Theorem Provers, SMT, and Interpolation

Philipp Rümmer Uppsala University Sweden

CP meets CAV June 27th 2012

Outline

- Some SMT challenges from verification
- Quantifiers in SMT
 - → First-order version of SMT
- Computation of Craig interpolants

Disclaimer

- Highly biased challenges (my point of view)
- Some results shown are not by myself
- Some results shown are joint work

Reasoning + first-order logic (FOL)

SAT/SMT solvers
DPLL(T), CDCL, Nelson- Oppen
E-matching, heuristics
Complete on ground fragment
Many built-in theories

Reasoning + first-order logic (FOL)

First-order provers	SAT/SMT solvers
Resolution, superposition, tableaux, etc.	DPLL(T), CDCL, Nelson- Oppen
(Free) variables, unification	E-matching, heuristics
Complete for FOL	Complete on ground fragment
	Many built-in theories

Reasoning + first-order logic (FOL)

First-order provers	SAT/SMT solvers
Resolution, superposition, tableaux, etc.	DPLL(T), CDCL, Nelson- Oppen
(Free) variables, unification	E-matching, heuristics
Complete for FOL	Complete on ground fragment
	Many built-in theories
Tailored to algebra, logic, etc.	Tailored to verification; (usually) incomplete on quantified problems

Classical paradigms in logical reasoning

 \rightarrow Case-based

Synthetic

 \rightarrow Consequence-based

Gentzen-style sequents
Tableaux
Hypertableaux
Model evolution
Model generation
DPLI

Syllogisms
Hilbert-style calculi
Resolution
Superposition
Knuth-Bendix
Gröbner bases

Classical paradigms in logical reasoning

Analytic

 \rightarrow Case-based

Synthetic

→ Consequence-based

Gentzen-style sequents

Tableaux Hypertableaux

Model evolution

Model generation

DPLL

Syllogisms

Hilbert-style calculi

Resolution

Superposition

Knuth-Bendix

Gröbner bases

SAT combines both paradigms

DPLL: search for models

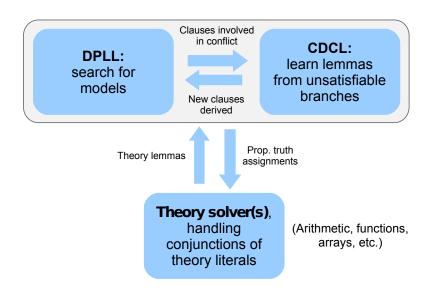
Clauses involved in conflict

New clauses

CDCL:

learn lemmas from unsatisfiable branches

From SAT to SMT



Some challenging theories

- Integers
- Non-linear arithmetic
- Floating-point arithmetic
- Words/strings

Quantifiers in SMT

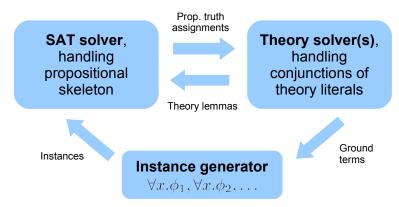
(one of the main challenges)

Quantifiers

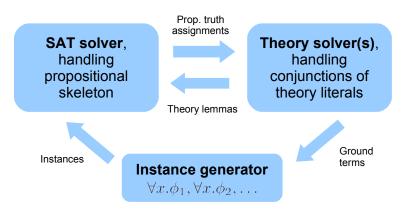
SAT solver, handling propositional skeleton

Theory solver(s), handling conjunctions of theory literals

Quantifiers



Quantifiers



- E-matching (Simplify, Stanford Pascal Verifier)
- Complete instantiation; counterexample-based [Ge, de Moura, 09]
- Superposition [de Moura, Bjørner, 09]

Matching of **triggers** (modulo equations)

$$\Gamma, \forall \bar{x}. \phi[t[\bar{x}]] \vdash , \Delta$$

• Identify triggers (sub-expressions) in quantified formulae

$$\Gamma, orall ar{x}. \phi[t[ar{x}]] \vdash \psi[t[ar{s}]], \Delta$$

- Identify triggers (sub-expressions) in quantified formulae
- Check for matching ground terms

$$\frac{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]], [\bar{x}/\bar{s}]\phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \triangle}{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \triangle}$$

- Identify triggers (sub-expressions) in quantified formulae
- Check for matching ground terms
- Create ground instances resulting from match

```
\frac{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]], [\bar{x}/\bar{s}]\phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \Delta}{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \Delta}
```

- Identify triggers (sub-expressions) in quantified formulae
- Check for matching ground terms
- Create ground instances resulting from match

```
\forall int a, i, v;
    sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
    (i1 != i2 ->
    sel(sto(a, i1, v), i2) = sel(a, i2))
```

```
\frac{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]], [\bar{x}/\bar{s}] \phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \Delta}{\Gamma, \forall \bar{x}. \phi[t[\bar{x}]] \vdash \psi[t[\bar{s}]], \Delta}
```

