
Synthesis of Quantized Feedback Control Software 
For Discrete Time Linear Hybrid Systems

CP Meets CAV, Turunç, Turkey, 25-29 June 2012

Enrico Tronci 
Dipartimento di Informatica – Sapienza University of Rome

Via Salaria 113, 00198 Roma  –  Italy  -  tronci@di.uniroma1.it

Joint Work with: Federico Mari, Igor Melatti, Ivano Salvo



Enrico Tronci 2

Our Focus: Control Software

Plant
(Hardware)

Controller
(Software)

DA

AD

Closed Loop System

E
xam

ples  of   P
L

A
N

T
S



Enrico Tronci 3

 Synthesis Problem 
Closed_Loop_System() 
every T seconds do      // T = Sampling Time

Read quantized plant output x from sensors;     // Acquire x = AD(y)
  if (!Controllable_Region(x))   // Fault Detection
         then Exception: start fault Isolation and Recovery (FDIR);
                    else // Nominal case: compute command u to send to actuator
                              u = Control_Law(x); 
                          Send command u to plant;
                 endif; od

Remark: Control Software WCET <= Sampling Time T 

Closed Loop Specifications: I = desired controllable region, G = goal region   (G ⊆ I):
–  Liveness: Any computation path starting from I eventually reaches G 
–  Safety: All states reachable from I meet given safety constraints 

Synthesis Problem: Find Control Software such that: 
–   I ⊆ {x | Controllable_Region (x)}
–  Closed Loop Specifications are met.

Control Software = Controllable_Region + Control_Law 
Plant

(Hardware)
Control

Software
DA

AD
x

u

y



Enrico Tronci 4

Current Control Software Design Approach

Control Law  = Functional Requirements for Control_Law() software
+ Software Desired WCET <= Sampling Time (T)

Control Software Design + Implementation

Evaluate Closed Loop System Implementation 
If it satisfies Specs, OK else revise Control Law and/or Control Software

Closed Loop System Specifications

Plug and Pray
Hardware in the Loop

Simulation
Design Iteration 



Enrico Tronci 5

What Could Possibly Go Wrong ?

Control Software Correctness wrt closed loop specifications typically established 
using (hardware in the loop) simulation. 
Problem: Same problem as above. 

Control Software Performance  Control systems are Hard Real Time Systems. Thus 
it must hold: Control Software WCET > Sampling Time (T).  Checked at posteriori 
(after software design). If it fails redesign of the control software and/or of the control 
law (to simplify computation) is needed.

Design space exploration difficult, because, although there exist many control laws 
meeting the given closed loop specs, only one control law is provided to the software 
designer. This limits a priori the software design space (e.g., to save on RAM, CPU, 
Energy)  

Control Law correctness wrt closed loop specifications via simulation 
Controllable region and safety properties established by simulation. 
Problem: time consuming,  no formal guarantee about absence of errors.



Enrico Tronci 6

Model Based Control Software Design 
Formal Specifications for Closed Loop System (CLS) =

Plant Model (DTHS in our setting) + Set of Goal States (G) + 

Desired Controllable Region I (G ⊆ I) + AD/DA Characteristic (bits) + 

Sampling Time (T) + Desired Robustness

Control Software K such that: 

– K is correct by construction (AD/DA OK, no arithmetical overflows, etc),

– K meets robustness requirements

– K meets closed loop system specifications 

– WCET of K = Time_IFTE*State_bits*Actuators_Bits    

(check if WCET < T even BEFORE computing K)

Quantized Control Software Synthesizer (QKS)



Enrico Tronci 7

The World Seen From the Software Side

Nondeterministic Finite State Machine (FSM).
States: 2b

Actions = outgoing transitions from each state: 2k

Nondeterminism stem from quantization.

Modeling quantization as Stochastic Noise not suited 
here, since we want to certify correctness under any 
admissible scenario.

Plant
(+ Environment)

Controller
(Software)

DA

AD

k bits

b bits

Controller should work 
notwithstanding nondeterminism.  

Increasing nondeterminism 
increases robustness, but decreases 
our chances of finding a controller.

Decreasing nondeterminism 
decreases robustness, but increases 
chances of finding a controller.



Enrico Tronci 8

Outline  

Compute FSM M modeling plant H as seen from the Control 
Software because of quantization. To increase our chances of 
finding a solution, M should be as deterministic as possible 
(Control Abstraction).

