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Motivation

• Great success stories in automatic program 
verification based on static analysis techniques 
(SDV, Astree, etc).

• Yet balancing precision and performance of a 
static analysis is still an art.

• We want to do this balancing automatically.
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Typical static analysis
program P
query q

parameterised
static analysis

proved don’t
know

Monday, 27 February 2012



Our approach
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Our approach
program P
query q

dynamic 
analysis

parameter 
inference

parameterised
static analysis

disproved proved don’t
know

info parameter
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Hypothesis

• If a query is simple, we can find why the query holds 
simply by looking at a few execution traces.
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states s,s’
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parameter ɳ

s,s’

Parameter inference based on 
separability and minimality

Monday, 27 February 2012



parameter 
inference

GOOD BAD

ɳ0 ɳ1

Can 
separate? ɳ

parameter ɳ

s,s’

instrumented
states s,s’

Parameter inference based on 
separability and minimality

Monday, 27 February 2012



parameter 
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can 
separate? ɳ

parameter ɳ

s0,s1

Parameter inference based on 
separability and minimality

Monday, 27 February 2012



parameter 
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can 
separate? ɳ

parameter ɳ

s0,s1

Parameter inference based on 
separability and minimality

Monday, 27 February 2012



parameter 
inference

instrumented
states s,s’
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parameter ɳ
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Parameter inference based on 
separability and minimality

• Computes a separability condition.
• Among separable ɳi, choose a minimal ɳ according 
to an order (approximately reflecting precision).
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Thread-escape query 

for (i = 0; i < n; i++) {
  x0 = new h0;
  x1 = new h1; x1.f1 = x0;
  x2 = new h2; x2.f2 = x1;
  x3 = new h3; x3.f3 = x2;
  x0.start();
pc: x2.id = i; //local(x2)?
  x3.start();
}

• Does a local variable point to an object that 
cannot be reached from other threads?
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Thread-escape analysis

• Summarise all heap objects with only two 
abstract nodes E and L.

• ɤ(E) consists of all the thread-escaping 
objects and possibly more.

• ɤ(L) contains only thread-local objects.
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Parameterisation

• For each allocation site, it decides whether L 
or E is used to summarise allocated objects.

• Changes the transfer function of “x=new hi”.

• Objects summarised by L can move to E, but 
not vice versa.

Formulas in my POPL’12 talk

Hongseok Yang

University of Oxford

1 Formulas

Val
�
= {l, e} Local

�
= LocalVar → P(Val

�
)

Heap
�
= Field → P(Val

�
) D = Local

� × Heap
�

Param = AllocSite → {l, e}

bytecode (KB) # alloc.

app app+JDK sites

hedc 16 161 1,587

weblech 20 237 2,636

lusearch 100 273 2,879

sunflow 117 480 5,170

avrora 223 316 4,860

hsqldb 221 491 4,564

Monday, 27 February 2012



Thread-escape analysis 

for (i = 0; i < n; i++) {
  x0 = new h0;
  x1 = new h1; x1.f1 = x0;
  x2 = new h2; x2.f2 = x1;
  x3 = new h3; x3.f3 = x2;
  x0.start();
pc: x2.id = i; //local(x2)?
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}

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]
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Thread-escape analysis 

E
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• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]
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Difficulties in choosing 
a good parameter

• Using more L makes the analysis more expensive.

• But more L doesn’t always mean more precision.
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Separability question

local(x2) ¬local(x2)

s, s’

• Does analysis(ɳ) have an abstract element d 
separating {s, s’} from ¬local(x2)?

• We use a generic answer to this question 
during our parameter inference.

d
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Separability from ¬local(x2) 

• This state satisfies local(x2).

• Separated from ¬local(x2) by analysis(ɳ) iff        
ɳ(h2) = ɳ(h3) = L
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Separability from ¬local(x2) 

• This state satisfies local(x2).

• Separated from ¬local(x2) by analysis(ɳ) iff        
(ɳ o allocSite o backReach)(x2) = {L}.
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ɳ(h2) = L ∧
ɳ(h3) = L
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Parameter inference
1. Testing gives states 

where local(x2) holds.

2. Compute the alloc. sites 
H of objects backward-
reachable from x2.

3. ɳ(h) = L, if h is in H;        
ɳ(h) = E, otherwise.

4. Return ɳ.
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Parameter inference
1. Testing gives states 

where local(x2) holds.

2. Compute the alloc. sites 
H of objects that can 
reach x2.

3. ɳ(h) = L, if h is in H;        
ɳ(h) = E, otherwise.
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 H = {h2, h3}
 ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012



Parameter inference
1. Testing gives states 

where local(x2) holds.

2. Compute the alloc. sites 
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Parameter inference
1. Testing gives states 

where local(x2) holds.

2. Compute the alloc. sites 
H of objects that can 
reach x2.

3. ɳ(h) = L, if h is in H;        
ɳ(h) = E, otherwise.

4. Return ɳ.
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Does it work?
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Setting of experiments

• 6 concurrent Java programs from Dacapo:

• 161K - 491K bytecode (including analysed JDK).

• Up to 5K allocation sites per program.

• 47K queries, but only 17K(37%) reached during 
testing.

• Considered only these reachable queries.
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dynamic 
analysis

parameter 
inference
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disproved proved don’t
know

parameter

28% disproved 52% 
proved 

20% 
don’t 
know

L-mapped sites:
avg 4.8, max 195

per prog:
 6s - 8m

info

per program:
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17K queries
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static analysis

proved don’t
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All sites 
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Out of memory 
for all programs
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