T T T T T 6 T T T T T T
4ttt B |
"
35 £+ q
P e R ]
L 53 =}
2 el T R A z i
= Per 4 By g
= | B H + =
$ 2 T N B 2
a i ! 4
/ MG,
151 1
1} B )
05 L L L L L L 0 L L L L L L
0 50 100 150 200 250 300 350 0 100 200 300 400 500 600 700
Number of clauses from RandomSAT Number of clauses from RandomSAT
500 variables, 1500 clauses 800 variables, 2400 clauses
10
10 - - - - - - T s ' ' '
° 1 or ey 1
ii’@ A %&w
8 - 8 WA 4 T B
A+ Ty
T S
7 B 7T ol i
° ° b R
g s g g 6 T g
2 ¥, 2z + * n
E S W, 1 E S L 1
= !
S 4 T s a4y NS
a +H iy a v
3 T Sttt 3k o
2 B 2 B
1 — 1 -
0 L L L L L L L 0 L L L L
0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500
Number of clauses from RandomSAT Number of clauses from RandomSAT

Fig. 9. Proximity ratio of the instances composing the benchmark.

In Fig.9, the proximity ratio of the instances composing the benchmark is plotted.
The value | ranges approximately from 0.5 to 10. We can observe the typical behavior
of instances interpolating between regular and random instances.

In the next section we present experimental results on the behavior of local search
algorithms on the benchmark defined.

4 Experimental Results

Some constraint satisfaction problems and combinatorial optimization problems with
small-world topology have been found to require a higher computational search cost
with respect to “non small-world” ones [26]. Since those results only concerned com-
plete algorithms, we ask whether this behavior can also be observed in the case of
approximate algorithms, namely local search.

We performed a series of experiments aimed at checking whether small-world SAT
instances are harder to solve than both regular (lattice) and random ones. In the fol-
lowing, we will use the notion of hardness referred to the pair (instance,algorithm).
We estimate the hardness by means of the search cost, namely the number of iterations
required for the algorithm to find a satisfying assignment. Since the algorithms we deal
with are stochastic, we run each of them 1000 times on the same instance and we took
the median value. We emphasize that we use the concept of hardness referring to a
given algorithm 4 and we say that an instance I3 is harder than I if the search cost (as

40



defined above) for solving £ via 4 is higher than that of I». Even if this definition of
hardness is grounded to the algorithm used, in general it is possible to observe that a
class of instances is harder than another class for a set of algorithms. This case reveals
that there is a characteristic of the class that makes the instances difficult for all the
considered algorithms.

We applied three different local search procedures, that are based on different heuris-
tic strategies. The algorithms we considered are WalkSAT [24], GSAT [25] and Iterated
local search (ILS, [16, 20]). GSAT was the first effective local search algorithm pro-
posed for SAT. It applies a greedy strategy, by flipping the variable that increases the
number of satisfied clauses the most. GSAT suffers from frequent stagnation, therefore
its performance is often not satisfactory for large instances. WalkSAT is based on the
principle of repair: It randomly chooses one unsatisfied clause and flips one variable
within it. There are some different heuristics for the choice of the variable to flip [13].
In our implementation, we applied a GSAT-like heuristic, i.e., the variable that produces
the largest increment in the number of satisfied clauses is flipped (no random walk is
performed). WalkSAT has usually a far better performance than GSAT. Nevertheless,
both algorithms lack a global strategy that could guide them during the exploration of
the search space. Algorithms equipped with such a strategy are commonly called meta-
heuristics [4]. In order to extend the diversity of the techniques compared, we applied
also an ILS designed to attack SAT and MAXSAT problems [20, 21]. In essence, this
metaheuristic is a tabu search-based WalkSAT guided by a strategy that tunes both the
tabu tenure and the intensification/diversification balance by using the search history.

Results are shown in Figs. 10, 11 and 12. In the plots, we reported for each algo-
rithm the median iterations over 1000 runs on every instance. The algorithms run until
a feasible solution was found?.

Results are very interesting and show the complexity of empirical analysis of local
search behavior. First of all, we note that the behavior across the three algorithms is very
different. In the first two plots of Fig.10, we observe that some of the hardest instances
for WalkSAT are located in the small-world area. Nevertheless, for the instances of size
500 and 800, the search cost regularly increases —linearly in log scale— while morphing
from lattice to random. This peculiar behavior requires a deeper investigation and from
these preliminary results we can only conjecture that size scaling amplifies a charac-
teristic of the instances such that the more random the instance structure, the harder
the instance for WalkSAT. GSAT and ILS show a mild tendency of requiring higher
search cost in the vicinity of the small-world area, as shown in Fig.11 and Fig.12, re-
spectively. The hardest instances for GSAT and ILS are the ones located in the first
part of the plots, i.e., the instances with strong lattice/small-world topologies®. In some
plots, we also observe that the instances corresponding to the maximal proximity ratio

3 In the case of GSAT, due to the extremely high execution time, we stopped the algorithm at a
maximum number of non-improving moves and we reported the success ratio, i.e., the number
of successful runs out of 1000.

4 The 800-2400 instances are indeed not solved by GSAT in the range corresponding to small-
world.

41



100 variables, 300 clauses 200 variables, 600 clauses

400 T T T 100000 T T T T T
+

350 jt ;:;
2 300 | k3 * R S 10000 | 4
S + * 2 +
© N + S L
5] s 2
£ 2850 * “+ 4 g R
< o, * s L +t:r 2 f o bt
3 ot Ty ot - g +h oy o
S 20f L oo +f*§f N ;Lf P *?%{ +2 S 1000 F Q%*%ﬁ? oty %&+ &

& B 7 = o + ey
i e TR Pt et vobe
150 - # 4 #"f A A e TR
k3
&
100 L L L L L 100 L L L L L
0 50 100 150 200 250 300 0 100 200 300 400 500 600
Number of clauses from RandomSAT Number of clauses from RandomSAT
500 variables, 1500 clauses 800 variables, 2400 clauses
10000 T T T T T 10000 T T T T

e A+ e
++ + 5

o P H‘ﬁﬁﬁ:’mﬁ*ﬂwﬂ#
R
R T+
et

1000

4+
ot

1000

Median iterations (log)
Median iterations (log)

100 L L L L L ! ! 100 L L L L
0 200 400 600 800 1000 1200 1400 1600 ] 500 1000 1500 2000 2500

Number of clauses from RandomSAT Number of clauses from RandomSAT

Fig. 10. Search cost of WalkSAT across the instances, from lattice to random structure. Points
represent median iterations over 1000 runs. Log-scale on the y-axis has been used when neces-
sary.

are the hardest on average®. Nevertheless, this behavior is not regular nor clear and the
statistical correlation between search cost and proximity ratio is quite low.

