Synthesis of Quantized Feedback Control Software For Discrete Time Linear Hybrid Systems

Enrico Tronci

Dipartimento di Informatica – Sapienza University of Rome Via Salaria 113, 00198 Roma – Italy - tronci@di.uniroma1.it

Joint Work with: Federico Mari, Igor Melatti, Ivano Salvo

CP Meets CAV, Turunç, Turkey, 25-29 June 2012

DIPARTIMENTO DI INFORMATICA

Our Focus: Control Software

\Box \Join a \blacksquare p l e c o \mapsto P \blacksquare \blacktriangleright $\mathbf{Z}% _{T}=\mathbf{Z}_{T}^{T}$ \blacksquare $\mathbf{\Omega}$

Synthesis Problem

Closed_Loop_System() every T seconds **do** // T = Sampling Time Read quantized plant output x from sensors; // Acquire $x = AD(y)$ **if** (!**Controllable_Region**(x)) // Fault Detection **then** Exception: start fault Isolation and Recovery (FDIR); **else** // Nominal case: compute command u to send to actuator $u =$ **Control_Law** (x) ; Send command u to plant; **endif**; **od**

Remark: Control Software WCET <= Sampling Time T

Closed Loop Specifications: I = desired controllable region, G = goal region (G \subseteq I):

- **Liveness**: Any computation path starting from I eventually reaches G
- **Safety**: All states reachable from I meet given safety constraints
- **Synthesis Problem**: Find **Control Software** such that:
	- I ⊆ {x | **Controllable_Region** (x)}
	- Closed Loop Specifications are met.
		- Enrico Tronci 3

Current Control Software Design Approach

What Could Possibly Go Wrong ?

Control Law correctness wrt **closed loop specifications** via **simulation Controllable region** and **safety properties** established by **simulation**. **Problem**: time consuming, no formal *quarantee* about absence of errors.

Control Software Correctness wrt closed loop specifications typically established using (*hardware in the loop*) **simulation**. **Problem**: Same problem as above.

Control Software Performance Control systems are Hard Real Time Systems. Thus it must hold: **Control Software WCET > Sampling Time (T)**. Checked at posteriori (after software design). If it fails redesign of the control software and/or of the control law (to simplify computation) is needed.

Design space exploration difficult, because, although there exist many control laws meeting the given closed loop specs, **only one control law is provided to the software designer**. This limits *a priori* the software design space (e.g., to save on RAM, CPU, Energy)

Model Based Control Software Design

Formal Specifications for Closed Loop System (CLS) =

Plant Model (DTHS in our setting) + Set of Goal States (G) + Desired Controllable Region I (G \subseteq I) + AD/DA Characteristic (bits) + Sampling Time (T) + Desired Robustness

Quantized Control Software Synthesizer (QKS)

- K is correct by construction (AD/DA OK, no arithmetical overflows, etc),
- K meets robustness requirements
- K meets closed loop system specifications
- WCET of K = Time_IFTE*State_bits*Actuators_Bits

(check if $WCET \leq T$ even BEFORE computing K)

The World Seen From the Software Side

Nondeterministic Finite State Machine (FSM). States: 2^b Actions = outgoing transitions from each state: 2^k Nondeterminism stem from quantization. Modeling quantization as Stochastic Noise not suited here, since we want to certify correctness under *any* admissible scenario. Plant (+ Environment) **Controller** (Software) The Conduction of DA AD k bits b bits Controller should work notwithstanding nondeterminism. **Increasing nondeterminism** increases robustness, but decreases our chances of finding a controller. **Decreasing nondeterminism** decreases robustness, but increases chances of finding a controller.

Outline

Compute FSM M modeling plant H as seen from the Control Software because of quantization. To increase our chances of finding a solution, M should be as deterministic as possible (*Control Abstraction*).

Compute Control Software K for M. Show that using the given AD/DA conversion, K also works on H.

Experimental results on interesting and challenging example: the Buck DC-DC converter.

