Verification of Low-Level List Manipulation

(work in progress)

Kamil Dudka'? Petr Peringer' Tomas Vojnar'

TFIT, Brno University of Technology, Czech Republic

2Red Hat Czech, Brno, Czech Republic

CP-meets-CAYV, June 28, 2012

Low-level Memory Manipulation

J

77 1729

Doubly-Linked Lists: Textbook Style

custom_node custom_node

F— bt
P R

struct custom_node {
t_data dataj;
struct custom_node *next;
struct custom_node xprev;
}i

<Y 2729

Doubly-Linked Lists in Linux

@ Cyclic, linked through pointers pointing inside list nodes.
@ Pointer arithmetic used to get to the boundary of the nodes.
@ Non-uniform: one node is missing the custom envelope.

custom node custom_node

list head list head list_head

|next= |next= ------- > next
|7 I Prev | I prev | 1._|

A 4

A 4

r Y
A

struct list_head { struct custom_node {
struct list_head xnext; t_data data;
struct list_head x*prev; struct list_head head;

}i }i

. 3/29

Linux Lists: Optimised for Hash Tables

@ Using pointers to pointers to save 8 bytes (for 64b
addressing) in the head nodes stored in hash tables.

custom_node custom_node
hlist head hlist node hlist node
first > | next I ------- > | next I J_
I pprev | _ I pprev |
struct hlist_node { struct custom_node {
struct hlist_node #*next; t_data data;
struct hlist_node xxpprev; struct hlist_node node;

bi }i

<Y 4729

Linux Lists: Traversal

@ ... as seen by the programmer:
list_for_each_entry(pos, list, head)
printf (" %d", pos->value);

@ ... as seen by the compiler:

for (pos = ((typeof (xpos) =) ((char =) (list->next)
—(unsigned long) (& ((typeof (xpos) =)0)->head)));
&pos—->head != list;
pos = ((typeof (¥pos) x) ((char x) (pos—>head.next)

- (unsigned long) (& ((typeof (xpos) =)0)->head))))
{
printf (" %d", pos->value);

}

@ ... as seen by the analyser (assuming 64b addressing):

for (pos = (char x)list->next - 8;
&pos—->head != list;
pos = (char *)pos—->head.next - 8)

printf (" %d", pos->value);

N

s 5/29

Linux Lists: End of the Traversal

@ Correct use of pointers pointing outside of allocated memory:

&pos—->head != list;
pos
l custom_node custom_node
list
* list_head list_head list_head
> | next I > | next I ------- > | next I
prev < I prev | P I I prev | 4__|

Tracking the Block Size

@ When not tracking block sizes, many errors may be missed:

typedef struct _DEVICE_EXTENSION ({

PDEVICE_OBJECT PortDeviceObject;
//

LIST_ENTRY CromData;

//

} DEVICE_EXTENSION, *xPDEVICE_EXTENSION;
PDEVICE_EXTENSION devExt = (PDEVICE_EXTENSION)

malloc (sizeof (PDEVICE_EXTENSION)) ;
InitializeListHead (&devExt—>CromData) ;

|&devExt—>CromDataF——4h

s 7129

Tracking Nullified Blocks

@ Large chunks of memory are often nullified at once, their
fields are gradually used, the rest must stay null.

struct list_head {
struct list_head =next;
struct list_head xprev;

}i

struct list_head xhead = calloc(1U, sizeof xhead);

list head

=l
==

i
N, 8/29

Alignment of Pointers

@ Alignment of pointers implies a need to deal with pointers
whose target is given by an interval of addresses:

aligned = ((unsigned)base + mask) & ~mask;

| base I = maskzZN—‘l, N>0

A 0 < A < mask

e.g. alignment on multiples of 8

mask = 0111 =23 _1
base = 0001
aligned = 1000

Pointers Arriving to Different Offsets

@ Intervals of addresses arise also when joining blocks of
memory with corresponding pointers arriving to different
offsets.

e Common, e.g., when dealing with sub-allocation.

L, ¥ F

@ Moreover, when dealing with lists of blocks of different
sizes, one needs to use blocks of interval size in order to
be able to make the computation terminate.

<3 10/29

Block Operations

@ Low-level code often uses block operations:
memcpy (), memmove (), memset (), strcpy ().