Compute Control Software K for M. Show that using the given 
AD/DA conversion, K also works on H.

Experimental results on interesting and challenging example: 
the Buck DC-DC converter.



Enrico Tronci 9

Discrete Time Linear Hybrid Systems (DTLHS)  
Roughly, any hybrid system which dynamics can be described using linear 
differential equation can  be modeled as a DTLHS (using a suitable sampling time 
T). 

ρ = 0.25 (25%)    (tolerance)
X = [i

L
, v

O
]

U = [u]
Y = [v

D
, v

u
, i

D
, i

u
, q]

→ = if-then



Enrico Tronci 10

Control Problem
GIVEN

a DTLHS H = (X, U, Y, N)
a set I (as AND of linear constraints) of initial states
a set G (as AND of linear constraints) of goal states  (typically G is a subset of I)

FIND

K : AD(X) → AD(U)                                  (AD(U) is just a finite subset of U)

s.t. (by selecting suitable values for control input u) 
K drives any state in I to a state in G within a finite number of steps.



Enrico Tronci 11

Example of Quantized Control Problem
H :   Bounds = {-2.5 <= x <= 2.5, u = 0, 1},   N = {!u → x' = 0.5x,  u → x' = 1.5x}

AD:

K : AD(X) → {0, 1} s.t. K(-1) = K(0) = K(1) = 0 is a controller solving (H, I, G). 

I = {x | -2.5 <= x <= 2.5},       G = {x | -1 <= x <= 1}

K DA H AD
u x

0, 1

-2

-5 -4

-2 -1

-3 -2

-1 0 0 1 1

-1 0 1 2 3

2 2

4 5

10 101
0, 1

0 Nondeterminism



Enrico Tronci 12

How To Compute Controller

In general this problem is undecidable. We present:
- a sufficient condition
- a necessary condition 

Strategy: 
compute the FSM M for plant H as seen from the software 
compute controller for M and use it on H (using AD/DA).



Enrico Tronci 13

Quantization Effects
H :   Bounds = {-2.5 <= x <= 2.5, u = 0, 1},   N = {!u → x' = 0.5x,  u → x' = 1.5x}

FSM M for H as seen from the control software

0-1-2 1 2
1 111

0,1 0,1 0,10,10,1

1 1

0 000

Out of Bounds Out of Bounds 



Enrico Tronci 14

Controlling FSM from Quantization
H :   Bounds = {-2.5 <= x <= 2.5, u = 0, 1},   N = {!u → x' = 0.5x,  u → x' = 1.5x}

FSM M for H as seen from the control software

0-1-2 1 2
1 111

0,1 0,1 0,10,10,1

1 1

0 000

Out of Bounds Out of Bounds 

I = {x | -2.5 <= x <= 2.5},       G = {x | -1 <= x <= 1}

Because of nondeterminism, from M it looks like no controller can guarantee 
driving H to G!

Indeed, because of nondeterminism, even our previously found solution
K : {-1, 0, 1} → {0, 1} s.t. K(-1) = K(0) = K(1) = 0 
is not a solution by looking at M!!!!

Our Approach: Replace M with a suitable FSM with less nondeterminism than M. 



Enrico Tronci 15

0-1-2 1 21 111

0,1 0,1 0,10,10,1

1 1

0 000

Out of 
Bounds 

Out of 
Bounds 

Control Abstraction
H :   
Bounds = {-2.5 <= x <= 2.5, u = 0, 1},   
N = {!u → x' = 0.5x,  u → x' = 1.5x}

AD:

FSM M for H modeling quantization  (MaxCtrAbs)

Control Abstraction Step 1 (restrict to safe transitions)

0-1 111

0,1 0

00

0

0-1 111

0

00

K(-1) = K(0) = K(1) = 0 
is a controller for M2 and thus for H. 

Ctr Abs Step 2 (remove a self-loop if it eventually disappears)   (MinCtrAbs)

M2

M1



Enrico Tronci 16

Main Theorem

Compute AD MinCtrAbs P (FSM)

Control Problem (H, I, G) + Quantization AD

Compute AD MaxCtrAbs W (FSM)

Check if from each quantized
initial state s in AD(I) a quantized goal 
state in AD(G) is reachable in W 
(Weak Controller)
Use [Tronci - ICFEM98].