- Identify triggers (sub-expressions) in quantified formulae
- Check for matching ground terms
- Create ground instances resulting from match

```
\forall int a, i, v;
    sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
    (i1 != i2 ->
    sel(sto(a, i1, v), i2) = sel(a, i2))
```

Examples

$$b \doteq \operatorname{sto}(a,1,2) \rightarrow \operatorname{sel}(b,2) \doteq \operatorname{sel}(a,2)$$

```
\forall int a, i, v;
    sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
    (i1 != i2 ->
    sel(sto(a, i1, v), i2) = sel(a, i2))
```

Examples

$$b \doteq \operatorname{sto}(a,1,2) \rightarrow \operatorname{sel}(b,2) \doteq \operatorname{sel}(a,2)$$

 $b \doteq \operatorname{sto}(a,1,2) \rightarrow \exists x. \operatorname{sel}(b,x) \doteq \operatorname{sel}(a,2)$

```
\forall int a, i, v;
    sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
    (i1 != i2 ->
    sel(sto(a, i1, v), i2) = sel(a, i2))
```

Examples

```
b \doteq \operatorname{sto}(a,1,2) \rightarrow \operatorname{sel}(b,2) \doteq \operatorname{sel}(a,2)

b \doteq \operatorname{sto}(a,1,2) \rightarrow \exists x. \operatorname{sel}(b,x) \doteq \operatorname{sel}(a,2)

b \doteq \operatorname{sto}(a,1,2) \rightarrow \exists x. \operatorname{sel}(b,x+1) \doteq \operatorname{sel}(a,2)

b \doteq \operatorname{sto}(a,1,2) \rightarrow \exists x. \operatorname{sel}(b,x) \doteq \operatorname{sel}(a,x)
```

```
\forall int a, i, v;
    sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
    (i1 != i2 ->
    sel(sto(a, i1, v), i2) = sel(a, i2))
```

- Heuristic → incomplete
- Good for "simple" instances
- User guidance possible → triggers
- But also brittle, easy to choose wrong triggers
- Fast → only ground reasoning
- Restrictions particularly problematic for "deductive verification"
 - ⇒ Complicated specifications without good triggers

Small engines

SAT solver, handling propositional skeleton

Theory solver(s), handling conjunctions of theory literals

Small engines

First-order solver: boolean structure, functions, quantifiers

Theory solver(s), handling conjunctions of theory literals

Small engines

First-order solver: boolean structure, functions, quantifiers

Theory solver: quantified theory constraints

First-order SMT

Putting things together

Current choices:

KE-tableau/DPLL
 FOL

• Theory procedures Arithmetic

Free variables + constraints Quantifiers

E-matching
 Axiomatisation of theories

Interesting completeness results

- Experimental implementation: PRINCESS
- More details in [LPAR'08], [LPAR'12]
- Long-term goal: framework as general as SMT

```
\overline{\mathcal{AX}} \vdash b \doteq \text{sto}(a,1,2) \rightarrow \exists x. \, \text{sel}(b,x) \doteq \text{sel}(a,2)
```

```
AX =
\forall int a, i, v;
sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
(i1 != i2 ->
sel(sto(a, i1, v), i2) = sel(a, i2))
```

```
\frac{\overline{\mathcal{AX}, b \doteq \mathtt{sto}(a, 1, 2)} \, \vdash \, \exists x. \, \mathtt{sel}(b, x) \doteq \mathtt{sel}(a, 2)}{\mathcal{AX} \, \vdash \, b \doteq \mathtt{sto}(a, 1, 2) \, \rightarrow \, \exists x. \, \mathtt{sel}(b, x) \doteq \mathtt{sel}(a, 2)}
```

```
AX =
\forall int a, i, v;
sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
(i1 != i2 ->
sel(sto(a, i1, v), i2) = sel(a, i2))
```

```
\frac{\mathcal{A}\mathcal{X}, b \doteq \mathsf{sto}(a, 1, 2) \vdash \mathsf{sel}(b, X) \doteq \mathsf{sel}(a, 2)}{\mathcal{A}\mathcal{X}, b \doteq \mathsf{sto}(a, 1, 2) \vdash \exists x. \, \mathsf{sel}(b, x) \doteq \mathsf{sel}(a, 2)}{\mathcal{A}\mathcal{X} \vdash b \doteq \mathsf{sto}(a, 1, 2) \rightarrow \exists x. \, \mathsf{sel}(b, x) \doteq \mathsf{sel}(a, 2)}
```

```
AX =
\forall int a, i, v;
sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
(i1 != i2 ->
sel(sto(a, i1, v), i2) = sel(a, i2))
```

```
 \vdots \\ \underline{\dots, 1 \neq X \rightarrow \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2) \vdash \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2)} \\ \underline{A\mathcal{X}, b \doteq \operatorname{sto}(a, 1, 2) \vdash \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2)} \\ \underline{A\mathcal{X}, b \doteq \operatorname{sto}(a, 1, 2) \vdash \exists x. \ \operatorname{sel}(b, x) \doteq \operatorname{sel}(a, 2)} \\ \underline{A\mathcal{X}} \vdash b \doteq \operatorname{sto}(a, 1, 2) \rightarrow \exists x. \ \operatorname{sel}(b, x) \doteq \operatorname{sel}(a, 2)
```

```
AX =
\forall int a, i, v;
sel(sto(a, i, v), i) = v
\forall int a, i1, i2, v;
(i1 != i2 ->
sel(sto(a, i1, v), i2) = sel(a, i2))
```

```
[1 \neq X]
\dots, 1 \neq X \rightarrow \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2) \vdash \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2)
            \mathcal{AX}, b \doteq \text{sto}(a, 1, 2) \vdash \text{sel}(b, X) \doteq \text{sel}(a, 2)
         \mathcal{AX}, b \doteq \text{sto}(a, 1, 2) \vdash \exists x. \text{sel}(b, x) \doteq \text{sel}(a, 2)
      \mathcal{AX} \vdash b \doteq \operatorname{sto}(a,1,2) \rightarrow \exists x. \operatorname{sel}(b,x) \doteq \operatorname{sel}(a,2)
 AX =
   \forall int a, i, v;
          sel(sto(a, i, v), i) = v
   \forall int a, i1, i2, v;
           (i1 != i2 ->
```