Discrete Time Linear Hybrid Systems (DTLHS)

Roughly, any hybrid system which dynamics can be described using linear differential equation can be modeled as a DTLHS (using a suitable sampling time T).

$$
N(X, U, Y, X') = ((iL' = (1 + Ta1,1)iL + Ta1,2vO+TbLvD)
$$

\n
$$
\wedge (vO' = Ta2,1iL + (1 + Ta2,2)vO + Tb2,1vD)
$$

\n
$$
\wedge (vu - vD \le (1 + \rho)Vi) \wedge (vu - vD \ge (1 - \rho)Vi)
$$

\n
$$
\wedge (iD = iL - iu) \wedge (q \rightarrow vD = 0) \wedge (q \rightarrow iD \ge 0)
$$

\n
$$
\wedge (\bar{q} \rightarrow vD \le 0) \wedge (\bar{q} \rightarrow vD = Roff i1iD)
$$

\n
$$
\wedge (u \rightarrow vu = 0) \wedge (\bar{u} \rightarrow vu = Roff i1iu))
$$

$$
ρ = 0.25 (25%) (tolerance)X = [iL, vo]U = [u]Y = [vD, vu, iD, iu, q]
$$

Control Problem

GIVEN

a DTLHS $H = (X, U, Y, N)$ a set I (as AND of linear constraints) of initial states a set G (as AND of linear constraints) of goal states (typically G is a subset of I)

FIND

 $K: AD(X) \rightarrow AD(U)$ (AD(U) is just a finite subset of U)

s.t. (by selecting suitable values for control input u) K drives any state in I to a state in G within a finite number of steps.

Example of Quantized Control Problem

H : Bounds = {-2.5 <= x <= 2.5, u = 0, 1}, N = {!u \rightarrow x' = 0.5x, u \rightarrow x' = 1.5x}

How To Compute Controller

In general this problem is undecidable. We present:

- a sufficient condition
- a necessary condition

Strategy:

compute the FSM M for plant H as seen from the software compute controller for M and use it on H (using AD/DA).

Quantization Effects

H : Bounds = {-2.5 <= x <= 2.5, u = 0, 1}, N = {!u \rightarrow x' = 0.5x, u \rightarrow x' = 1.5x}

FSM M for H as seen from the control software

Controlling FSM from Quantization

H : Bounds = $\{-2.5 \le x \le 2.5, u = 0, 1\}$, $N = \{|u \to x' = 0.5x, u \to x' = 1.5x\}$ $I = \{x \mid -2.5 \le x \le 2.5\}, \qquad G = \{x \mid -1 \le x \le 1\}$

Because of *nondeterminism*, from M it looks like **no controller** can guarantee driving H to G!

Indeed, because of *nondeterminism*, even our previously found solution $K: \{-1, 0, 1\} \rightarrow \{0, 1\}$ s.t. $K(-1) = K(0) = K(1) = 0$ is not a solution by looking at M!!!!

Our Approach: Replace M with a suitable FSM with less nondeterminism than M.

Enrico Tronci 14 -2 -1 -1 -1 0 -1 1 -1 $1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$ $0,1$ $(\begin{array}{ccc} 0,1 & \hspace{1.1cm} 0,1 & \hspace{1.1cm} 0,1 \end{array})$ $(\begin{array}{ccc} 0,1 & \hspace{1.1cm} 0,1 \end{array})$ $(\begin{array}{ccc} 0,1 & \hspace{1.1cm} 0,1 \end{array})$ 1 1 $\begin{array}{|c|c|c|}\hline 0 & 0 \\ \hline \end{array}$ $\overline{0}$ 0 Out of Bounds $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ $(0,1)$ Out of Bounds

FSM M for H as seen from the control software

Main Theorem

Control Problem (H, I, G) + Quantization AD

Compute AD **MaxCtrAbs** W (FSM)

Check if **from each** quantized initial state s in AD(I) a quantized goal state in AD(G) is reachable in W (**Weak Controller**) Use [Tronci - ICFEM98].

Compute AD **MinCtrAbs** P (FSM)

Check if there exists a restriction (**Strong Controller**) K of P such that in KP any path from a state in AD(I) (quantized initial state) reaches a state in AD(G) (quantized goal state) within a finite number of steps. Use [Cimatti - AIPS98].

Strategy

Compute **MinCtrAbs**.

This yields a **sufficient condition** for existence of a solution to (H, I, G). Unfortunately computing the *Minimum Control Abstraction* is undecidable (since it entails solving a reachability problem on linear hybrid systems). We look for a *small enough* (i.e., *deterministic enough*) control abstraction.

Compute **MaxCtrAbs**.

This yields a **necessary condition** for existence of a solution to (H, I, G). Computing the *Maximum Control Abstraction* is decidable and easier than Computing MinCtrAbs. Thus, in the following we focus on computing MinCtrAbs.

