
Abstractions from Tests
Mayur Naik (Georgia Institute of Technology)

Hongseok Yang (University of Oxford)
Ghila Castelnuovo (Tel-Aviv University)

Mooly Sagiv (Tel-Aviv University)

Monday, 27 February 2012

Motivation

• Great success stories in automatic program
verification based on static analysis techniques
(SDV, Astree, etc).

• Yet balancing precision and performance of a
static analysis is still an art.

• We want to do this balancing automatically.

Monday, 27 February 2012

Typical static analysis
program P
query q

parameterised
static analysis

proved don’t
know

Monday, 27 February 2012

Our approach
program P
query q

parameterised
static analysis

proved don’t
know

parameter

Monday, 27 February 2012

Our approach
program P
query q

dynamic
analysis

parameter
inference

parameterised
static analysis

disproved proved don’t
know

info parameter

Monday, 27 February 2012

Hypothesis

• If a query is simple, we can find why the query holds
simply by looking at a few execution traces.

Monday, 27 February 2012

parameter
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1
ɳ

parameter ɳ

s,s’

Parameter inference based on
separability and minimality

Monday, 27 February 2012

parameter
inference

GOOD BAD

ɳ0 ɳ1

Can
separate? ɳ

parameter ɳ

s,s’

instrumented
states s,s’

Parameter inference based on
separability and minimality

Monday, 27 February 2012

parameter
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can
separate? ɳ

parameter ɳ

s0,s1

Parameter inference based on
separability and minimality

Monday, 27 February 2012

parameter
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can
separate? ɳ

parameter ɳ

s0,s1

Parameter inference based on
separability and minimality

Monday, 27 February 2012

parameter
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can
separate?

YES NO

ɳ

parameter ɳ

s,s’

Parameter inference based on
separability and minimality

• Computes a separability condition.
• Among separable ɳi, choose a minimal ɳ according
to an order (approximately reflecting precision).

Monday, 27 February 2012

parameter
inference

instrumented
states s,s’

GOOD BAD

ɳ0 ɳ1

Can
separate?

YES NO

ɳ

parameter ɳ

s,s’

• Computes a separability condition.
• Among separable ɳi’s, choose a minimal ɳ according
to an order (which approximately reflects precision).

Parameter inference based on
separability and minimality

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h0 x0

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h1

h0 x0

x1

f1

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h1

h0

h2

x0

x1

x2

f1

f2

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h1

h0

h2

h3

x0

x1

x2

x3

f1

f2

f3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h1

h0

h2

h3

x0

x1

x2

x3

f1

f2

f3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

h1

h0

h2

h3

x0

x1

x2

x3

f1

f2

f3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

h1

h0

h2

h3

x0

x1

x2

x3

f1

f2

f3

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

x0

x1

x2

x3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

x0

x1

x2

x3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape query

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

x0

x1

x2

x3

• Does a local variable point to an object that
cannot be reached from other threads?

Monday, 27 February 2012

Thread-escape analysis

• Summarise all heap objects with only two
abstract nodes E and L.

• ɤ(E) consists of all the thread-escaping
objects and possibly more.

• ɤ(L) contains only thread-local objects.

Monday, 27 February 2012

Parameterisation

• For each allocation site, it decides whether L
or E is used to summarise allocated objects.

• Changes the transfer function of “x=new hi”.

• Objects summarised by L can move to E, but
not vice versa.

Formulas in my POPL’12 talk

Hongseok Yang

University of Oxford

1 Formulas

Val
�
= {l, e} Local

�
= LocalVar → P(Val

�
)

Heap
�
= Field → P(Val

�
) D = Local

� × Heap
�

Param = AllocSite → {l, e}

bytecode (KB) # alloc.

app app+JDK sites

hedc 16 161 1,587

weblech 20 237 2,636

lusearch 100 273 2,879

sunflow 117 480 5,170

avrora 223 316 4,860

hsqldb 221 491 4,564

Monday, 27 February 2012

Thread-escape analysis

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012

Thread-escape analysis

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012

Thread-escape analysis

E

x0

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

E

x0

x1

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

f2

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

E

x0

x1

x2

x3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

E

x0

x1

x2

x3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

E

x0

x1

x2

x3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x2

f2

x1

x2

x3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Thread-escape analysis

L

E

x0

x1

x2

x3

f2

f3

• Parameter ɳ = [{h0,h1}↦E, {h2,h3}↦L]

for (i = 0; i < n; i++) {
 x0 = new h0/E;
 x1 = new h1/E; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• But more L doesn’t always mean more precision.

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• But more L doesn’t always mean more precision.