The peculiar behavior observed is a clear signal that different factors other than
small-world topology affect algorithm behavior. Among the main factors, we consider
the search landscape characteristics induced by the SAT instance and the actual search
process performed by the algorithm on the landscape. In fact, the landscape characteris-
tics and the strategy used to explore it are the main elements that affect local search be-
havior. The relations between instance structure and search landscape are an extremely
important research issue, that is subject of ongoing work.

We conclude this section by showing results concerning the application of a com-
plete algorithm. The results clearly show that, in the case of tackling the benchmark
with a systematic technique, small-world SAT instances are the hardest. As a com-
plete solving procedure we chose BerkMin [7], one of the most efficient complete SAT
solvers available nowadays. The search cost has been evaluated as the number of vari-
able assignments performed by the algorithm before solving the instance. In Fig.13, the
search cost is plotted against the proximity ratio. We clearly observe that the higher the
proximity ratio, the higher the search cost.

5 This observation is also confirmed by evaluating a moving window average.

42



100 variables, 300 clauses 200 variables, 600 clauses

1e+07 T T T T T 600 T T T T T T
R
*
it 500 - 4
1e+06 |-+ - 1 O f++
= o4 i{%t =
) 400 |- T Lt Tt -
2 ] FobE oy R
£ 100000 4 g . % PR 4{&@}?
5 2 + PP T i
g 2 300 | A e ey 1
=2 8 + tos jﬁt’# o
é 10000 E| @ 4;rJN::rJrJf;;ﬁ: [ .
] ) 4
2 e
= gt
+
1000 | % ] i %%‘ e |
+ Lt
L S wh "
# e
100 . P s Wi P . .
0 50 100 150 200 250 300 0 100 200 300 400 500 600 700
Number of clauses fom RandomSAT Number of clauses from RandomSAT
500 variables, 1500 clauses 800 variables, 2400 clauses
1000 T T T T T T T 500 T T T
900 - - 450 B
800 — 400 —
700 — 350 B
) )
T 600 4 T 300 | 4
@ @ A
2 500 4 @ 250 ]
8 8 o+
3 400 N . 1 3 20F L i
e Tt 150 + oy
+ 4t e RN | r + -
* Th et *‘tf#fi# L T
ERa o g 100 Lot e
who +
++1;55r i ke +¢++ + + i 50 L K +tr+:g::} " 4+
R . . L o e, n n n . L L
600 800 1000 1200 1400 1600 0 200 400 600 800 1000 1200 1400 1600
Number of clauses from RandomSAT Number of clauses from RandomSAT

Fig. 11. Search cost of GSAT across the instances, from lattice to random structure. In the upper-
most left plot, points represent median iterations over 1000 runs. The remaining plots report an
estimation of the search cost in terms of success ratio, i.e., the number of instances solved — given
a termination condition defined as the maximum number of non-improving moves.

5 Conclusion and Future work

In this work we have presented a procedure to generate SAT instances associated to
constraint graph with small-world topology. Small-world SAT instances are constructed
by introducing clauses from random instances into lattice graph based SAT ones.

We tackled the benchmark instances with three different local search-based algo-
rithms and observed their behavior across the whole spectrum, from regular lattice
to random topologies. Our aim was to check whether there is a positive correlation
between search cost and small-world topology of SAT instances, as observed when
small-world constraint satisfaction problems are tackled with systematic solvers. Re-
sults showed primarily that the behavior of local search algorithms is fairly different. In
some cases, we also observed that most of the hardest instances are concentrated in the
lattice/small-world area. Nevertheless, this result is not as clear as in the case of com-
plete solvers and further investigations are required. If the conjecture on the positive
correlation between instance hardness and proximity ratio is true, then the phenomenon
may be explained considering the locality of decisions taken by the heuristics, as sup-
posed in [26]: a locally good decision taken w.r.t. the clustering properties might be
wrong with respect to the whole graph.

43



100 variables, 300 clauses 200 variables, 600 clauses

3000 T T T le+07 T T T T T
4+
2500 + + 4 Lt +
.y . les06 + E
vl g
@ W k<)
< 2000 R ¥ — =
S o .
3 N E 100000
L s0ft , T i g
g w It =
3 + ﬁ - g 10000
= 1000 [-4 # ++ T - 3
4 s
% f 1000
500 + ;ﬁ r . i
e W
i3 * i MWWWWMWWM
0 L L L ! i 100 L L L L L
0 50 100 150 200 250 300 0 100 200 300 400 500 600
Number of clauses from RandomSAT Number of clauses from RandomSAT
500 variables, 1500 clauses 800 variables, 2400 clauses
1e+06 T T T T T T T le+07 T T T T
1e+06 + E|
100000 E 4 "

;
100000 | W FE 4 E
i

Median iterations (log)
Median iterations (log)

+ + B
N
10000 R g L fwl -
+ + 4 +
ot o+ 10000 ¢ + et v v 4
T +F g:}*ﬂf# o N T J%%#M# *ﬁw*
+ F ot ik
s e R e,
1000 L L L L L L L 1000 L L L L
200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500
Number of clauses from RandomSAT Number of clauses from RandomSAT

Fig. 12. Search cost of ILS across the instances, from lattice to random structure. Points represent
median iterations over 1000 runs. Log-scale on the y-axis has been used when necessary.

The study of relations between structure and local search behavior is still a partially
unexplored area. First of all, in this work we have just considered one of the possi-
ble ways of characterizing structure. Other definitions for graphs are possible (such as
weighted graphs), to capture different problem features and to extend our results to
problems other than SAT. Moreover, concerning local search algorithms, we believe
that the core issue to explain the algorithm behavior is the investigation of the relations
between problem structure and search landscape, and, in turn, search landscape and the
actual strategy used to explore it.

Acknowledgments

I would like to thank Michela Milano for discussions and very interesting suggestions
on this research.

References

1. D. Achlioptas and C. Moore. The asymptotic order of the random k -SAT threshold. In
Proceedings of FOCS 2002, pages 779-788, 2002.

2. J.C. Beck and M.S. Fox. Dynamic problem structure analysis as a basis for constrained
-directed scheduling heuristics. Artificial Intelligence, 117:31-81, 2000.

44



Search cost

Search cost

10.