Main Algorithm (1): Computing Control Abstractions

Input: A quantization AD, a DTLHS $H = (X, U, Y, N)$, a control problem (H, I, G). **Output**: OBDDs for: **N** (transition relation of MinCtrAbs), **I** (quantization of I), **G** (quantization of G)

Main Algorithm (2): MILPS

Discrete state s is the quantization of an initial state = EXISTS X $[I(X) \wedge AD(X) == s] = MILP(I(X) \wedge AD(X) == s)$ is feasible = MILP1

Discrete state s is the quantization of a goal state $=$ EXISTS X $[G(X) \wedge AD(X) == s] = MILP(I(X) \wedge AD(X) == s)$ is feasible

Action u from a state X with quantization s may lead to an unsafe state $=$ MILP(N(X, U, Y, X') \land AD(X) = s \land AD(U) = u \land X' is not in STATE) is feasible = MILP5

Action u from a state X with quantization s may lead to a selfloop $=$ SelfLoop(s, u) = MILP2

 m_i = min value for u-successor of x_i = $m_i = x_i^{**}$, where $X^{**} = [x_1^{**}, ..., x_{n_i}^{**}]$ is a solution to the MILP $(\min, x'_i, N(X, U, Y, X') \wedge AD(X) = s \wedge AD(U) = u) = MLP3$

 M_i = max value for u-successor of x_i = $M_i = x_i^{**}$, where $X^{**} = [x_i^{**}, ..., x_n^{**}]$ is a solution to the MILP $(max, x_i', N(X, U, Y, X') \wedge AD(X) = s \wedge AD(U) = u)$

Discrete state s' is a (quantized) u-successor of $s =$ MILP (N(X, U, Y, X') \land AD(X) = s \land AD(U) = u \land AD(X') = s') is feasible = MILP4

Main Algorithm (3): Checking Self Loops

SelfLoop(s, u) {

For each real valued state component x_i , **do** \blacksquare // check gradient of x_i let w_i be the min elongation of x_i , that is the solution to MILP(min, $x_i' - x_i$, N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u); let W_i be the max elongation of x_i , that is the solution to MILP(max, $x_i' - x_i$, N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u);

If for some i $[(w_i := 0) \wedge (W_i := 0) \wedge (w_i \text{ and } W_i \text{ have the same sign})]$ **then** return 0 // any *long enough* sequence of u actions will drive // state component x_i outside of $AD^{-1}(s)$ **else** return 1 // unable to show that self loop can be eliminated }

Computing a Controller for MinCtrAbs

From OBDDs (N, I, G) we compute symbolically an OBDD $K(x, u)$ for the Strong Controller using the algorithm in [Cimatti – AIPS98].

Using the algorithm in [Tronci – ICFEM98] From K we generate a C implementation $F(x)$ for $K(x, u)$ s.t. $K(x, F(x))$ holds for any state x in the controllable region. That is, F satisfies the predicate:

 $\forall x [\exists u K(x, u) \rightarrow K(x, F(x))]$

A Glimpse on Control Software Generation

Ctr Software generated from OBDD for K.

char obdd_in_C(char $*_{x}$) { char return_bit = 1;

L 0x53: if $(x[1] == 1)$ goto L 0x4f; else {return_bit = !return_bit; goto L_0x52;}

L_0x52: if $(x[2] == 1)$ goto L_0x4b; else goto L_1;

L_0x4f: if $(x[2] == 1)$ goto L_1; else goto L_0x4b;

L $0x4b$: if $(x[3] == 1)$ goto L 1; else { $return_bit = !return_bit$; goto L_1 ;}

L 1: return return bit;

Software Implementation of Ctr K

WCET = $A * <$ size of longest path in K OBDD> $* <$ number of U bits>, where: $A =$ Time to compute an if-then-else and a goto. Thus: WCET \leq A*X_BITS*U_BITS

Example: Buck Converter

Applications:

•Consumer Electronics

•Airplanes.

•Satellites.

•Switching power suppliers (off-chip).

•On-chip power suppliers for multicore processors (energy saving).

Experimental Setting

Parameters: $T = 10^{-6}$ s, $L = 2*10⁻⁴H$, $r_L = 0.1 Ohm$, $C = 5*10^{-5}F$, $r_c = 0.1$ Ohm, $R = 5 \pm 25\%$ Ohm, $Vi = 15 \pm 25\%$ V, Vref = $5 V$, $p = 0.01 V$ (converter precision)

Safety Bounds: $|i_L| \leq 4$, $-1 \leq v_0 \leq 7$, $|i_u| \leq 10^3$, $|i_D| \leq 10^3$, $|v_u| \leq 10^7$, $|v_D| \leq 10^{7}$.

