
Local Bit-Precise Reasoning in Program Analysis

with applications to verification

Harald Søndergaard

Melbourne

ITAP, 28 June 2012

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 1 / 33

The context

Building tools for the analysis and verification of LLVM.

Planning to use whatever tools and tricks available, but starting from
abstract interpretation.

Graeme Gange, Andy King (UK), Jorge Navas, Peter Schachte,
Harald Søndergaard, Peter Stuckey.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 2 / 33

The setting

Analysing control flow graphs.

SSA.

Fixed-precision integers.

Bit-manipulating instructions.

Limited signedness information available.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 3 / 33

Invariant finding by abstract interpretation

Constant
propagation

v = k

Intervals
v ∈ [k1, k2]

Arithmetic
congruences

v ≡m k

Affine
equations

∑n

i=1 aivi = k

Convex
polyhedra

∑n

i=1 aivi ≤ k

Affine
congruences

∑n

i=1 aivi ≡m k

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 4 / 33

Issue (precision loss): Non-linear assignments

Most analyses do not deal with non-linear constructs, such as
multiplication and bit-string operations.

Relational analysis of

z := x × y ;

usually modelled as analysis of

z := ∗;

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 5 / 33

Issue (precision loss): Lack of compositionality

The usual trick for swapping x and y in situ:

x := x ⊕ y ;
y := x ⊕ y ;
x := x ⊕ y ;

If we do, say, interval analysis, processing statement-by-statement,
we lose, compared to

x , y := y , x ;

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 6 / 33

Issue: Respect the modular-arithmetic semantics

Relying on the classical analyses will not do.

for (x := 42; x < 9999999999; x++)
if (x = 0) error();

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 7 / 33

Issue (precision loss): No signedness information

Suppose we know that x is 0110 and also that y is in the interval
[0001, 0011].

z := x + y ;

If the variables are unsigned, z must be in [0111, 1001].

If we assume they are signed, we lose all information about z .

Moreover, we cannot simply adapt the usual interval-analysis rule for
multiplication.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 8 / 33

Solution: Local bit-precise reasoning

Summarise each basic block bit-precisely.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 9 / 33

Solution: Local bit-precise reasoning

Summarise each basic block bit-precisely.

0
�

�

�

�
-y := x

1
�

�

�

�
-c := 0

�

?
2

�

�

�

�
-

� -

assume y 6= 0

5
�

�

�

�
assume y = 0

3
�

�

�

�
-y := y&(y − 1)

4
�

�

�

�

c := c + 1 �

(Wegner’s pop count.)

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 9 / 33

Numeric/bit-twiddling assertions

Sometimes we wish to establish a bit-twiddling result that is best
expressed numerically.

ℓ0: c := 0; y := x ;
ℓ1: while (y 6= 0)

y := y & (y − 1);
c := c + 1;

ℓ2: skip

At ℓ2 we have c =
∑

xi . Or, assuming w = 8, still in conjunctive
form:

ϕ : (
7

∑

i=0

xi ≡256 c0 + 2c1 + 4c2 + 8c3) ∧
7

∧

i=4

ci ≡256 0

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 10 / 33

Using affine congruence equations

Affinity with arithmetic used in mainstream programming languages
(overflow).

Affinity with bit-level analysis.

Computationally “manageable”.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 11 / 33

The ascending chain property

Some abstract domains require special attention to guarantee
termination of analysis.

0 1 2 3
0

1

2

3

0 ≤ x ∧ x = y

y = x;

while (*) y++;

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 13 / 33

The ascending chain property

Some abstract domains require special attention to guarantee
termination of analysis.

0 1 2 3
0

1

2

3

0 ≤ x ∧ x = y

⊔

0 ≤ x ∧ y = x + 1

(convex hull)

y = x;

while (*) y++;

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 15 / 33

The ascending chain property

Assume n program variables, word length w and m = 2w .

The congruence lattice Affn
m (defined later) is a subset of P(Zn

m),
namely the affine sets of vectors.

The cardinality of such a set is always a power of 2.