Check if there exists a restriction 
(Strong Controller) K of P such that 
in KP any path from a state in AD(I) 
(quantized initial state) reaches a state in 
AD(G) (quantized goal state) within a 
finite number of steps.
Use [Cimatti - AIPS98].

K

No: No Solution Yes: Unknown No: Unknown Yes: Solution for H: 
λxu.
K(AD(x),AD(u))

W



Enrico Tronci 17

Strategy

Compute MaxCtrAbs. 
This yields a necessary condition for existence of a solution to (H, I, G).
Computing the Maximum Control Abstraction is decidable and easier than 
Computing MinCtrAbs. Thus, in the following we focus on computing MinCtrAbs.

Compute MinCtrAbs. 
This yields a sufficient condition for existence of a solution to (H, I, G).
Unfortunately computing the Minimum Control Abstraction is undecidable 
(since it entails solving a reachability problem on linear hybrid systems).
We look for a small enough (i.e., deterministic enough) control abstraction. 



Enrico Tronci 18

Main Algorithm (1): Computing Control Abstractions
Input: A quantization AD, a DTLHS  H = (X, U, Y, N), a control problem (H, I,  G).
Output: OBDDs for:  N (transition relation of MinCtrAbs), I (quantization of I), G (quantization of G)
 
minCtrAbs(AD, H, I, G)  {
1:  X = [x

1
, ... x

n
];    X' = [x

1
', ... x

n
'];   U = [u

1
, ... u

r
];  N(X, U, Y, X') = 0;   I(X) = 0;  G(X) = 0; 

2:  forall (s in AD(STATE)) do {                    // MILP (… X …) is feasible = EXISTS X ( … )        
3:             if (s is the quantization of an initial state)  I = I ∪ {s};         // MILP1 add initial state
4:             if (s is the quantization of a goal state)  G = G ∪ {s};          // add goal state
5:             forall (u in AD(CTR)) do {    
6:                   if (action u from a state X with quantization s may lead to an unsafe state) // MILP5 skip unsafe
7: {continue;}    
8:                   if (action u from a state x with quantization s may lead to a selfloop)  //  MILP2  add selfloop 
9:                        {N = N ∪ {(s, u, s)};         // Use OBDDs here as well as in I and G                                           
10:                 forall (i = 1, ...  n)  do {
11:                              m

i
 = min value for u-successor of x

i
 ;             // MILP3 min reach x

12:                              M
i
 = max value for u-successor of x

i
;          // max reach x

13:                  Over_Img(s, u) = ∏
i=1

n [AD(m
i
), AD(M

i
)] ;         // Overapprox of 1-step reachable x 

14:                  forall (s'  in  Over_Img(s, u)) do  {
15:                                if  (s != s'  and s' is a (quantized) u-successor of s)    // MILP4 
17:                                      N = N ∪ {(s, u, s');  }            // add transition  (s, u, s')
                        } }     //  end exploration
18:  return (N, I, G);  }



Enrico Tronci 19

Main Algorithm (2): MILPS
Discrete state s is the quantization of an initial state = 
EXISTS X [I(X) ∧ AD(X) == s]   =   MILP(I(X) ∧ AD(X) == s) is feasible  =  MILP1

Action u from a state X with quantization s may lead to an unsafe state = 
MILP(N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u ∧ X' is not in STATE) is feasible = MILP5

Discrete state s is the quantization of a goal state = 
EXISTS X [G(X) ∧ AD(X) == s]   =   MILP(I(X) ∧ AD(X) == s) is feasible

Action u from a state X with quantization s may lead to a selfloop =   SelfLoop(s, u)  = MILP2

m
i
 = min value for u-successor of x

i
   = 

m
i
 = x

i
'*, where  X'*  = [x

1
'*, ... , x_

n
'*] is a solution to the MILP

(min, x
i
', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u)  =  MILP3

M
i
 = max value for u-successor of x

i
 =

M
i
 = x

i
'*, where  X'*  = [x

1
'*, ... , x

n
'*] is a solution to the MILP 

(max, x
i
', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u)

Discrete state s' is a (quantized) u-successor of s  = 
MILP (N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u ∧ AD(X') = s') is feasible   = MILP4 