sel(sto(a, i1, v), i2) = sel(a, i2))

Linear integer arithmetic + uninterpreted predicates:

$$t ::= \alpha \mid x \mid c \mid \alpha t + \dots + \alpha t$$

$$\phi ::= \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \forall x . \phi \mid \exists x . \phi$$

$$\mid t \doteq 0 \mid t \geq 0 \mid t \leq 0 \mid \alpha \mid t \mid p(t, \dots, t)$$

t ... terms

 ϕ ... formulae

x ... variables

c ... constants

p ... uninterpreted predicates (fixed arity)

 α ... integer literals (\mathbb{Z})

Linear integer arithmetic + uninterpreted predicates:

$$t ::= \alpha \mid x \mid c \mid \alpha t + \dots + \alpha t$$

$$\phi ::= \phi \land \phi \mid \phi \lor \phi \mid \neg \phi \mid \forall x . \phi \mid \exists x . \phi$$

$$\mid t \doteq 0 \mid t \succeq 0 \mid t \leq 0 \mid \alpha \mid t \mid p(t, \dots, t)$$

- Functions encoded as relations (later)
- Subsumes FOL and Presburger arithmetic (PA)
- Valid formulae are not enumerable [Halpern, 1991]

Constrained sequents

Notation used here:

Antecedent, Succedent (sets of formulae)

Constraint/approximation (formula)

Definition

 $\Gamma \vdash \Delta \Downarrow C$ is *valid* if the formula $C \rightarrow \bigwedge \Gamma \rightarrow \bigvee \Delta$ is valid.


```
analytic reasoning
about input formula
(SMT-like)
```

$$\Gamma \vdash \Delta \Downarrow ?$$

analytic reasoning

$$\Gamma_1 \vdash \Delta_1 \Downarrow ?$$

$$\vdots$$

$$\Gamma \vdash \Delta \Downarrow ?$$

analytic reasoning about input formula
$$(SMT\text{-like}) \qquad \frac{\Gamma_2 \; \vdash \; \Delta_2 \; \Downarrow \; ?}{\Gamma_1 \; \vdash \; \Delta_1 \; \Downarrow \; ?} \\ \vdots \\ \Gamma \; \vdash \; \Delta \; \Downarrow \; ?$$

analytic reasoning about input formula (SMT-like)
$$\frac{\Gamma_3 \vdash \Delta_3 \Downarrow ?}{\Gamma_2 \vdash \Delta_2 \Downarrow ?}$$

$$\frac{\Gamma_3 \vdash \Delta_3 \Downarrow ?}{\Gamma_2 \vdash \Delta_2 \Downarrow ?} \\
\frac{\Gamma_1 \vdash \Delta_1 \Downarrow ?}{\vdots} \\
\Gamma \vdash \Delta \Downarrow ?$$

analytic reasoning about input formula (SMT-like)

analytic reasoning about input formula (SMT-like) $\begin{array}{c} \vdots \\ \frac{\Gamma_3 \vdash \Delta_3 \Downarrow C_1}{\Gamma_2 \vdash \Delta_2 \Downarrow C_2} \\ \hline \Gamma_1 \vdash \Delta_1 \Downarrow C_3 \\ \vdots \\ \hline \Gamma \vdash \Delta \Downarrow C \end{array}$ propagation of constraints

- Constraints are simplified during propagation
- If C is **valid**, then so is $\Gamma \vdash \Delta$
- If C is **satisfiable**, it describes a solution for $\Gamma \vdash \Delta$
- If *C* is unsatisfiable, expand the proof tree further . . .

analytic reasoning about input formula (SMT-like)
$$\begin{array}{c} \overset{*}{\vdots} \\ \frac{\Gamma_3 \vdash \Delta_3 \Downarrow C_1}{\Gamma_2 \vdash \Delta_2 \Downarrow C_2} \\ \hline \Gamma_1 \vdash \Delta_1 \Downarrow C_3 \\ \vdots \\ \hline \Gamma \vdash \Delta \Downarrow C \end{array}$$
 propagation of constraints

