
Verification of Low-Level List Manipulation
(work in progress)

Kamil Dudka1,2 Petr Peringer1 Tomáš Vojnar1

1FIT, Brno University of Technology, Czech Republic

2Red Hat Czech, Brno, Czech Republic

CP-meets-CAV, June 28, 2012

Low-level Memory Manipulation

1 1 / 29

Doubly-Linked Lists: Textbook Style

next

prev

first next

prev

custom_node custom_node

struct custom_node {
t_data data;
struct custom_node *next;
struct custom_node *prev;

};

2 2 / 29

Doubly-Linked Lists in Linux

Cyclic, linked through pointers pointing inside list nodes.
Pointer arithmetic used to get to the boundary of the nodes.
Non-uniform: one node is missing the custom envelope.

next

prev

list_head

next

prev

list_head

next

prev

list_head

custom_node custom_node

struct list_head { struct custom_node {
struct list_head *next; t_data data;
struct list_head *prev; struct list_head head;

}; };

3 3 / 29

Linux Lists: Optimised for Hash Tables

Using pointers to pointers to save 8 bytes (for 64b
addressing) in the head nodes stored in hash tables.

next

pprev

hlist_node

first

hlist_head

next

custom_node custom_node

hlist_node

pprev

struct hlist_node { struct custom_node {
struct hlist_node *next; t_data data;
struct hlist_node **pprev; struct hlist_node node;

}; };

4 4 / 29

Linux Lists: Traversal

... as seen by the programmer:
list_for_each_entry(pos, list, head)

printf(" %d", pos->value);

... as seen by the compiler:
for(pos = ((typeof(*pos) *)((char *)(list->next)
-(unsigned long)(&((typeof(*pos) *)0)->head)));
&pos->head != list;
pos = ((typeof(*pos) *)((char *)(pos->head.next)
-(unsigned long)(&((typeof(*pos) *)0)->head))))

{
printf(" %d", pos->value);

}

... as seen by the analyser (assuming 64b addressing):
for(pos = (char *)list->next - 8;

&pos->head != list;
pos = (char *)pos->head.next - 8)

{
printf(" %d", pos->value);

}
5 5 / 29

Linux Lists: End of the Traversal

Correct use of pointers pointing outside of allocated memory:

&pos->head != list;

next

prev

list_head

next

prev

list_head

next

prev

list_head

custom_node custom_node

pos

list

6 6 / 29

Tracking the Block Size

When not tracking block sizes, many errors may be missed:

typedef struct _DEVICE_EXTENSION {
PDEVICE_OBJECT PortDeviceObject;
// ...
LIST_ENTRY CromData;
// ...

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

PDEVICE_EXTENSION devExt = (PDEVICE_EXTENSION)
malloc(sizeof(PDEVICE_EXTENSION));

InitializeListHead(&devExt->CromData);

devExt

next

prev

&devExt->CromData

7 7 / 29

Tracking Nullified Blocks

Large chunks of memory are often nullified at once, their
fields are gradually used, the rest must stay null.

struct list_head {
struct list_head *next;
struct list_head *prev;

};

struct list_head *head = calloc(1U, sizeof *head);

head next

prev

list_head

8 8 / 29

Alignment of Pointers

Alignment of pointers implies a need to deal with pointers
whose target is given by an interval of addresses:

aligned = ((unsigned)base + mask) & ~mask;

aligned

base mask = 2N − 1, N ≥ 0

0 ≤ ∆ ≤ mask

e.g. alignment on multiples of 8

mask = 0111 = 23 − 1
base = 0001

aligned = 1000

9 9 / 29

Pointers Arriving to Different Offsets

Intervals of addresses arise also when joining blocks of
memory with corresponding pointers arriving to different
offsets.

Common, e.g., when dealing with sub-allocation.

Moreover, when dealing with lists of blocks of different
sizes, one needs to use blocks of interval size in order to
be able to make the computation terminate.

10 10 / 29

Block Operations

Low-level code often uses block operations:
memcpy(), memmove(), memset(), strcpy().
Incorrect use of such operations can lead to nasty errors –
e.g., memcpy() and overlapping blocks:

1

2
?