Enrico Tronci 20

Main Algorithm (3): Checking Self Loops
SelfLoop(s, u) {

For each real valued state component x
i
, do       //  check gradient of x

i 
  

       let w
i 
be the min elongation of x

i
, that is the solution to 

                          MILP(min,  x
i
' – x

i
, N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u); 

  let W
i 
be the max elongation of x

i
, that is the solution to  

                          MILP(max,  x
i
' – x

i
, N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u);  

If for some  i [(w
i
 !=  0) ∧ (W

i
 != 0) ∧ (w

i
 and W

i 
have the same sign)]

then return 0    // any long enough sequence of u actions will drive 
                         // state component xi outside of AD-1(s)
else return 1     // unable to show that self loop can be eliminated
}



Enrico Tronci 21

Computing a Controller for MinCtrAbs

From OBDDs (N, I, G) we compute symbolically an OBDD K(x, u)  for the  
Strong Controller using the algorithm in [Cimatti – AIPS98]. 

Using the algorithm in [Tronci – ICFEM98] From K we generate a C implementation 
F(x) for K(x, u) s.t. K(x, F(x)) holds for any state x in the controllable region. 
That is, F satisfies the predicate:

∀ x [∃ u K(x,  u)  →  K(x, F(x)) ] 



Enrico Tronci 22

A Glimpse on Control Software Generation
Ctr Software generated from OBDD 
for K.

Software Implementation of Ctr K

char obdd_in_C(char *x)  {  char return_bit = 1;

L_0x53:   if (x[1] == 1) goto L_0x4f;  
                else {return_bit = !return_bit;  goto L_0x52;}

L_0x52:   if (x[2] == 1) goto L_0x4b;  else goto L_1;

L_0x4f:   if (x[2] == 1) goto L_1; else goto L_0x4b;

L_0x4b:   if (x[3] == 1) goto L_1;
                 else {return_bit = !return_bit;  goto L_1;}

L_1:  return return_bit;
}OBDD for Ctr (K)

WCET = A * <size of longest path in K OBDD> * <number of U bits>,   where:  
A = Time to compute an if-then-else and a goto.  Thus:       WCET <= A*X_BITS*U_BITS



Enrico Tronci 23

Example: Buck Converter
Applications:

•Consumer Electronics
•Airplanes.
•Satellites.
•Switching power suppliers 
(off-chip).
•On-chip power suppliers 
for multicore processors 
(energy saving).

PLANT

PWM 
Control Software 

PLANT

iL VO

u

Fuzzy Logic
Neural Networks
........

CONTROLLER



Enrico Tronci 24

Experimental Setting

Parameters:  T = 10-6s, 
L = 2*10-4H,   r

L
 = 0.1 Ohm, 

C = 5*10-5F,    r
C
 = 0.1 Ohm, 

R = 5 ± 25% Ohm,   Vi = 15 ± 25% V, 
Vref = 5 V,  p  = 0.01V (converter precision)

Safety Bounds:  | i
L
| <= 4,  -1 <= v

O
 <= 7,  |i

u
| <= 103,  |i

D
| <= 103, | v

u
|<= 107,  |v

D
| <= 107.

I = {(i
L
, v

O
) |  |i

L
| <= 2,  0 <= v

O
 <= 6.5},        G = {(i

L
, v

O
) |  | i

L
| <= 2, |v

O
 - V

ref  
| <= p}



Enrico Tronci 25

Experimental Results: Ctr Abs + Ctr Software 

Experiments on an Intel 3.0 Ghz Dual Quad Core Linux Pcwith 4GB of RAM

WCET(b=10) = IF_THEN_ELSE_TIME*STATE_BITS*CTR_BITS = 0.5*10-7*20*1 = 10-6

Control Abstraction Controller Synthesis Total CPU

b CPU (s) Arcs MaxLoops LoopFrac CPU OBDD CPU

8 2.50e+03 1.35e+06 2.54e+04 0.00323 0.00e+00 1.07e+02 2.50e+03

9 1.13e+04 7.72e+06 1.87e+04 0.00440 1.00e+02 1.24e+03 1.14e+04

10 6.94e+04 5.14e+07 2.09e+04 0.00781 7.00e+02 2.75e+03 7.01e+04

11 4.08e+05 4.24e+08 2.29e+04 0.01417 5.00e+03 7.00e+03 4.13e+05

Table shows CPU Time (s) needed to compute a near-optimal control law and its C implementation 
(K). All computations run within 200MB RAM.
 Main Alg returns UNK for b=8, SOL for all other cases. Thus we know, on a formal ground, that for 
b=10 our synthesized controller works correctly on the desired set of initial states.