11.
12.

100 variables, 300 clauses 200 variables, 600 clauses

1600 T T T T T T T 5000 T T T T T T T T T
+
1400 i 4500 i
1200 ) 4000 | B
[ P 7 Fe
+ 5 £ #’ﬁ L 3500 [, R
1000 o Ty 1 5 a0} *, .
ot T 8 +
800 - . foar et o 22500+ B
A Y ]
L + e * 4 & 2000 g
600 [, 4+ s, TETRY 5
ﬁ#’;"t}i’ oy * @ 1500 7
400 - 1 {%ﬁ& +t' 1
200 ﬁ e | 1000 | E
+ 500 | 4
or -7 B ol i
200 L L L L L L L 500 st L L L L L L L L
05 1 15 2 25 3 35 4 45 05 1 15 2 25 3 35 4 45 5 55
Proximity ratio Proximity ratio
500 variables, 1500 clauses 800 variables, 2400 clauses
20000 T T T T T T T L3 T 45000 T T T T T A
18000 . 1 40000 E
- + 4
16000 - s L i 35000 * A L ;* +
4+ + L + i
14000 | N 1 +f#§r +++ i 30000 N + . ++:t¢++ +tﬁt¢i
+ % 25000 | &t
12000 | + . Sy i S g . N Lo ;:jﬁﬂ%%zﬁ
+ 20000 - s g
10000 - #’t N {fﬂ*ﬁ et - i + + e Ty
N LIRS g e ol & 15000 | ifﬁ L i
8000 T+ ot *{r,_—j&+ Erand 4 3 e
- +,§#}% gt 10000 R g B
6000 R P o h jr N B 5000 b S, £*++ i
+ + + T e 4 /_,,§§* e R
2000 | i *,‘Cﬁ’t PR + T+t B ol L # *E*H |
s VT L
2000 FrEE g 5000 | E
- 4 -
0 oL 1 1 1 1 1 1 1 1 -10000 1 1 1 1 1 1 1 1 1
o 1 2 3 4 5 6 7 8 9 10 o 1 2 3 4 5 6 7 8 9 10
Proximity ratio Proximity ratio

Fig. 13. Correlation between search cost and proximity ratio.

R. Béjar, A. Cabiscol, and C.P. Gomes C. Fernandez, F. Manya. Capturing structure with
satisfiability. In T. Walsh, editor, Principles and Practice of Constraint Programming — CP
2001, 7th International Conference, Lecture Notes in Computer Science, pages 137-152.
Springer, 2001.

C. Blum and A. Roli. Metaheuristics in combinatorial optimization: Overview and concep-
tual comparison. ACM Computing Surveys, 35(3):268-308, September 2003.

M. R. Garey and D. S. Johnson. Computers and intractability; a guide to the theory of
NP-completeness. W.H. Freeman, 1979.

I. P. Gent, H. H. Hoos, P. Prosser, and T. Walsh. Morphing: Combining structure and ran-
domness. In Proceedings of AAAI99, pages 654-660, 1999.

E. Goldberg and Y. Novikov. BerkMin: A Fast and Robust SAT Solver. In Design Automation
and Test in Europe (DATE), pages 142-149, 2002.

C.P. Gomes. Structure, duality, and randomization — common themes in Al and OR. In
Proceedings of the Seventeenth National Conference on Artificial Intelligence (AAAI-00),
2000.

C.P. Gomes and B. Selman. Problem structure in the presence of perturbations. In Proceed-
ings of the Fourteenth National Conference on Artificial Intelligence (AAAI-97), 1997.

C.P. Gomes and D. Shmoys. Completing quasigroups or latin squares: A structured graph
coloring problem. In Proceedings of the Computational Symposium on Graph Coloring and
Extensions, 2002.

T. Hogg. Which search problems are random? In Proc. of AAAI98, pages 438-443, 1998.
T. Hogg, B. A. Huberman, and C. P. Williams. Phase transitions and the search problems.
Artificial Intelligence, 81(1-2), 1996. Special issue on Phase Transitions and Search Prob-
lems.

45



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.
217.
28.
29.

30.

H. H. Hoos and T. Stutzle. Towards a characterisation of the behaviour of stochastic local
search algorithms for sat. Artificial Intelligence, 112:213-232, 1999.

H.H. Hoos. SAT-encodings, search space structure, and local search performance. In Pro-
ceedings of 1JCAI-99, pages 988-993, 1999.

K. Leyton-Brown, E. Nudelman, and Y. Shoham. Learning the empirical hardness of opti-
mization problems. In P. Van Henteryck, editor, Proceedings of CP02 - Eighth International
Conference on Principles and Practice of Constraint Programming, volume 2470 of Lecture
Notes in Computer Science. Springer, 2002.

H. R. Lourenco, O. Martin, and T. Stiitzle. Iterated local search. In F. Glover and G. Kochen-
berger, editors, Handbook of Metaheuristics, volume 57 of International Series in Operations
Research & Management Science, pages 321-353. Kluwer Academic Publishers, Norwell,
MA, 2002.

D. G. Mitchell, B. Selman, and H. J. Levesque. Hard and easy distributions of sat problems.
In Proceedings, Tenth National Conference on Artificial Intelligence, pages 459-465. AAAI
Press/MIT Press, July 1992.

A. Roli. Criticality and parallelism in GSAT. Electronic Notes in Discrete Mathematics, 9,
2001.

A. Roli. Criticality and parallelism in structured SAT instances. In P. Van Henteryck, editor,
Proceedings of CP02 - Eighth International Conference on Principles and Practice of Con-
straint Programming, volume 2470 of Lecture Notes in Computer Science, pages 714-719.
Springer, 2002.

A. Roli. Design of a new metaheuristic for MAXSAT problems (extended abstract). In P. Van
Henteryck, editor, Proceedings of CP02 - Eighth International Conference on Principles and
Practice of Constraint Programming, volume 2470 of Lecture Notes in Computer Science,
page 767. Springer, 2002.

A. Roli. Metaheuristics and structure in satisfiability problems. Technical Report DEIS-
LIA-03-005, University of Bologna (Italy), May 2003. PhD Thesis - LIA Series no. 66.

A. Roli and C. Blum. Critical Parallelization of Local Search for MAX-SAT. In F. Espos-
ito, editor, AI*I1A2001: Advances in Artificial Intelligence, volume 2175 of Lecture Notes in
Artificial Intelligence, pages 147-158. Springer, 2001.