1

1
2

x

x+1

memcpy(x+1, x, 2);

dst src size

1

2
?

1

2
2

1

1
2

1

2
?

1

1
?

1

1
1

11 11 / 29

Data Reinterpretation

Due to unions, typecasting, or block operations, the same
memory contents can be interpreted in different ways.

data.p0 data.str

p0

p1

p2

c[0]

c[1]

union {
void *p0;
struct {

char c[2];
void *p1;
void *p2;

} str;
} data;

// allocate 37B on heap
data.p0 = malloc(37U);
// introduce a memory leak
data.str.c[1] =

sizeof data.str.p1;
// invalid free()
free(data.p0);

12 12 / 29

Predator

13 13 / 29

Predator: An Overview

In principle based on separation logic with higher-order list
predicates, but using a graph encoding of sets of heaps.

Verification of low-level system code (in particular, Linux
code) that manipulates dynamic data structures.

Looking for memory safety errors (invalid dereferences,
double free, buffer overrun, memory leaks, ...).

Implemented as an open source gcc plugin:

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

14 14 / 29

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

Symbolic Memory Graphs (SMGs)

In Predator, sets of memory configurations are represented
using symbolic memory graphs (SMGs), together with
a mapping from program variables to nodes of SMGs:

SMGs are oriented graphs with two main types of nodes:
objects (allocated space) and values (addresses, integers).

Objects are further divided into:
regions, i.e., individual blocks of memory,
optional regions, i.e., either a region or null, and
singly-linked and doubly-linked list segments (SLSs/DLSs).

Each object has some size in bytes and a validity flag.
Invalid (i.e., deallocated) objects are kept till somebody
points to them to allow for pointer arithmetic and
comparison over them.

Explicit non-equality constraints on values are tracked.

15 15 / 29

Doubly-Linked List Segments

Each DLS is given by a head, next, and prev field offset.

DLSs can be of length N+ for any N ≥ 0 or of length 0–1.

Nodes of DLSs can point to objects that are:
shared: each node points to the same object,
nested: each node points to a separate copy of the object.

Implemented by tagging objects by their nesting level.

h1 n1 p1

DLS[24B,valid,h1,n1,p1,0+,L0]

h3 n3

SLS[16B,valid,h3,n3,1+,L1]

h2 n2

SLS[16B,valid,h2,n2,0-1,L0]

16 16 / 29

Has-Value Edges of SMGs

Has-value edges lead from objects to values and are labelled by:

the field offset, i.e., the offset of a value in an object, and

the type of the value.
Due to reinterpretation, values of more types can be stored
at the same offset.

hof nof pof

DLS[256B,valid,hof,nof,pof,0+,L0]

(nof,list_head*)
(pof,list_head*)

(pof+8,char[128]) (pof+8,list_head*)

0

17 17 / 29

Points-to Edges of SMGs

Points-to edges lead from values (addresses) to objects and
are labelled by

the target offset and

the target specifier which for a list segment says whether
the pointer points to:

the first node,

the last node, or

each node (for edges going from nested objects).

DLS

a1 a2

hfo nfo pfo hfo2

(hfo2,all)

(hfo,fst) (hfo,lst)

18 18 / 29

An SMG for Linux cDLLs of cDLLs

DLS0head

a1

DLS1

next
prev

a0

a2

hfo nfo pfo

hfo2

(hfo2,all)

(hfo,fst)

(hfo,lst)

(pfo,ptr)

(nfo, ptr)

19 19 / 29

Data Reinterpretation

Upon reading: a field with a given offset and type either
exists, or an attempt to synthesise if from other fields is done.
Upon writing: a field with a given offset and type is written,
overlapping fields are adjusted or removed.
Currently, for nullified/undefined fields of different size only.

// Allocating a nullified block and writing to it.
char *buffer = calloc(1, 64);
void **ptr1 = buffer + 30; *ptr1 = buffer;
void **ptr2 = buffer + 32; *ptr2 = buffer;

0 write
0

0
write

0

0

?