@ Incorrect use of such operations can lead to nasty errors —
e.g., memcpy () and overlapping blocks:

dst src size % 1}
\ l / x4l [2 f B
memcpy (x+1, x, 2); N
1 1 b
2 . mmm l> 2 PRUSE l> 1
< 2 2
1 b 1
2 4-"' EEEm -> 1 . mEm ->
2 |e 1

T 11729

Data Reinterpretation

@ Due to unions, typecasting, or block operations, the same
memory contents can be interpreted in different ways.

union { data.p0 data.str
void *p0; =10)
struct {
char c[2]; < cl1]
void *pl; PO
void *p2;
} str;
} data;
pl

// allocate 37B on heap
data.p0 = malloc (37U);
// introduce a memory leak
data.str.c[1l] =
sizeof data.str.pl;
// invalid free () H :
free (data.p0) ; ferrneeaad

P2

N|
N
/I

12/29

Predator |

77 N7 13/29

Predator: An Overview

@ In principle based on separation logic with higher-order list
predicates, but using a graph encoding of sets of heaps.

@ Verification of low-level system code (in particular, Linux
code) that manipulates dynamic data structures.

@ Looking for memory safety errors (invalid dereferences,
double free, buffer overrun, memory leaks, ...).

@ Implemented as an open source gcc plugin:

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator J

T <Y 14/29

http://www.fit.vutbr.cz/research/groups/verifit/tools/predator

Symbolic Memory Graphs (SMGs)

In Predator, sets of memory configurations are represented
using symbolic memory graphs (SMGs), together with
a mapping from program variables to nodes of SMGs:

@ SMGs are oriented graphs with two main types of nodes:
objects (allocated space) and values (addresses, integers).

@ Objects are further divided into:

@ regions, i.e., individual blocks of memory,
e optional regions, i.e., either a region or null, and
@ singly-linked and doubly-linked list segments (SLSs/DLSs).

@ Each object has some size in bytes and a validity flag.

e Invalid (i.e., deallocated) objects are kept till somebody
points to them to allow for pointer arithmetic and
comparison over them.

@ Explicit non-equality constraints on values are tracked.

<, 15/29

Doubly-Linked List Segments

@ Each DLS is given by a head, next, and prev field offset.
@ DLSs can be of length N+ for any N > 0 or of length 0—1.

@ Nodes of DLSs can point to objects that are:
e shared: each node points to the same object,
e nested: each node points to a separate copy of the object.
@ Implemented by tagging objects by their nesting level.

DLS[24B,valid,h1,n1,p1,0+,L0]

yha ini ip1
—t— >
L

l J
C—1— .
SLS[16B,valid,h2,n2,0-1,L0] SLS[16B,valid,h3,n3,1+,L1]
)
tha in2 Y V “hy ing
———— —

T <3 16/29

Has-Value Edges of SMGs

Has-value edges lead from objects to values and are labelled by:

@ the field offset, i.e., the offset of a value in an object, and

@ the type of the value.

e Due to reinterpretation, values of more types can be stored
at the same offset.

DLS[256B,valid,hof,nof,pof,0+,L0]

Yhof inof tpof

(nof,list_head*)

~_(pofilist_head*) | |—/— J >0
(pof+8,char[128]) (pof+8,list_head*)
Y
0

» 17/29

Points-to Edges of SMGs

Points-to edges lead from values (addresses) to objects and
are labelled by
@ the target offset and

@ the target specifier which for a list segment says whether
the pointer points to:

e the first node,
e the last node, or
e each node (for edges going from nested objects).

DLS

A

éhfo nfo ipfoihfo.

C(hfo,fst): ‘(hfo,lst) o

a1 _— a2

Efx

g(hfoz,all)

Y

N7 18/29

An SMG for Linux cDLLs of cDLLs

ao , DLSo
head (hfo,fst) S— (nfo,ptr)
L?-> nect '% ihfo nfospfoi (hfo,lst)
prev] @ = '

I (pfo,ptr) éthz a2

T(h,fm,al 1)

%

<2 19/29

Data Reinterpretation

@ Upon reading: a field with a given offset and type either
exists, or an attempt to synthesise if from other fields is done.

Upon writing: a field with a given offset and type is written,
overlapping fields are adjusted or removed.

Currently, for nullified/undefined fields of different size only.