A. Roli and F. Zambonelli. Emergence of macro spatial structures in dissipative cellular
automata. In Proc. of ACRI2002: Fifth International Conference on Cellular Automata for
Research and Industry, volume 2493 of Lecture Notes in Computer Science, pages 144-155.
Springer, 2002.

B. Selman, H. A. Kautz, and B. Cohen. Noise strategies for local search. In Proc. 12th
National Conference on Artificial Intelligence, AAAI’94, Seattle/WA, USA, pages 337-343,
1994,

B. Selman, H. J. Levesque, and D. Mitchell. A new method for solving hard satisfiability
problems. In Paul Rosenbloom and Peter Szolovits, editors, Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence, pages 440-446, Menlo Park, California, 1992.
American Association for Artificial Intelligence, AAAI Press.

T. Walsh. Search in a small world. In proceedings of IJCAI99, pages 1172-1177, 1999.

T. Walsh. Search on high degree graphs. In Proceedings of IlJCAI-2001, 2001.

J.P. Watson, L. Barbulescu, A.E. Howe, and L.D. Whitley. Algorithm Performance and
Problem Structure for Flow-Shop Scheduling. In Sixteenth National Conference on Artificial
Intelligence (AAAI-99), 1999.

D.J. Watts. Small Worlds: The Dynamics of Networks between Order and Randomness.
Princeton University Press, 1999.

D.J. Watts and S.H. Strogatz. Collective dynamics of ’small-world‘ networks. Nature,
393:440-442, 1998.

46



31. C. Williams and T. Hogg. Exploiting the deep structure of constraint problems. Artificial
Intelligence, 70:72-117, 1994.

47



48



Exploiting Relaxation in Local Search

Steven Prestwich

Cork Constraint Computation Centre
Department of Computer Science
University College, Cork, Ireland

email: s.prestwich@cs.ucc.ie

Abstract. Branch-and-bound uses relaxation to prune search trees but
sometimes scales poorly to large problems. Conversely, local search often
scales well but may be unable to find optimal solutions, perhaps because
it does not exploit relaxation. Both phenomena occur in the construction
of low-autocorrelation binary sequences, a problem arising in communi-
cation engineering. This paper proposes a hybrid approach to optimiza-
tion: using relaxation to prune local search spaces. An implementation
gives competitive results, showing the feasibility of the approach.

1 Introduction

Branch-and-bound is a well-established approach to solving combinatorial opti-
mization problems (see [2] for example). It uses problem relaxations to compute
a cost bound in order to prune a search tree, which greatly speeds up backtrack
search. It is guaranteed to find optimal solutions and to prove them optimal.
However, it sometimes scales poorly to large problems. In such cases local search
is a useful alternative. Though it is not guaranteed to find an optimal solution,
its superior scalability often makes it indispensable.

A natural way to apply local search to optimization problems is to explore
the space of solutions while attempting to minimize the given cost function. For
example a well-known local search algorithm for the Traveling Salesman Problem
explores the space of tours (Hamiltonian cycles) by exchanging pairs of variable
assignments [13]. Exchanges that improve the cost function are always accepted
while other exchanges are only accepted under certain conditions. Most local
search algorithms for optimization problems similarly try to transform solutions
into better solutions, though they vary considerably in detail. Unfortunately this
natural approach is not always successful, for example the optimization problem
considered in this paper is considered to be very hard for local search. Previous
researchers have applied to this problem either randomized search to find large
sequences of high quality, or branch-and-bound search to find smaller optimal
sequences.

Thus finding optimal solutions to large problems is sometimes difficult. One
way forward is to find an improved local search algorithm but this may not
be possible. This paper describes an alternative approach: changing the local

49



search space to allow pruning by relaxation, thus combining the scalability of lo-
cal search with the cost reasoning of branch-and-bound. The paper covers some
of the same ground as [21] but contains new results (in particular for skew-
symmetric sequences), modified heuristics and updated references. The remain-
der of this section introduces an optimization problem and summarizes previous
approaches to solving it, while subsequent sections describe the new approach,
evaluate it and draw conclusions.

2 The LABS problem

Consider a binary sequence S = (si,...,$n) where each s; € {1,—1}. The
off-peak autocorrelations of S are defined as

N—k
Cr(S) = Zsisi+k (k=1...N-1)
=1

and the energy of S as
N—1
E(S) =) Ci(S)
k=1

The low-autocorrelation binary sequence (LABS) problem is to assign values to
the s; such that E(S) is minimized. A common measure of sequence quality is
the merit factor F(S) = N?/2E(S). Theoretical considerations [8] give an upper
bound on F(S) of approximately 12.32 as N — oo, and empirical curve fitting
on known optimal sequences [14] yields an estimate of F' = 9.3 for large N. This
problem has many practical applications in communications engineering, and
is of theoretical interest to physicists because it models 1-dimensional systems
of Ising-spins. For our purposes it is mainly of interest as a difficult optimiza-
tion problem with a cheaply-computed relaxation, and several published papers
containing computational results.

2.1 Previous approaches

Much computer time has been devoted to finding sequences with high merit
factor. Since the 1970s researchers, many from the Physics community, have
applied various methods to the problem. Analytical methods have been used
to construct optimal sequences for certain values of N (see [15] for example),
but for the general case search is necessary. Two possibilities are systematic and
randomized search.

Systematic search usually involves the enumeration of possibilities by back-
tracking. Golay [8] used exhaustive enumeration to find optimal sequences for
N < 32. Mertens [14] enumerated optimal sequences for N < 48 using sys-
tematic search augmented with two techniques to reduce the size of the search
tree: branch-and-bound and symmetry breaking (at the time of writing this al-
gorithm has enumerated optimal sequences up to N = 581). Branch-and-bound

! http://itp.nat.uni-magdeburg.de/ “mertens/bernasconi/open.dat

50



improves performance significantly: a systematic search for sequences of length
44 took approximately 2 days, as opposed to an extrapolated 68 days for exhaus-
tive enumeration (on a Sun UltraSparc I 170 workstation). Symmetry breaking,
sometimes called symmetry exclusion, exploits the fact that sequences occur in
equivalence classes of size 8. However, even with these enhancements, system-
atic search is unlikely to scale up to large sequences, and it is conjectured that
for N > 100 progress will be made through mathematical insight rather than
computer power [14].