- Constraints are simplified during propagation
- If C is **valid**, then so is $\Gamma \vdash \Delta$
- If C is **satisfiable**, it describes a solution for $\Gamma \vdash \Delta$
- If C is unsatisfiable, expand the proof tree further . . .
- Theories have two roles: analytic + propagation

A few proof rules

$$\frac{\Gamma \vdash \phi, \Delta \Downarrow C \qquad \Gamma \vdash \psi, \Delta \Downarrow D}{\Gamma \vdash \phi \land \psi, \Delta \Downarrow C \land D} \text{ AND-RIGHT}$$

$$\frac{\Gamma, [x/c]\phi, \forall x.\phi \vdash \Delta \Downarrow [x/c]C}{\Gamma, \forall x.\phi \vdash \Delta \Downarrow \exists x.C} \text{ ALL-LEFT}$$
 (c is fresh)
$$\frac{\Gamma, \rho(\bar{s}) \vdash \rho(\bar{t}), \ \bar{s} \doteq \bar{t} \ , \Delta \Downarrow C}{\Gamma, \rho(\bar{s}) \vdash \rho(\bar{t}), \Delta \Downarrow C} \text{ PRED-UNIFY}$$

$$\frac{*}{\Gamma,\phi_1,\ldots\,\vdash\,\psi_1,\ldots,\Delta\,\Downarrow\,\neg\phi_1\vee\cdots\vee\psi_1\vee\cdots} \text{ CLOSE } \\ \text{ (selected formulae are predicate-free)}$$

A few proof rules

$$\frac{\Gamma \vdash \phi, \Delta \Downarrow C \qquad \Gamma \vdash \psi, \Delta \Downarrow D}{\Gamma \vdash \phi \land \psi, \Delta \Downarrow C \land D} \text{ AND-RIGHT}$$

$$\frac{\Gamma, [x/c]\phi, \forall x.\phi \vdash \Delta \Downarrow [x/c]C}{\Gamma, \forall x.\phi \vdash \Delta \Downarrow \exists x.C} \text{ ALL-LEFT}$$

$$(c \text{ is fresh})$$

$$\frac{\Gamma, \rho(\bar{s}) \vdash \rho(\bar{t}), \ \bar{s} \doteq \bar{t}, \Delta \Downarrow C}{\Gamma, \rho(\bar{s}) \vdash \rho(\bar{t}), \Delta \Downarrow C} \text{ PRED-UNIFY}$$

$$\frac{*}{\Gamma,\phi_1,\ldots\,\vdash\,\psi_1,\ldots,\Delta\,\Downarrow\,\neg\phi_1\vee\cdots\vee\psi_1\vee\cdots} \text{ CLOSE } \\ \text{ (selected formulae are predicate-free)}$$

+ Theory rules!

In the example

```
[1 \neq X]
\vdots
\dots, 1 \neq X \rightarrow \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2) \vdash \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2)
\frac{A\mathcal{X}, b \doteq \operatorname{sto}(a, 1, 2) \vdash \operatorname{sel}(b, X) \doteq \operatorname{sel}(a, 2)}{A\mathcal{X}, b \doteq \operatorname{sto}(a, 1, 2) \vdash \exists x. \operatorname{sel}(b, x) \doteq \operatorname{sel}(a, 2)}
\frac{A\mathcal{X} \vdash b \doteq \operatorname{sto}(a, 1, 2) \rightarrow \exists x. \operatorname{sel}(b, x) \doteq \operatorname{sel}(a, 2)}{A\mathcal{X} \vdash b \doteq \operatorname{sto}(a, 1, 2) \rightarrow \exists x. \operatorname{sel}(b, x) \doteq \operatorname{sel}(a, 2)}
```

In the example

In the example

Correctness

Lemma (Soundness)

It's sound!

Lemma (Completeness)

Complete for fragments:

- FOL
- PA
- Purely existential formulae
- Purely universal formulae
- Universal formulae with finite parametrisation (same as $\mathcal{ME}(\text{LIA})$)

Functions almost like in SMT:

- Terms are always flattened
- n-ary function f becomes (n + 1)-ary predicate f_p E.g.

$$g(f(x), a) \longrightarrow f(x) = c \land g(c, a) = d$$

 $\leadsto f_p(x, c) \land g_p(c, a, d)$

Functions almost like in SMT:

- Terms are always flattened
- n-ary function f becomes (n + 1)-ary predicate f_p E.g.

$$g(f(x), a) \rightarrow f(x) = c \land g(c, a) = d$$

 $\rightarrow f_p(x, c) \land g_p(c, a, d)$

Axioms necessary: Totality + Functionality

$$\forall \bar{x}. \exists y. \ f_p(\bar{x}, y)$$

$$\forall \bar{x}, y_1, y_2. \ (f_p(\bar{x}, y_1) \rightarrow f_p(\bar{x}, y_2) \rightarrow y_1 \doteq y_2)$$

Functions almost like in SMT:

- Terms are always flattened
- n-ary function f becomes (n + 1)-ary predicate f_p E.g.