// Allocating a nullified block and writing to it.
calloc(1l, 64);

char xbuffer =
void x*ptrl
void x*xptr2

-1 write

==~

buffer + 30; x*ptrl
buffer + 32; *ptr2

0

buffer;
buffer;

0

7

write

<3 20/29

Join Operator: The Main ldea

@ Traverses two SMGs and tries to join
simultaneously encountered objects.

@ Regions with the same size, level, validity,
and the same defined address fields are
joint using reinterpretation.

@ DLSs can be joint with regions or DLSs
under the same conditions as above +

they must have the same head, next,
and prev offsets (likewise for SLSs).

e The length constraint has to be adjusted.
@ If the above fails, try to insert an SLS/DLS
of length 0+ or 0—1 into one of the heaps. N

@ Keep only shared non-equality constraints.

T 21/29

Abstraction: The Main Idea

@ Based on collapsing uninterrupted sequences of objects
into SLSs or DLSs.

@ Starts by identifying sequences of valid objects that
e have the same size, level, and defined address fields and
e are singly / doubly-linked through fields at the same offset.
e Can be refined by also considering C-types of the objects
(if available).

@ Uses join on the sub-heaps of such nodes to see whether
their sub-heaps are compatible too.
e Distinguishes cases of shared and private sub-heaps.

Y 22/29

Controlling the Abstraction (1)

@ There may be more sequences that can be collapsed.

e We select among them according to their cost given by the
loss of precision they generate.

@ Three different costs of joining objects are distinguished:

@ Joining equal objects:
@ Equal sub-heaps, same constraints on non-address and
undefined address fields (via reinterpretation).
@ One object semantically covers the other:

@ It has a more general sub-SMG, less constrained
non-address and undefined address fields.

:

2+ 0+ 1+
=00 Ao
@ None of the objects covers the other.

"~ 23/29

Controlling the Abstraction (2)

@ For each object, find the maximal collapsing sequences
(i.e., sequences which cannot be further extended).

@ For the smallest cost for which one can collapse
a sequence of at least some pre-defined minimum length,
choose one of the longest sequences for that cost.

@ Repeat till some sequence can be collapsed.

Y 24729

Entailment Checking

@ The join of SMGs is again used:

e Itis checked that whenever non-equal objects are joint,
less general objects always appear in the SMG to be entailed.

]]
i E
1

<, 25/29

Predator: Case Studies (1)

@ More than 256 case studies in total.

@ Programs dealing with various kinds of lists (Linux lists,
hierarchically nested lists, ...).

e Concentrating on typical constructions of using lists.

e Considering various typical bugs that appear in more
complex lists (such as Linux lists).

@ Correctness of pointer manipulation in various sorting
algorithms (Insert-Sort, Bubble-Sort, Merge-Sort).

@ We can also successfully handle the driver code snippets
available with Slayer.

@ Tried one of the drivers checked by Invader.

e Found a bug caused by the test harness used, which is
related to Invader not tracking the size of blocks.

v <3 26/29

Predator: Case Studies (2)

Verification of selected features of the following systems:

@ The memory allocator from Netscape Portable Runtime
(NSPR).

@ One size of the arenas for user allocation.
e Allocation of blocks not exceeding the arena size for now.

@ Logical Volume Manager (lvm2).

e The (so far quite restricted) test harness uses doubly-linked
lists instead of hash tables, which we do not support yet.

7, 27129

Predator: Future Work

@ Further improve the support of interval-sized blocks and
pointers with interval-defined targets.

e Allow joining of blocks of different size.

e Allow a richer set of program statements on interval-defined
pointers.

e Add more complex constraints on the intervals.
o ...
@ Support for additional shape predicates:
o trees,
@ array segments,
o ...

@ Support for non-pointer data (mainly integers) stored in the
data structures.

7 28/29

Related Tools

Many tools for verification of programs with dynamic linked data
structures are currently under development. The closest to
Predator are probably the following ones:

@ Space Invader: pioneering tool based on separation logic
(East London Massive: C. Calcagno, D. Distefano,
P. O'Hearn, H. Yang).

@ Slayer: a successor of Invador from Microsoft Research
(J. Berdine, S. Ishtiaq, B. Cook).

@ Forester: based on forest automata combining tree
automata and separation (J. Simacek, L. Holik,
A. Rogalewicz, P. Habermehl, T. Vojnar).

{2 29/29