When systematic search becomes impractical, it is common to resort to ran-
domized methods such as simulated annealing, evolutionary algorithms, neu-
ral networks, ant colonies or hill climbing, which are often able to solve much
larger instances. Unfortunately they perform quite poorly on some problems and
finding optimal LABS solutions seems to be an example, despite decades of re-
search effort on simulated annealing [8, 4], evolutionary search [6, 16,19, 31] and
other heuristic algorithms [3]. The cause is considered to be the search space,
whose cost function F has a very irregular structure with isolated minima [4].
Bernasconi [4] predicted that local search will be unable to find sequences with
merit factor greater than 5, and Mertens [14] suggested that local search al-
gorithms should be evaluated by the percentage of known optimal sequences
they find. Until recently [5] no reported randomized algorithm were able to find
optimal sequences (we discuss recent results below).

Thus neither systematic nor randomized search seems ideal for finding large
optimal sequences, a situation mirrored in some other combinatorial problems.
Though both systematic and randomized search are highly successful, neither is
seen as adequate for all problems [7] so new hybrid algorithms are of interest.

3 A hybrid approach

Before describing the new approach we digress to consider the well-known N-
queens problem. The aim is to place N queens on an N x N chess board in such
a way that no queen attacks another (a queen attacks another if they lie on the
same row, column or diagonal). N-queens has no cost function to optimize: it is a
constraint satisfaction problem (CSP). A popular model for this problem uses N
variables each taking a value from the integer domain {1,..., N}, each variable
corresponding to a row and each value to a column. Systematic backtrack search
can solve instances only up to approximately 100 queens in a reasonable time,
but local search is much faster.

3.1 Local search for constraint satisfaction

The usual local search approach for a non-optimization CSP such as N-queens
is to transform it into an optimization problem: the search space is the set of
total assignments (all N queens are placed somewhere on the board) and the
cost function is the number of constraint violations (attacks). Figure 1(i) shows a
total assignment containing two constraint violations: the last queen can attack

51



two others and vice-versa (attack is symmetrical). We may try to remove these
violations, at the risk of introducing new ones, by repositioning a queen involved
in a conflict, that is by reassigning a variable to another value. The Min-Conflicts
Hill-Climbing algorithm works in this way and solves large instances in a constant
number of local moves and linear time [17]. A similar approach is taken for many
other problems, for example the GSAT algorithm for Boolean satisfiability [30].
(For optimization problems in which legal solutions are hard to find, the two
cost functions may be combined as a weighted sum. Local search then tries to
reduce solution cost and infeasibility at the same time.)

\ Q Q

~_ | Q

(i) inconsistent total assignment (ii) consistent partial assignment

Fig. 1. Two search spaces for N-queens

However, a non-computer scientist might intuitively design a different form of
local search for N-queens: starting from an empty board, place queens randomly
in non-attacked positions; when a queen cannot be placed, randomly remove
one or more placed queens; repeat until all queens are placed. The states of this
algorithm correspond to consistent partial assignments in our model, as shown in
Figure 1(ii). We may add and remove queens randomly, or bias the choice using
heuristics. This algorithm explores a different space but is still local search.
The number of unassigned variables (unplaced queens) is the cost function to
be minimized. No queens can be added to the state in Figure 1(ii), which is
therefore a local minimum under this function.

This approach to N-queens was found to be inferior to Min-Conflicts, but
when further techniques were added (including constraint propagation) it was
able to solve large instances in even fewer search steps [24]. A few other local
search algorithms explore partial assignments: the open-shop scheduling algo-
rithm of [11]; the timetabling algorithm of [29], which allows some constraint
violations; the IMPASSE class of graph colouring algorithms [12, 18], in which a

52



consistent partial assignment is called a coloration neighbourhood; the colouring
algorithm of [22] which prunes an IMPASSE-style search by constraint propa-
gation; and the SAT algorithms of [10, 21, 27].

3.2 An alternative local search space

The above ideas suggest treating LABS (and other optimization problems) as a
series of CSPs with decreasing energy. Each CSP requires the construction of a
sequence under a constraint F(A) < U, where A is a partial sequence, E(A) is
the energy of A, and U is an upper bound. As above, each CSP may be solved
by applying local search to minimize the number of unassigned variables. If this
can be reduced to zero then A is a total assignment (a complete sequence) whose
energy is no greater than U. By iteratively decreasing U we may eventually find
an optimal sequence.

This may appear to be a convoluted way of applying local search to an op-
timization problem, but it is worth exploring for several reasons. Firstly, there
is the simple hope that changing the search space and cost function will make
some problems easier to solve. Secondly, the computation of a lower bound on
E(A) provides an opportunity for exploiting relaxation, yielding an interesting
hybrid of local search and branch-and-bound. Thirdly, a similar approach has
yielded good results on graph colouring [22], Boolean satisfiability [21,23,27],
maximum cliques [24], Golomb rulers [24], block design [26] and a sports schedul-
ing problem [26]. For these problems we combined local search with constraint
propagation via the same form of non-systematic backtracking. The aim of the
method described in this paper is to extend the approach from Constraint Pro-
gramming to Operations Research, by combining local search with relaxation
instead of propagation.

3.3 The algorithm

The algorithm will be referred to as LSR (Local Search with Relaxation) and is
shown in Figure 2. The optimize function finds a solution under a cost constraint
given by an upper bound U (initially set to 00), decrements the upper cost bound
by A to ensure that future solutions have lower cost, and continues. For general
optimization problems we would use A =1, but for LABS it is known [16] that
sequences have energy differing by multiples of 4 so we can set A = 4 (when
searching among the skew-symmetric sequences below we can set A = 8).

The solve function finds a solution A: a set of N variable assignments, one
per binary variable, defining a sequence whose energy is no greater than U.
Not shown is a simple heuristic: the search for each solution starts by trying to
reuse the previous solution. Termination occurs when the lower cost bound L is
reached; this may never occur, so a time limit must be imposed.

The solve function finds a solution as follows. The set of assignments A is
initially empty and the set of unassigned variables V initially contains all N
variables. At each iteration an unassigned variable v is selected from V' and the
set D C {—1,1} of consistent assignments is (lazily) computed. A consistent

53



function optimize({s1,...,sn}, L)
U=o0
while U > L
A = solve({s1,...,sn}, U)
U=EA)—-A
return A

function solve({s1,...,sn}, U)
A={}, V={s1,...,sn}
while V # {}
s = select-variable(V)
D={de{-1,1} | B(AU{(s=d)}) < U}
it D # {}
d = select-value(D)
A=AU{(s=d)}, V=V \{s}
else
(s'=d) = select-assignment(A)
A=A\{(s'=d)}, V=V U{s}
return A

Fig. 2. The LSR algorithm for LABS

assignment is one that does not violate the cost constraint, that is the energy of
the partial sequence must be no greater than U.