Arcs: Arcs in MinCtrAbs (our close to minimum Control Abstraction)
MaxLoops: Loops in MaxCtrAbs.
LoopFrac: Fraction of self loos in MaxCtrAbs that is also in MinCtrAbs.



Enrico Tronci 26

Experimental Results: MILP in Main Algorithm

State bits State bits

Avg Execution Time (s) for MILP 
problems in Main Alg. 
This is quite small since all MILPs have 
about the same size (plant model).

Number of calls to MILP problems in Main 
Alg. MILP4 most called one.
This is closer to STATE_BITS*CTR_BITS 
than to STATE_BITS2*CTR_BITS. This 
shows effectiveness of Over_Img in main 
Alg.



Enrico Tronci 27

Controllable Regions 
8 bits 9 bits

10 bits 11 bits Don't cares offer optimization opportunities



Enrico Tronci 28

Control Software Performances 
(Hardware in the Loop Simulation)

Transient – 11 bit quantization Ripple – 11 bit quantization
State of the art: ~ 2 ms
Automatic Synthesis: ~ 0.3 ms 

State of the art: ~ 50 mV
Automatic Synthesis: ~ 4 mV 

Bang-bang

Dark Side
Synthesized Control Software size:  about 7K Locs, 
Manually designed control software size (fuzzy logic controller): about 300 Locs



Enrico Tronci 29

Conclusions ... 

Automatic Synthesis of Quantized Feedback Control Software for 
DTLHS is possible. Synthesized software properties:

• Correct-by-construction (e.g., quantization taken into account, 
no arithmetical overflows), 

• Known Controllable Region,

• Robust to variations in plant dynamics

• Guaranteed WCET



Enrico Tronci 30

... and Future Work

Fully Symbolic Approaches (e.g, based on  quantifier elimination)

Methods to reduce size of synthesized control software (e.g., 
exploiting don't cares)

Methods to decrease WCET of synthesized control software (e.g., 
multithread)



Enrico Tronci 31

Thanks



Enrico Tronci 32

Main Algorithm(3): Computing Control Abstractions - 
Input: A quantization AD, a DTLHS  H = (X, U, Y, N), a control problem (H, I,  G).
Output: OBDDs for:  N (transition relation of MinCtrAbs), I (quantization of I), G (quantization of G) 
minCtrAbs(AD, H, I, G)  {
1:  X = [x

1
, ... x

n
];    X' = [x

1
', ... x

n
'];   U = [u

1
, ... u

r
];  N(X, U, Y, X') = 0;   I(X) = 0;  G(X) = 0; 

2:  forall (s in AD(STATE)) do {       // MILP (… X …) is feasible = EXISTS X ( … ) 
3:             if (MILP (I(X) ∧ AD(X) == s) is feasible)  I = I ∪ {s};         // MILP1 add initial state
4:             if (MILP (G(X) ∧ AD(X) = s) is feasible)  G = G ∪ {s};     // add goal state
5:             forall (u in AD(CTR)) do {    
6:                     if (MILP(N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u ∧ 
7:                                        X' is not in STATE) is feasible) {continue;}     // MILP5 skip unsafe 
8:                     if (SelfLoop(s, u)) {N = N ∪ {(s, u, s);   }    //  MILP2  add selfloop
9:                     forall (i = 1, ...  n)  do {
10:                             m

i
 = x

i
'*, where  X'*  = [x

1
'*, ... , x_

n
'*] is a solution to the MILP

11:                                    (min, x
i
', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u);  // MILP3 min reach x

12:                             M
i
 = x

i
'*, where  X'*  = [x

1
'*, ... , x

n
'*] is a solution to the MILP

13:                                     (max, x
i
', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u);  }   // max reach x

14:                   Over_Img(s, u) = ∏
i=1

n [AD(m
i
), AD(M

i
)] ;  // Overapprox of 1-step reachable x 

15:                   forall (s'  in  Over_Img(s, u)) do  {
16:                               if  (s != s'  and (MILP (N(X, U, Y, X') ∧ AD(X) = s ∧ 
17:                                                                AD(U) = u ∧ AD(X') = s') is feasible )    // MILP4 
18:                                    N = N ∪ {(s, u, s');  } } }     // add transition   -  end exploration
19:  return (N, I, G);  }


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