$$g(f(x), a) \rightarrow f(x) = c \land g(c, a) = d$$

 $\rightarrow f_p(x, c) \land g_p(c, a, d)$

Axioms necessary: Totality + Functionality

$$\forall \bar{x}. \exists y. \ f_p(\bar{x}, y)$$

$$\forall \bar{x}, y_1, y_2. \ (f_p(\bar{x}, y_1) \rightarrow f_p(\bar{x}, y_2) \rightarrow y_1 \doteq y_2)$$

Very closely resembles congruence closure

Relative completeness

In SMT solvers:

- Choice of triggers determines provability
- Bad triggers → bad luck

In the first-order SMT calculus:

- Choice of triggers determines performance
- Regardless of triggers, the same formulae are provable
- E-matching is complemented by free variables + unification

Practicality

	AUFLIA+p (193)	AUFLIA-p (193)
Z3	191	191
PRINCESS	145	137
CVC3	132	128

- Implementation of our calculus in PRINCESS
- Unsatisfiable AUFLIA benchmarks from SMT-comp 2011
- Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
- http://www.philipp.ruemmer.org/princess.shtml
- Currently running: CASC 2012

Related work

- ME(LIA): [Baumgartner, Tinelli, Fuchs, 08], [Baumgartner, Tinelli, 11]
- SPASS+T [Prevosto, Waldmann, 06]
- DPLL(SP)[de Moura, Bjørner, 08]
- Complete instantiation
 [Ge, de Moura, 09]
- Saturation + theories, e.g.
 [Stickel, 85], [Bürchert, 90],
 [Bachmair, Ganzinger, Waldmann, 94],
 [Korovin, Voronkov, 07],
 [Althaus, Kruglov, Weidenbach, 09]
-

Conclusion

- Overall challenge:
 Combine the theories and performance of SMT solvers with the completeness of FOL provers
- Presented work is one step in this direction

Ongoing work:

- Better unification on term level
- Better heuristics for introducing free variables
- Lemma learning
- Generalisation to other theories

Computation of Craig Interpolants

Motivation: inference of invariants

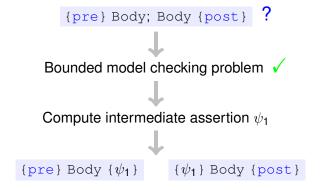
Generic verification problem ("safety")

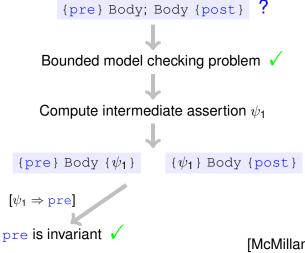
```
{ pre } while (*) Body { post }
```

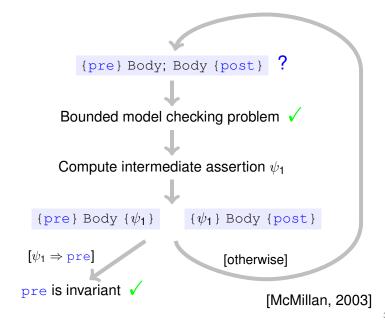
Standard approach: loop rule using invariant

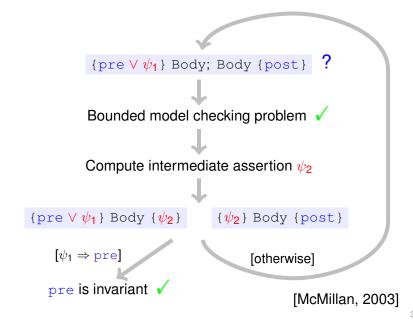
```
\frac{\text{pre} \Rightarrow \phi \quad \{ \phi \} \text{ Body } \{ \phi \} \quad \phi \Rightarrow \text{post}}{\{ \text{pre} \} \text{ while (*) Body } \{ \text{post} \}}
```

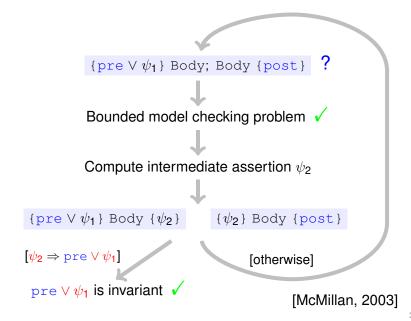
How to compute ϕ automatically?

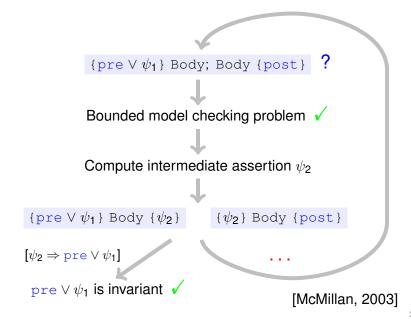












How to compute intermediate assertions?

```
VC generation

{ pre } pre (s_0)

Body; \rightarrow Body (s_0, s_1)

Body \rightarrow Body (s_1, s_2)

{ post } \rightarrow post (s_2)
```

How to compute intermediate assertions?

```
VC generation

{ pre } pre (s_0)

Body; \rightarrow Body (s_0, s_1)

Body \rightarrow Body (s_1, s_2)

{ post } \rightarrow post (s_2)
```

Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication. Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.