If D is not empty then one of its values is selected, the new assignment added
to A, and the newly assigned variable removed from V. If D is empty then A
cannot be extended to a solution, so at least one assignment must be undone.
For LABS one unassignment seems to be sufficient (though in principle more
than one may be necessary) and it is selected heuristically (select-assignment)
from A, deleted from A, and the newly unassigned variable added to V. The
search proceeds until V' is empty in which case A is a solution; the search is
non-systematic so this may never occur.

Variable selection is performed by a heuristic (select-variable). With proba-
bility p it selects a random member of V| otherwise it selects the most recently
unassigned variable. This heuristic produces a slowly-changing set of assigned
variables. The value of p is set to 1/(10N x 1.06"); this function was chosen
empirically and we do not claim that it is optimal, nor even that it should be
of this form. The assignment selection heuristic (select-assignment) is random.
The value selection heuristic (select-value) depends upon the selected variable:
if this was the most recently unassigned variable then the heuristic prefers the
unused value, otherwise it prefers the value last assigned to that variable. If the
preferred value cannot be used without violating the cost constraint then the
other value is used. The aim is to produce a minimal change in the search state,
either in the values of the assigned variables or in the set of assigned variables.

54



In order to minimize the minimum energy

N-1
Epin(A) = min (Z Ck(A)2>
k=1

of a partial sequence A, the relaxation

N-1

Ejin(A) = Y min(Ci(4)?)

k=1
can be used as a lower bound EJ,.. (A) < Epnin(A). Because Ef,,. (A) is still
expensive to calculate, Mertens’ branch-and-bound algorithm uses a cheap lower
bound Ej(A) < EZ,..(A) based on an arbitrary completion of the current partial
sequence. We take a similar definition for Fj(A) that is not based on an arbitrary
sequence but still provides a lower bound for E . (A). Define a product s;s; to

be computable if s; and s; are both assigned in the current partial sequence A.
Then let

N-1
Ey(A) = 3 Li(4)
k=1

where Lj(A) = max(bg, |Tx(A)| — Fr(A))?, by = (N — k)mod 2, Tj(A) is the
sum of its computable products, and F(A) is the number of its uncomputable
products. The reasoning is that the sum Ty (A) of the computable products may
be offset by the sum of the uncomputable products, which is no greater than
Fy(A). If |Ti(A)| — Fr(A) > 0 then (|Tx(A)| — Fx(A))? is a lower bound on
Ci(A). If [T (A)| — Fr(A) < 0 then we cannot use the computable products to
compute a lower bound. But we also know that Ci(A) > by, because if N — k is
odd then Cj(A) # 0, so the lower bound can be refined slightly by using by.

The value of Ej, can be computed incrementally. On [un]assigning a variable
s; the algorithm does the following for each occurrence s;s,, in each C} where s,,
is assigned: subtract Ly (A) from Ej, decrement [increment]| F(A), add [subtract]
SiSw to Ty (A), recalculate Li(A), and add it to Ep(A). The occurrences of each
variable s; are stored in a table, together with the numbers w and k.

3.4 A note on symmetry breaking

Mertens’ algorithm benefits from symmetry breaking: a sequence S can be re-
versed, have all their values inverted, or have alternate values inverted, without
changing E(S). Thus sequences occur in equivalence classes of size 8 (apart from
a few sequences such as palindromes) and this fact can be used to reduce the
search space significantly. It seems natural to exploit this technique in our algo-
rithm also, but we believe that it will be counter-productive. In experiments on
several combinatorial problems, symmetry breaking was found to have a harm-
ful effect on local search performance [25]. Symmetry breaking can cause the
search to lured into regions of the search space containing only excluded solu-
tions. Dynamic symmetry breaking techniques can counteract this effect [1] and

55



have been applied to LABS with backtrack search, but with randomized search
the size of the search space is less important than the density and distribution
of solutions. We therefore do not exclude symmetries.

4 Experimental results

In this section the LSR algorithm is evaluated on LABS instances. The algorithm
is implemented in C and all experiments are performed on a 733 MHz Pentium
I11.

4.1 Optimal sequences

First we evaluate its ability to find known optimal sequences. We calculated the
median CPU time over 100 runs taken by the algorithm to find optimal sequences
for N = 20,21, ...,40. By linear regression on the logarithm of the CPU time we
find that the time taken to find an optimal solution is O(1.51"), shown in Figure
3 as a straight line — an improvement over our previous result [21]. Exhaustive
enumeration takes O(2"V), while branch-and-bound takes O(1.85") to find opti-
mal solutions and to prove them optimal [14]. A recent evolutionary algorithm
[5] takes O(1.40"). All these results were calculated using different methods and
cannot be directly compared, but if proving optimality is unnecessary then LSR
is clearly an attractive option.

1le+08 T T T T T T

1e+07 | e
1e+06 | . 7 3

100000 N el 3

T
ot
\
\

10000

search steps
T
Y
1

1000

T
+
\
+
1

100 b L 3

10F =7+ —:

1 1 1 1 1 1 1
5 10 15 20 25 30 35 40

N

Fig. 3. Performance on optimal sequences

56



4.2 A long sequence

Next we use LSR to find sequences of length N = 61, which is currently just
beyond the range of results found by branch-and-bound. de Groot et al. [6]
found sequences up to F' = 6.5 using evolutionary strategies. Bernasconi [4]
found F ~ 6.8 using simulated annealing. A previous LSR implementation [21]
found a sequence with F' = 7.56. Brglez et al. [5] recently found sequences with
F = 8.23 after an average of 27.7 hours (on a 266 MHz workstation) and argue
that this is likely to be optimal. The best sequence found by LSR after a few
hours of computation is

33211112111235183121221111311311

also with F' = 8.23 (E = 226). Following convention, the sequence is shown in
run-length notation, each number indicating the number of consecutive elements
with the same value. For example a sequence

(1,1,-1,1,-1,-1,-1,-1,1)

would be written 21141. (For runs of length greater than 9 upper-case letters
are used with A=10, B=11 etc.)