Hence every strictly increasing chain in the congruence lattice has
length at most wn (Müller-Olm and Seidl).

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 16 / 33

Modular arithmetic equivalences

≡m is the equivalence relation defined by a ≡m b iff b − a = km for
some k ∈ Z. We shall take m = 2w .

≡1

≡2 ≡3

≡4

≡5

≡6

≡7

≡8

≡9≡10

≡11

≡12

≡0

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 17 / 33

Modulo m affine hull

For a given set S of vectors in Z
n
m we want the smallest affine

superset of S .

The (modulo m) affine hull of S ⊆ Z
n
m is defined:

affn
m(S) =

{

~x ∈ Z
n
m

∣

∣

∣

∣

~x1, . . . ,~xℓ ∈ S ∧ λ1, . . . , λℓ ∈ Z ∧
∑

ℓ

i=1 λi ≡m 1 ∧ ~x ≡m

∑

ℓ

i=1 λi~xi

}

Affn
m = {S ⊆ Z

n
m | affn

m(S) = S}

(Affn
m is a Moore family, meet is just intersection.)

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 18 / 33

Affine sets modulo m

A = {〈0, 3〉, 〈1, 5〉}

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

�

�

�

�

�

�

�

�

A

aff2
8(A) = {~v ∈ Z

2
8 | λ1 + λ2 ≡8 1 ∧ ~v ≡8 λ1〈0, 3〉 + λ2〈1, 5〉}

= {~v ∈ Z
2
8 | ~v ≡8 〈k, 3 + 2k〉 ∧ k ∈ Z}

Or, in equational form: 6x + y + 5 ≡8 0.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 19 / 33

Affine sets modulo m

B = {〈0, 2〉, 〈2, 0〉}

Note that
coefficients λ are
integers.

0 1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

�

�

�

�

B

So affn
m(B) is not characterised by the equation x + y + 6 ≡8 0.

Rather we have x + y + 6 ≡8 0 ∧ 4x + 4 ≡8 0 (the second conjunct
says x is odd).

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 20 / 33

Matrix manipulations

The equational form is a convenient way of representing the elements
of the congruence lattice.

A system of equations can be captured in matrix form.

Since Zm is not a field, Gaussian elimination needs to be adapted
with some care.

Legal row operations include:

Scale a row by an odd factor

Add a multiple of one row to another row

Extend the matrix with a multiple of some row

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 21 / 33

Matrix manipulations

Elder et al (SAS’11) identify Howell matrix form as the appropriate
canonical form for systems of congruences modulo 2w .

For affn
m(A) we had the equation 6x + y + 5 ≡8 0, corresponding to

the matrix
(

6 1 5
)

. Howell form requires that leading entries are
multiples of 2, so multiply by 3:

(

2 3 7
)

.

Certain consequences are made explicit. Multiplying by 4, we obtain
additionally

(

2 3 7
0 4 4

)

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 22 / 33

Propositional formulas vs congruence equations

The abstraction map αn
m : P(Bn) → Affn

m is just affn
m.

Concretisation γn
m : Affn

m → P(Bn) is defined: γn
m(S) = S ∩ B

n.

A Galois connection.

The abstraction of ¬x1 ∧ (x2 ⊕ x3) is x1 ≡ 0 ∧ x2 + x3 ≡ 1.

The abstraction of x1 ∧ (x2 ∨ x3) is x1 ≡ 1.

(The last shows loss of information, as (x1, x2, x3) = (1, 0, 0) is not a
solution to the propositional formula.)

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 23 / 33

Flowchart programs: Syntax

Expr ::= X | R | −Expr | Expr bop Expr
Guard ::= true | false | Expr rop Expr | Guard lop Guard
Stmt ::= skip | X := Expr | Stmt; Stmt

with

rop = {=, 6=, <,≤}
bop = {+,−, & , | ,≪ ,≫ } (C style)
lop = {∧,∨}

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 24 / 33

Flowchart programs

A flowchart program is a tuple 〈L, X , ℓ0, T 〉 where L is a set of labels,
X a set of variables, ℓ0 is the start label, and T is a set of transitions.