L

E

x0

x1

x2

x3

f2

f3 L

E

x0

x1

x2

x3

f1

f2
f3

[{h0,h1}↦E, {h2,h3}↦L] [{h0}↦E, {h1,h2,h3}↦L]

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

for (i = 0; i < n; i++) {
 x0 = new h0;
 x1 = new h1; x1.f1 = x0;
 x2 = new h2; x2.f2 = x1;
 x3 = new h3; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

for (i = 0; i < n; i++) {
 x0 = new h0/L;
 x1 = new h1/L; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

L

x0

x1

x2

x3

f1
f2
f3

for (i = 0; i < n; i++) {
 x0 = new h0/L;
 x1 = new h1/L; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

E

x0

x1

x2

x3

for (i = 0; i < n; i++) {
 x0 = new h0/L;
 x1 = new h1/L; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Difficulties in choosing
a good parameter

• Using more L makes the analysis more expensive.

• More L doesn’t always mean more precision.

E

x0

x1

x2

x3

for (i = 0; i < n; i++) {
 x0 = new h0/L;
 x1 = new h1/L; x1.f1 = x0;
 x2 = new h2/L; x2.f2 = x1;
 x3 = new h3/L; x3.f3 = x2;
 x0.start();
pc: x2.id = i; //local(x2)?
 x3.start();
}

Monday, 27 February 2012

Separability question

local(x2) ¬local(x2)

s, s’

• Does analysis(ɳ) have an abstract element d
separating {s, s’} from ¬local(x2)?

• We use a generic answer to this question
during our parameter inference.

d

Monday, 27 February 2012

Separability from ¬local(x2)

• This state satisfies local(x2).

• Separated from ¬local(x2) by analysis(ɳ) iff
ɳ(h2) = ɳ(h3) = L

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

Monday, 27 February 2012

Separability from ¬local(x2)

• This state satisfies local(x2).

• Separated from ¬local(x2) by analysis(ɳ) iff
(ɳ o allocSite o backReach)(x2) = {L}.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

ɳ(h2) = L ∧
ɳ(h3) = L

Monday, 27 February 2012

Parameter inference
1. Testing gives states

where local(x2) holds.

2. Compute the alloc. sites
H of objects backward-
reachable from x2.

3. ɳ(h) = L, if h is in H;
ɳ(h) = E, otherwise.

4. Return ɳ.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

Monday, 27 February 2012

Parameter inference
1. Testing gives states

where local(x2) holds.

2. Compute the alloc. sites
H of objects that can
reach x2.

3. ɳ(h) = L, if h is in H;
ɳ(h) = E, otherwise.

4. Return ɳ.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

 H = {h2, h3}
 ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012

Parameter inference
1. Testing gives states

where local(x2) holds.

2. Compute the alloc. sites
H of objects that can
reach x2.

3. ɳ(h) = L, if h is in H;
ɳ(h) = E, otherwise.

4. Return ɳ.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

 H = {h2, h3}
 ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012

Parameter inference
1. Testing gives states

where local(x2) holds.

2. Compute the alloc. sites
H of objects that can
reach x2.

3. ɳ(h) = L, if h is in H;
ɳ(h) = E, otherwise.

4. Return ɳ.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

 H = {h2, h3}
 ɳ = [{h0,h1}↦E, {h2,h3}↦L]

separability

Monday, 27 February 2012

Parameter inference
1. Testing gives states

where local(x2) holds.

2. Compute the alloc. sites
H of objects that can
reach x2.

3. ɳ(h) = L, if h is in H;
ɳ(h) = E, otherwise.

4. Return ɳ.

h1

h0

h2

h3

f1

f2

f3

h1

h0

h2

h3

f1

f2

f3

x0

x1

x2

x3

separability

minimality
 H = {h2, h3}
 ɳ = [{h0,h1}↦E, {h2,h3}↦L]

Monday, 27 February 2012

Does it work?

Monday, 27 February 2012

Setting of experiments

• 6 concurrent Java programs from Dacapo:

• 161K - 491K bytecode (including analysed JDK).

• Up to 5K allocation sites per program.

• 47K queries, but only 17K(37%) reached during
testing.

• Considered only these reachable queries.

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

dynamic
analysis

parameter
inference

parameterised
static analysis

disproved proved don’t
know

info parameter

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

dynamic
analysis

parameter
inference

parameterised
static analysis

disproved proved don’t
know

parameter

28% disproved 52%
proved

20%
don’t
know

info

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

dynamic
analysis

parameter
inference

parameterised
static analysis

disproved proved don’t
know

parameter

28% disproved 52%
proved

20%
don’t
know

per prog:
 6s - 8m

per program:
 38s - 86m

info

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

dynamic
analysis

parameter
inference

parameterised
static analysis

disproved proved don’t
know

parameter

28% disproved 52%
proved

20%
don’t
know

L-mapped sites:
avg 4.8, max 195

per prog:
 6s - 8m

info

per program:
 38s - 86m

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

parameterised
static analysis

proved don’t
know

All sites
mapped to L

Monday, 27 February 2012

6 Java prog. (161K-491K) up to 5K sites
17K queries

parameterised
static analysis

proved don’t
know

All sites
mapped to L

Out of memory
for all programs

Monday, 27 February 2012