 $I = \{ (i_L, v_0) | |i_L| \leq 2, 0 \leq v_0 \leq 6.5 \}, \qquad G = \{ (i_L, v_0) | |i_L| \leq 2, |v_0 - V_{ref}| \leq p \}$

Experimental Results: Ctr Abs + Ctr Software

Table shows CPU Time (s) needed to compute a near-optimal control law and its C implementation (K). All computations run within 200MB RAM.

Main Alg returns UNK for b=8, SOL for all other cases. Thus we know, on a formal ground, that for b=10 our synthesized controller works correctly on the desired set of initial states.

Arcs: Arcs in MinCtrAbs (our *close to minimum* Control Abstraction) **MaxLoops**: Loops in MaxCtrAbs. **LoopFrac**: Fraction of self loos in MaxCtrAbs that is also in MinCtrAbs.

Experiments on an Intel 3.0 Ghz Dual Quad Core Linux Pcwith 4GB of RAM

Enrico Tronci 25 WCET(b=10) = IF THEN ELSE TIME*STATE BITS*CTR BITS = $0.5*10⁻⁷*20*1 = 10⁻⁶$

Experimental Results: MILP in Main Algorithm

Avg Execution Time (s) for MILP problems in Main Alg. This is quite small since all MILPs have about the same size (plant model).

Number of calls to MILP problems in Main Alg. MILP4 most called one.

This is closer to STATE_BITS*CTR_BITS than to STATE_BITS^{2*}CTR_BITS. This shows effectiveness of Over_Img in main Alg.

Controllable Regions

Control Software Performances (Hardware in the Loop Simulation)

Dark Side

Synthesized Control Software size: about 7K Locs, Manually designed control software size (fuzzy logic controller): about 300 Locs

Conclusions ...

Automatic Synthesis of **Quantized** Feedback Control Software for DTLHS is possible. Synthesized software properties:

- **Correct-by-construction** (e.g., quantization taken into account, no arithmetical overflows),
- Known **Controllable Region**,
- **Robust** to variations in plant dynamics
- Guaranteed **WCET**

... and Future Work

Fully Symbolic Approaches (e.g, based on quantifier elimination)

Methods to reduce size of synthesized control software (e.g., exploiting don't cares)

Methods to decrease WCET of synthesized control software (e.g., multithread)

Thanks

Main Algorithm(3): Computing Control Abstractions -

Input: A quantization AD, a DTLHS $H = (X, U, Y, N)$, a control problem (H, I, G) . **Output**: OBDDs for: **N** (transition relation of MinCtrAbs), **I** (quantization of I), **G** (quantization of G) **minCtrAbs**(AD, H, I, G) { 1: $X = [x_1, ..., x_n]$; $X' = [x_1', ..., x_n]$; $U = [u_1, ..., u_r]$; $N(X, U, Y, X') = 0$; $I(X) = 0$; $G(X) = 0$; 2: **forall** (s in AD(STATE)) **do** { \mathcal{N} MILP (... X ...) is feasible = EXISTS X (...) 3: **if** (MILP (I(X) \land AD(X) == s) is feasible) $I = I \cup \{s\}$; // MILP1 add initial state 4: **if** (MILP $(G(X) \wedge AD(X) = s)$ is feasible) $G = G \cup \{s\}$; // add goal state 5: **forall** (u in AD(CTR)) **do** { 6: **if** (MILP(N(X, U, Y, X') \land AD(X) = s \land AD(U) = u \land 7: X' is not in STATE) is feasible) {continue;} // MILP5 skip unsafe 8: **if** (SelfLoop(s, u)) $\{N = N \cup \{(s, u, s)\}\}$ // MILP2 add selfloop 9: **forall** (i = 1, ... n) **do** { 10: $m_i = x_i^{**}$, where $X^{*} = [x_1^{**}, ..., x_{n}]$ is a solution to the MILP 11: (min, x_i', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u); // MILP3 min reach x 12: $M_i = x_i^{**}$, where $X^{*} = [x_i^{**}, ..., x_n^{**}]$ is a solution to the MILP 13: (max, x_i', N(X, U, Y, X') ∧ AD(X) = s ∧ AD(U) = u); } // max reach x 14: Over_Img(s, u) = $\prod_{i=1}^{n}$ [AD(m_i), AD(M_i)]; // Overapprox of 1-step reachable x 15: **forall** (s' in Over_Img(s, u)) **do** { 16: **if** $(s != s'$ and $(MILP (N(X, U, Y, X') \wedge AD(X) = s \wedge$ 17: $AD(U) = u \wedge AD(X') = s'$ is feasible) // MILP4 18: **N** = **N** ∪ {(s, u, s'); } } // add transition - end exploration 19: return (**N**, **I**, **G**); }