Each transition is of the form (ℓi , ℓj , g , s), with g a guard and s a
statement.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 25 / 33

Relational semantics, not functional

Usually we start from set of states Σ = X → R and define
E : Expr → Σ → R as a function (expression evaluator) and
S : Stmt → Σ → Σ as a function (a state transformer).

Instead we give a “relational” semantics over a double vocabulary.

Advantages:

We consider programs to take input via program variables, so
the semantics should say how, at different points, program
states are related to initial states.

The relational semantics can be bit-blasted in a natural way.

No need for a so-called collecting semantics.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 26 / 33

Relational semantics

More precisely, S[[s]] : Σ → Σ is replaced by a relation

r = {〈σ(x1), . . . , σ(xk), τ(x1), . . . , τ(xk)〉 | σ ∈ Σ ∧ τ = S[[s]](σ)}

Henceforth S[[s]] will denote a relation S[[s]] ⊆ R2k .

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 27 / 33

Semantic machinery: Composition

If ~a,~b ∈ Rk then then ~a · ~b ∈ R2k is the concatenation of ~a and ~b.

The identity relation is Id = {~a ·~a | ~a ∈ Rk}.

If r1, r2 ⊆ R2k , their composition is
r1 ◦ r2 = {~a · ~c | ~b ∈ Rk ∧~a · ~b ∈ r1 ∧ ~b · ~c ∈ r2}.

If r1 ⊆ Rk and r2 ⊆ R2k then let r1 ◦ r2 = {~b | ~a ∈ r1 ∧~a · ~b ∈ r2}.

If ~a = 〈a1, . . . , ak〉 ∈ Rk ~a[i] = ai .

If b ∈ R let ~a[i 7→ b] = 〈a1, . . . , ai−1, b, ai+1, . . . , ak〉.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 28 / 33

Semantic equations

The effect of a guard g ∈ Guard is described by

S[[g]] = {~a ·~a | ~a ∈ Rk ∧ G[[g]]~a}

The effect of a statement s ∈ Stmt is described by

S[[skip]] = Id
S[[xi := e]] = {~a ·~a[i 7→ E [[e]]~a] | ~a ∈ Rk}
S[[s1; s2]] = S[[s1]] ◦ S[[s2]]

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 29 / 33

E and G

E [[xi]]~a = ~a[i]
E [[n]]~a = n

E [[e1 ⊙ e2]]~a = (E [[e1]]~a) ⊙ (E [[e2]]~a) where ⊙ ∈ bop

G[[true]]~a = 1
G[[false]]~a = 0

G[[g1 ⊖ g2]]~a = (G[[g1]]~a) ⊖ (G[[g2]]~a) where ⊖ ∈ lop
G[[e1 ⊗ e2]]~a = (E [[e1]]~a) ⊗ (E [[e2]]~a) where ⊗ ∈ rop

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 30 / 33

Semantics of programs

Finally, the semantics of P = 〈L, X , ℓ0, T 〉 can be defined as the set
{rℓ ∈ R2k | ℓ ∈ L} of smallest relations rℓ such that

1 Id ⊆ rℓ0

2 rℓi
◦ S[[g]] ◦ S[[s]] ⊆ rℓj

for all 〈ℓi , ℓj , g , s〉 ∈ T .

Each relation rℓ is finite and relates states at ℓ0 to states at ℓ.

The set of reachable states at ℓ is given by the composition Rk ◦ rℓ.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 31 / 33

From Boolean transfer to congruence/interval/...

transfer

King and Søndergaard, VMCAI 2010.

Elder et al, SAS 2011.

Brauer and King, SAS 2011: synthesis of interval transfer.

Synthesis of congruence/interval/... transfer relations makes use of a
SAT/SMT solver, using the idea of Reps, Sagiv and Yorsh, VMCAI
2004.

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 32 / 33

Thank you

... and questions ...

Harald Søndergaard (Melbourne) Local Bit-Precise Reasoning ITAP, 28 June 2012 33 / 33