4.3 Skew-symmetric sequences

Finally we apply LSR to larger sequences. Because most randomized search
algorithms fail to find optimal sequences they are usually applied to LABS via
a sieve to restrict the search to a promising subspace. The most common sieve
is skew-symmetry [8]: only sequences of odd length, with N = 2n — 1 for some
n, satisfying

Snpi = (=1)'sp—y (i=1...n—-1)

are considered, roughly halving the number of independent variables in the prob-
lem and thus greatly reducing the search space. Such sequences often have good
merit factors because C) = 0 for all odd k. Note that the restriction to skew-
symmetric sequences should not be confused with symmetry breaking. We do
not exclude symmetrically equivalent sequences, but sequences that do not pos-
sess a symmetry property. Whereas symmetry breaking allows to recovery of all
solutions to a problem, there is no guarantee that the best sequence of given
length N is skew-symmetric (a counter-example is N = 61).

Optimal skew-symmetric sequences have been enumerated by branch-and-
bound for N < 71 [6]. Skew-symmetry is added to LSR by searching on vari-
ables {si1,...,s,} and adjusting the energy computations to add or subtract
increments from the corresponding variables in {$;,41, ..., sy }. The probability
p used for variable selection is set as above, but with n in place of N because
we now have n independent variables instead of N: p =1/(10n x 1.06™). LSR is
able to find optimal skew-symmetric sequences, for example finding the optimal
skew-symmetric sequence for N = 61 (with E = 230 and F' = 8.09) in a few

57



minutes. For sequences longer than 71 several randomized algorithms have been
applied. [3] evaluate five local search algorithms. [16], [6] and [28] apply evolu-
tionary strategies, which use no genetic recombination. [31] and [19] apply other
evolutionary algorithms with recombination operators. [9] use a heuristic based
on the observation that the interleaved sequences typically each have high merit
factors.

N Beenker Golay Wang de Groot Reinholz Miihlenbein Militzer LSR

73 749 7.66 7.66
75  8.25 820 8.25
77 810 8.28 8.28
79 7.34  T.67 7.67
81 7.32 8.20 8.04 8.20 8.20 8.20 8.20
83 7.81 9.14 9.14
85 7.03 8.17 8.17
87 7.46 8.39 8.39
89 7.56 8.18 8.18
91 7.13 8.68 8.68
93 723 8.61 8.61
95 7.15 9.42 9.42
97 7.35 8.78 8.78
99 7.28 8.38 8.49
101  6.06 836 6.91 8.36 8.36 8.36 8.82 8.36
103 5.90 9.56 7.77 9.56 9.56 9.56 9.56
105 6.07 8.89 7.61 8.25 8.78 8.89
107 6.53 8.46 8.46 8.46 8.36
109 6.15 8.97 8.97 8.97 8.97 7.84
111 6.02 8.97 8.97 8.97 17.95
113  6.33 8.49 8.49 8.49 8.49 8.31
115  6.40 8.60 8.88 7.79
117 6.42 8.12 8.71 8.71
119  6.01 7.67 8.02 7.54

Fig. 4. Merit factors for large skew-symmetric sequences

Figure 4 shows results for these algorithms and LSR on large sequences.
(Note that [3], and some papers citing them, give a skew-symmetric sequence
of length 75 and merit factor 9.25; this is a misprint and should read 8.25
— see http://www.cbl.ncsu.edu/OpenExperiments/LABS/ for further details.)
LSR was allowed one run of 10° steps per problem, each run taking several hours,
with a small number of additional runs when results were poor. Best results for
each N are shown in bold. Based on the available results LSR ranks above the
algorithms of Wang, Beenker et al. and de Groot et al., roughly level with that of
Miihlenbein, and below those of Reinholz, Golay & Harris, and Militzer et al. It
found an improved sequence 5255212212A311224 for N = 99 with E = 577 and
F = 8.49 and is not dominated by any other algorithm, but it is clearly not the

58



best. These results demonstrate that using relaxation within local search can be
very competitive. In future work we hope to improve the results by evolutionary
techniques or heuristics such as those of Brglez et al.

5 Conclusion

We have shown that a branch-and-bound algorithm can be transformed into a
local search algorithm by using a randomized form of backtracking. The resulting
algorithm is quite different from the more usual local search approach to opti-
mization, in which the search space is the set of solutions to the problem, and
the objective function is given by the problem. In our approach the optimization
problem is reduced to a series of constraint satisfaction problems to be solved it-
eratively, with decreasing upper bounds on the given objective function. In each
iteration the search space is the set of partial solutions whose cost is bounded
by a relaxation, and the objective function to be minimized is the number of
unassigned variables. This provides a clean way of exploiting relaxation during
local search: essentially we perform local search in a branch-and-bound search
space. The approach is generic and we expect it to find application to other
optimization problems.

The new approach was evaluated on the notoriously difficult LABS optimiza-
tion problem with positive results. Firstly, it is the first reported randomized al-
gorithm to find optimal sequences (though another recent local search algorithm
has also achieved this). Secondly, it does so much more quickly than branch-and-
bound, as one would hope with local search. Thirdly, it performs competitively
against several other randomized algorithms on large skew-symmetric sequences,
finding an improved result. The algorithm is rather simple, leaving scope for fu-
ture improvement by techniques such as population-based search.

It should be noted that the success of the approach depends partly on the
cheapness of the relaxation computation. Expensive computation at each search
step is only worthwhile if the penalty for making a wrong choice is heavy. Com-
putation that is worth performing for backtrack search is less likely to be worth-
while for local search, and preliminary experiments with the Simplex algorithm
on mixed integer programs were less successful. However, it is unsurprising that
different algorithms require different trade-offs. In future work we intend to ex-
periment with other optimization problems with known cheap relaxations.

There seems to be little work in the literature that is closely related to our
approach. In [20] branch-and-bound is used to efficiently explore local search
neighbourhoods. In [32] branch-and-bound is used as an anytime algorithm,
referred to as truncated depth-first branch-and-bound, and shown to outperform
local search on instances of the Asymmetric Traveling Salesman Problem (this
problem could be an interesting application for LSR). Lagrangian relaxation has
been used to guide local search by several researchers. However, we know of no
other work that prunes local search space by using relaxation.

59



References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

R. Backofen and S. Will. Excluding Symmetries in Constraint-Based Search. Pro-
ceedings of the Fifth International Conference on Principles and Practice of Con-
straint Programming, Lecture Notes in Computer Science vol. 1713, Springer-
Verlag, 1999, pp. 73-87.

E. Balas, P. Toth. Branch and Bound Methods. The Traveling Salesman Problem:
a Guided Tour of Combinatorial Optimization, Wiley, 1985.

G. Beenker, T. Claasen, P. Hermens. Binary Sequences With a Maximally Flat
Amplitude Spectrum. Philips J. of Research vol. 40, 1985, pp. 289-304.