How to compute intermediate assertions?

```
VC generation

{ pre } pre (s_0) A(s_0, s_1)

Body; \rightarrow \text{Body}(s_0, s_1) \downarrow

Body \rightarrow \text{Body}(s_1, s_2)

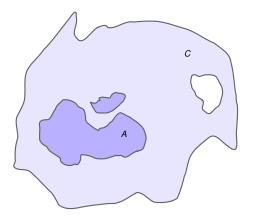
{ post } \rightarrow \text{post}(s_2) C(s_1, s_2)
```

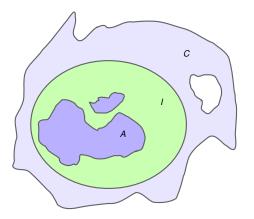
Theorem (Craig, 1957)

Suppose $A \rightarrow C$ is a valid FOL implication.

Then there is a formula I (an interpolant) such that

- $A \rightarrow I$ and $I \rightarrow C$ are valid,
- every non-logical symbol of I occurs in both A and C.





Reverse interpolants

Definition

Suppose $A \wedge B$ is unsatisfiable.

A reverse interpolant is a formula I such that

- $A \rightarrow I$ and $B \rightarrow \neg I$ are valid,
- every non-logical symbol of I occurs in both A and B.

Lemma

I is reverse interpolant for $A \wedge B$

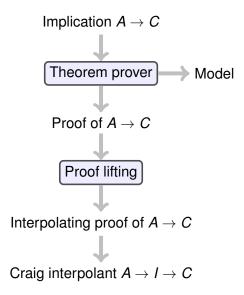
 \iff

I is interpolant for $A \rightarrow \neg B$

Available interpolation engines (incomplete ...)

- Foci
- CSIsat
- MathSAT
- SMTInterpol
- OpenSMT
- iZ3
- Princess

Proof-based interpolation techniques



Interpolating propositional logic

- Interpolation procedures available for many calculi
- Overview paper for resolution proofs: [D'Silva et al, 2010]
- Shown here: interpolants from a Gentzen-style proof (similar to calculus from before, but without constraints)

$$\begin{array}{c}
\stackrel{*}{\vdots} \\
\Gamma_3 \vdash \Delta_3 \\
\Gamma_2 \vdash \Delta_2 \\
\Gamma_1 \vdash \Delta_1 \\
\vdots \\
A \vdash C
\end{array}$$

annotation of formulae with labels
$$\begin{array}{c} \vdots \\ \Gamma_3 \vdash \Delta_3 \\ \hline \Gamma_2 \vdash \Delta_2 \\ \hline \Gamma_1 \vdash \Delta_1 \\ \vdots \\ A \vdash C \end{array}$$

annotation of formulae with labels
$$\uparrow \qquad \begin{array}{c} \vdots \\ \frac{\Gamma_3 \; \vdash \; \Delta_3}{\Gamma_2 \; \vdash \; \Delta_2} \\ \hline \Gamma_1 \; \vdash \; \Delta_1 \\ \vdots \\ [A]_L \; \vdash \; [C]_R \end{array}$$

annotation of formulae with labels
$$\uparrow \qquad \begin{array}{c} \vdots \\ \frac{\Gamma_3 \; \vdash \; \Delta_3}{\Gamma_2 \; \vdash \; \Delta_2} \\ \overline{\Gamma_1^* \; \vdash \; \Delta_1^*} \\ \vdots \\ \lfloor A \rfloor_L \; \vdash \; \lfloor C \rfloor_R \end{array}$$

annotation of formulae with labels
$$\begin{array}{c} \vdots \\ \frac{\Gamma_3 \; \vdash \; \Delta_3}{\Gamma_2^* \; \vdash \; \Delta_2^*} \\ \hline \Gamma_1^* \; \vdash \; \Delta_1^* \\ \vdots \\ \lfloor A \rfloor_L \; \vdash \; \lfloor C \rfloor_R \end{array}$$

annotation of formulae with labels
$$\uparrow \qquad \frac{\Gamma_3^* \vdash \Delta_3^*}{\frac{\Gamma_2^* \vdash \Delta_2^*}{\Gamma_1^* \vdash \Delta_1^*}}$$
$$\vdots \\ \lfloor A \rfloor_L \vdash \lfloor C \rfloor_R$$

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of formulae with labels $\begin{array}{c} \vdots \\ \frac{\Gamma_3^* \; \vdash \; \Delta_3^*}{\Gamma_2^* \; \vdash \; \Delta_2^*} \\ \vdots \\ \Gamma_1^* \; \vdash \; \Delta_1^* \\ \vdots \\ \lfloor A \rfloor_L \; \vdash \; \lfloor C \rfloor_R \end{array} \right) \text{ propagation of interpolants}$