20 20 / 29

Join Operator: The Main Idea

Traverses two SMGs and tries to join
simultaneously encountered objects.

Regions with the same size, level, validity,
and the same defined address fields are
joint using reinterpretation.

DLSs can be joint with regions or DLSs
under the same conditions as above +
they must have the same head, next,
and prev offsets (likewise for SLSs).

The length constraint has to be adjusted.

If the above fails, try to insert an SLS/DLS
of length 0+ or 0–1 into one of the heaps.

Keep only shared non-equality constraints.

2+ 1+ 1+

1+

1+

0+

1+

21 21 / 29

Abstraction: The Main Idea

Based on collapsing uninterrupted sequences of objects
into SLSs or DLSs.

Starts by identifying sequences of valid objects that
have the same size, level, and defined address fields and
are singly / doubly-linked through fields at the same offset.
Can be refined by also considering C-types of the objects
(if available).

Uses join on the sub-heaps of such nodes to see whether
their sub-heaps are compatible too.

Distinguishes cases of shared and private sub-heaps.

0+

0+

0+2+

22 22 / 29

Controlling the Abstraction (1)

There may be more sequences that can be collapsed.

We select among them according to their cost given by the
loss of precision they generate.

Three different costs of joining objects are distinguished:
0 Joining equal objects:

Equal sub-heaps, same constraints on non-address and
undefined address fields (via reinterpretation).

1 One object semantically covers the other:
It has a more general sub-SMG, less constrained
non-address and undefined address fields.

0+

0

2+
??=

?

1+
??

2 None of the objects covers the other.

23 23 / 29

Controlling the Abstraction (2)

For each object, find the maximal collapsing sequences
(i.e., sequences which cannot be further extended).

For the smallest cost for which one can collapse
a sequence of at least some pre-defined minimum length,
choose one of the longest sequences for that cost.

Repeat till some sequence can be collapsed.

24 24 / 29

Entailment Checking

The join of SMGs is again used:

It is checked that whenever non-equal objects are joint,
less general objects always appear in the SMG to be entailed.

1+1+ 1+0+

0+

25 25 / 29

Predator: Case Studies (1)

More than 256 case studies in total.

Programs dealing with various kinds of lists (Linux lists,
hierarchically nested lists, ...).

Concentrating on typical constructions of using lists.

Considering various typical bugs that appear in more
complex lists (such as Linux lists).

Correctness of pointer manipulation in various sorting
algorithms (Insert-Sort, Bubble-Sort, Merge-Sort).

We can also successfully handle the driver code snippets
available with Slayer.

Tried one of the drivers checked by Invader.

Found a bug caused by the test harness used, which is
related to Invader not tracking the size of blocks.

26 26 / 29

Predator: Case Studies (2)

Verification of selected features of the following systems:

The memory allocator from Netscape Portable Runtime
(NSPR).

One size of the arenas for user allocation.

Allocation of blocks not exceeding the arena size for now.

Logical Volume Manager (lvm2).

The (so far quite restricted) test harness uses doubly-linked
lists instead of hash tables, which we do not support yet.

27 27 / 29

Predator: Future Work

Further improve the support of interval-sized blocks and
pointers with interval-defined targets.

Allow joining of blocks of different size.

Allow a richer set of program statements on interval-defined
pointers.

Add more complex constraints on the intervals.

...

Support for additional shape predicates:

trees,

array segments,

...

Support for non-pointer data (mainly integers) stored in the
data structures.

28 28 / 29

Related Tools

Many tools for verification of programs with dynamic linked data
structures are currently under development. The closest to
Predator are probably the following ones:

Space Invader: pioneering tool based on separation logic
(East London Massive: C. Calcagno, D. Distefano,
P. O’Hearn, H. Yang).

Slayer: a successor of Invador from Microsoft Research
(J. Berdine, S. Ishtiaq, B. Cook).

Forester: based on forest automata combining tree
automata and separation (J. Šimáček, L. Holík,
A. Rogalewicz, P. Habermehl, T. Vojnar).

29 29 / 29