J. Bernasconi. Low Autocorrelation Binary Sequences: Statistical Mechanics and
Configuration Space Analysis. J. Physique vol. 48, 1987, pp. 559-567.

F. Brglez, X. Y. Li, M. F. Stallman, B. Militzer. Reliable Cost Prediction for
Finding Optimal Solutions to LABS Problem: Evolutionary and Alternative Al-
gorithms. Fifth International Workshop on Frontiers in Evolutionary Algorithms,
Cary, NC, USA, 2003.

C. de Groot, D. Wiirtz, K. H. Hoffmann. Low Autocorrelation Binary Sequences:
Exact Enumeration and Optimization by Evolutionary Strategies. Optimization
vol. 23, 1992, pp. 369-384.

E. C. Freuder, R. Dechter, M. L. Ginsberg, B. Selman, E. Tsang. Systematic Versus
Stochastic Constraint Satisfaction. Fourteenth International Joint Conference on
Artificial Intelligence, Morgan Kaufmann, 1995, pp. 2027-2032.

M. Golay. The Merit Factor of Long Low Autocorrelation Binary Sequences. IEEE
Trans. Inf. Theory vol. 28 no. 3, 1982, pp. 543-549.

M. Golay, D. Harris. A New Search for Skew-Symmetric Binary Sequences with
Optimal Merit Factors. IEEE Trans. Inf. Theory vol. 36, 1990, pp. 1163-1166.

E. A. Hirsch and A. Kojevnikov. Solving Boolean Satisfiability Using Local Search
Guided by Unit Clause Elimination. Seventh International Conference on Princi-
ples and Practice of Constraint Programming, Cyprus, 2001.

N. Jussien, O. Lhomme. Local Search With Constraint Propagation and Conflict-
Based Heuristics. Artificial Intelligence vol. 139 no. 1, 2002, pp. 21-45.

G. Lewandowski, A. Condon. Experiments With Parallel Graph Coloring Heuristics
and Applications of Graph Coloring. Cliques, Coloring and Satisfiability: Second
DIMACS Implementation Challenge, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science vol. 26, D. S. Johnson, M. A. Trick (eds.), American
Mathematical Society, 1996, pp. 309-334,

S. Lin, B. W. Kernighan. An Effective Heuristic for the Traveling Salesman Prob-
lem. Operations Research vol. 21, 1973, pp. 498-516.

S. Mertens. Exhaustive Search for Low-Autocorrelation Binary Sequences. J. Phys.
A: Math. Gen. vol. 29, 1996, pp. L473-1.481.

S. Mertens, C. Bessenrodt. On the Ground States of the Bernasconi Model. J.
Phys. A: Math. Gen. vol. 31, 1998, pp. 3731-3749.

B. Militzer, M. Zamparelli, D. Beule. Evolutionary Search for Low Autocorrelated
Binary Sequences. IEEE Trans. Evol. Comp. vol. 2, 1998, pp. 34-39.

S. Minton, M. D. Johnston, A. B. Philips, P. Laird. Minimizing Conflicts: A
Heuristic Repair Method For Constraint Satisfaction and Scheduling Problems.
Constraint-Based Reasoning, E. C. Freuder, A. K. Mackworth (eds.), MIT Press,
1994.

C. Morgenstern. Distributed Coloration Neighborhood Search. Cliques, Coloring
and Satisfiability: Second DIMACS Implementation Challenge, DIMACS Series in

60



19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Discrete Mathematics and Theoretical Computer Science 26 D. S. Johnson, M. A.
Trick (eds.), American Mathematical Society, 1996, pp. 335-357.

H. Miihlenbein H. Asynchronous Parallel Search by the Parallel Genetic Algorithm.
Third IEEE Symposium on Parallel and Distributed Processing, IEEE Computer
Society Press, 1991, pp. 526-33.

G. Pesant, M. Gendreau. A View of Local Search in Constraint Programming.
Second International Conference on Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Science vol. 1118, Springer-Verlag, 1996,
pp. 353-366.

S. D. Prestwich. A Hybrid Search Architecture Applied to Hard Random 3-SAT
and Low-Autocorrelation Binary Sequences. Sizth International Conference on
Principles and Practice of Constraint Programming, Lecture Notes in Computer
Science vol. 1894, Springer-Verlag, 2000, pp. 337-352.

S. D. Prestwich. Coloration Neighbourhood Search With Forward Checking. An-
nals of Mathematics and Artificial Intelligence vol. 34 no. 4, 2002, pp. 327-340.
S. D. Prestwich. SAT Problems With Chains of Dependent Variables. Discrete
Applied Mathematics vol. 3037, 2002, pp. 1-22.

S. D. Prestwich. Combining the Scalability of Local Search with the Pruning Tech-
niques of Systematic Search. Annals of Operations Research vol. 115, 2002, pp.
51-72.

S. D. Prestwich. Negative Effects of Modeling Techniques on Search Performance.
Annals of Operations Research vol. 18, 2003, pp. 137-150.

S. D. Prestwich. Incomplete Dynamic Backtracking for Linear Pseudo-Boolean
Problems. Annals of Operations Research vol. 130, 2004, pp. 57-73.

S. D. Prestwich, S. Bressan. A SAT Approach to Query Optimization in Mediator
Systems. Fifth International Symposium on the Theory and Applications of Satis-
fiability Testing, University of Cincinatti, 2002, pp. 252-259. To appear in Annals
of Mathematics and Artificial Intelligence.

A. Reinholz. Ein Paralleler Genetischer Algorithmus zur Optimierung der Binéren
Autokorrelations-Funktion. Diplom thesis, Universitdt Bonn, 1993.

A. Schaerf. Combining Local Search and Look-Ahead for Scheduling and Con-
straint Satisfaction Problems. Fifteenth International Joint Conference on Artifi-
cial Intelligence, Morgan Kaufmann, 1997, pp. 1254-1259.

B. Selman, H. Levesque, D. Mitchell. A New Method for Solving Hard Satisfiability
Problems. Tenth National Conference on Artificial Intelligence, MIT Press, 1992,
pp. 440-446.

Q. Wang. Optimization by Simulating Molecular Evolution. Biol. Cybern. vol. 57,
1987, pp. 95-101.

W. Zhang. Depth-First Branch-and-Bound versus Local Search: a Case Study.
Seventeenth National Conference on Artificial Intelligence, Austin, Texas, 2002,
pp. 930-935.

61