Interpolation problem: $A \rightarrow I \rightarrow C$

annotation of formulae with labels

$$\begin{array}{c}
\stackrel{*}{\vdots} \\
\frac{\Gamma_3^* \vdash \dot{\Delta}_3^* \blacktriangleright I_3}{\Gamma_1^* \vdash \dot{\Delta}_1^*} \\
\vdots \\
[A]_L \vdash [C]_R
\end{array}$$

propagation of interpolants

annotation of formulae with labels
$$\uparrow \qquad \frac{\frac{\Gamma_3^* \; \vdash \; \Delta_3^* \; \blacktriangleright \; \mathit{l}_3}{\Gamma_2^* \; \vdash \; \Delta_2^* \; \blacktriangleright \; \mathit{l}_2}}{\Gamma_1^* \; \vdash \; \Delta_1^*} \qquad \downarrow \qquad \text{propagation of interpolants} \\ \vdots \\ \lfloor \mathit{A} \rfloor_{\mathit{L}} \; \vdash \; \lfloor \mathit{C} \rfloor_{\mathit{R}}$$

annotation of formulae with labels
$$\uparrow \qquad \frac{\frac{\Gamma_3^* \; \vdash \; \Delta_3^* \; \blacktriangleright \; I_3}{\Gamma_2^* \; \vdash \; \Delta_2^* \; \blacktriangleright \; I_2}}{\frac{\Gamma_1^* \; \vdash \; \Delta_1^* \; \blacktriangleright \; I_1}{\Gamma_1^* \; \vdash \; \Delta_1^* \; \blacktriangleright \; I_1}} \qquad \downarrow \qquad \text{propagation of interpolants}$$

annotation of formulae with labels
$$\uparrow \begin{array}{c} \vdots \\ \frac{\Gamma_3^* \; \vdash \; \Delta_3^* \; \blacktriangleright \; I_3}{\Gamma_2^* \; \vdash \; \Delta_2^* \; \blacktriangleright \; I_2} \\ \hline \Gamma_1^* \; \vdash \; \Delta_1^* \; \blacktriangleright \; I_1 \\ \vdots \\ [A]_L \; \vdash \; [C]_R \; \blacktriangleright \; I \end{array} \qquad \downarrow \quad \text{propagation of interpolants}$$

Labelled formulae

Labelled formula	Intuition
$\lfloor \phi \rfloor_{L}$	" ϕ is subformula of \emph{A} "
$\lfloor \phi floor$ R	" ϕ is subformula of \emph{C} "

Example

Non-interpolating proof:

$$\frac{\frac{p \vdash p, q, r}{p \vdash p, q, r}}{\frac{\neg p, p \vdash q, r}{\neg p \lor q, p \vdash q, r}} \frac{*}{q, p \vdash q, r}$$

$$\frac{\neg p \lor q, p \vdash q, r}{\neg p \lor q, p \vdash q \lor r}$$

Example

Non-interpolating proof:

$$\frac{\frac{p \vdash p, q, r}{\neg p, p \vdash q, r}}{\frac{\neg p, p \vdash q, r}{\neg p \lor q, p \vdash q, r}} \frac{*}{q, p \vdash q, r}$$
$$\frac{\neg p \lor q, p \vdash q, r}{\neg p \lor q, p \vdash q \lor r}$$

Lifted interpolating proof:

$$\frac{\frac{*}{[\rho]_L \vdash [\rho]_L}}{\frac{[\neg \rho]_L, [\rho]_L \vdash \dots}{[q]_L, [\rho]_L \vdash [q]_R, [r]_R}} \times \frac{[\neg \rho \lor q]_L, [\rho]_L \vdash [q]_R, [r]_R}{\frac{[\neg \rho \lor q]_L, [\rho]_L \vdash [q \lor r]_R}{[\neg \rho \lor q]_L, [\rho]_L \vdash [q \lor r]_R}}$$

Example

Non-interpolating proof:

$$\frac{\frac{p \vdash p, q, r}{\neg p, p \vdash q, r}}{\frac{\neg p \lor q, p \vdash q, r}{\neg p \lor q, p \vdash q, r}}$$

Lifted interpolating proof:

$$\frac{ *}{[p]_{L} \vdash [p]_{L} \blacktriangleright false}$$

$$\frac{ \vdash \neg p \mid_{L}, [p]_{L} \vdash \dots \blacktriangleright false}$$

$$\frac{[\neg p \lor q \mid_{L}, [p]_{L} \vdash [q]_{R}, [r]_{R} \blacktriangleright q}{[\neg p \lor q \mid_{L}, [p]_{L} \vdash [q]_{R}, [r]_{R} \blacktriangleright false \lor q}$$

$$\frac{[\neg p \lor q \mid_{L}, [p]_{L} \vdash [q \lor r]_{R} \blacktriangleright q}$$

Interpolating propositional rules

Interpolating integer arithmetic ...

Some theory rules for integers

Linear combination of inequalities ($\alpha > 0, \beta > 0$)

$$\frac{\Gamma, \ldots, \alpha s + \beta t \leq 0 \vdash \Delta}{\Gamma, \ s \leq 0, \ t \leq 0 \vdash \Delta} \text{ FM-ELIM'}$$

Strengthening inequalities (subsumes rounding, Gomory cuts)

$$\frac{\Gamma, t \doteq 0 \; \vdash \; \Delta \qquad \Gamma, t + 1 \stackrel{.}{\leq} 0 \; \vdash \; \Delta}{\Gamma, t \stackrel{.}{\leq} 0 \; \vdash \; \Delta} \; \mathsf{STRENGTHEN'}$$

Some theory rules for integers

Linear combination of inequalities ($\alpha > 0, \beta > 0$)

$$\frac{\Gamma, \ldots, \alpha s + \beta t \leq 0 \vdash \Delta}{\Gamma, \ s \leq 0, \ t \leq 0 \vdash \Delta} \text{ FM-ELIM'}$$

Strengthening inequalities (subsumes rounding, Gomory cuts)

$$\frac{\Gamma, t \doteq 0 \; \vdash \; \Delta \qquad \Gamma, t + 1 \stackrel{.}{\leq} 0 \; \vdash \; \Delta}{\Gamma, t \stackrel{.}{<} 0 \; \vdash \; \Delta} \; \mathsf{STRENGTHEN'}$$

- Calculus contains both analytic and synthetic rules
 - ⇒ More general form of labels needed

Extended labelled formulae

Labelled formula	Intuition
$\lfloor \phi \rfloor_{L}$	" ϕ is subformula of \emph{A} "
$\lfloor \phi floor$ R	" ϕ is subformula of $\emph{\emph{C}}$ "
$\phi\left[\psi ight]$	" ψ is A-contribution to ϕ " ψ is the <i>partial interpolant</i> of ϕ

Selection of interpolating integer rules

Linear combination of inequalities $(\alpha > 0, \beta > 0)$

$$\frac{\Gamma, \dots, \alpha s + \beta t \leq 0 \left[\alpha s^{A} + \beta t^{A} \leq 0\right] \vdash \Delta \blacktriangleright I}{\Gamma, s \leq 0 \left[s^{A} \leq 0\right], t \leq 0 \left[t^{A} \leq 0\right] \vdash \Delta \blacktriangleright I} \text{ FM-ELIM}$$

Closure rules

$$\frac{*}{\Gamma, \alpha \stackrel{.}{\leq} 0 \, [t^A \stackrel{.}{\leq} 0] \, \vdash \, \Delta \, \blacktriangleright t^A \stackrel{.}{\leq} 0} \, \text{CLOSE-INEQ}$$

Interpolating proof example

$$\frac{x}{\dots, 3 \leq 0 [6x \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{\dots, 3x \leq 0 [3x \leq 0], -2x + 1 \leq 0 [0 \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{\dots, 3x - 2 \leq 0 [3x - 2 \leq 0], -2x + 1 \leq 0 [0 \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{x + x \leq 0 [a + x \leq 0], -2x + 1 \leq 0 [0 \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{x + x \leq 0 [a + x \leq 0], -2x + 1 \leq 0 [0 \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{x + x \leq 0 [a + x \leq 0], -2x + 1 \leq 0 [0 \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{x + x \leq 0 [a + x \leq 0]} \vdash \blacktriangleright x \leq 0$$

$$\frac{1}{x + x \leq 0 [a + x \leq 0]} \vdash \blacktriangleright x \leq 0$$

Original proof

$$\frac{\frac{*}{\ldots,\ 3 \stackrel{.}{\leq} 0\ \vdash} \ \ \text{INEQ-CLOSE'}}{\ldots,\ 3x \stackrel{.}{\leq} 0,\ -2x+1 \stackrel{.}{\leq} 0\ \vdash} \ \ \text{FM-ELIM'}}{\ldots,\ 3x-2 \stackrel{.}{\leq} 0,\ -2x+1 \stackrel{.}{\leq} 0\ \vdash}$$

 $a + x \le 0$, $-a + 2x - 2 \le 0$, $-2x + 1 \le 0$

 $\text{STRENGTHEN}' \times 2$

FM-ELIM'

45/49

Literature

- Difference logic [McMillan, 2006]
- Integer equalities + divisibility constraints
 [Jain, Clarke, Grumberg, 2008]
- Unit-two-variable-per-inequality
 [Cimatti, Griggio, Sebastiani, 2009]
- Simplex-based, full PA [Lynch, Tang, 2008]
 - ⇒ Leaves local symbols/quantifiers in interpolants

Literature (2)

Proof-based methods for full PA:

- Sequent calculus-based
 [Brillout, Kroening, Rümmer, Wahl, 2010]
- Simplex-based, special branch-and-cut rule [Kroening, Leroux, Rümmer, 2010]
- Simplex-based, targeting SMT [Griggio, Le, Sebastiani, 2011]
- From Z3 proofs [McMillan, 2011]

Conclusion

- Interpolation engines are today available for many logics/theories
- Not quite as mature yet as SMT in general

Remaining challenges:

- mixed-integer, bit-vectors, full first-order logic, quantifier-free arrays, ...
- exploration of the interpolant space

Thanks for your attention!