Theorem Provers, SMT, and Interpolation

Philipp Rimmer
Uppsala University
Sweden

CP meets CAV
June 27th 2012

1/49

@ Some SMT challenges from verification

@ Quantifiers in SMT
— First-order version of SMT

@ Computation of Craig interpolants

Disclaimer

@ Highly biased challenges (my point of view)
@ Some results shown are not by myself

@ Some results shown are joint work

Reasoning + first-order logic (FOL)

SAT/SMT solvers

DPLL(T), CDCL, Nelson-
Oppen

E-matching, heuristics

Complete on ground
fragment

Many built-in theories

Reasoning + first-order logic (FOL)

First-order provers

SAT/SMT solvers

Resolution, superposition,
tableaux, etc.

(Free) variables, unification

Complete for FOL

DPLL(T), CDCL, Nelson-
Oppen

E-matching, heuristics

Complete on ground
fragment

Many built-in theories

Reasoning + first-order logic (FOL)

First-order provers

SAT/SMT solvers

Resolution, superposition,
tableaux, etc.

(Free) variables, unification

Complete for FOL

DPLL(T), CDCL, Nelson-
Oppen

E-matching, heuristics

Complete on ground
fragment

Many built-in theories

Tailored to
algebra, logic, etc.

Tailored to verification;
(usually) incomplete on
quantified problems

Classical paradigms in logical reasoning

Analytic Synthetic

— Case-based — Consequence-based
Gentzen-style sequents Syllogisms

Tableaux Hilbert-style calculi
Hypertableaux Resolution

Model evolution Superposition

Model generation Knuth-Bendix

DPLL Grobner bases

Classical paradigms in logical reasoning

Analytic Synthetic

— Case-based — Consequence-based
Gentzen-style sequents Syllogisms

Tableaux Hilbert-style calculi
Hypertableaux Resolution

Model evolution Superposition

Model generation Knuth-Bendix

DPLL Grbbner bases

SAT combines both paradigms

Clauses involved
in conflict

DPLL: CDCL:
learn lemmas
from unsatisfiable

New clauses branches
derived

search for
models

From SAT to SMT

Clauses involved

DPLL: in conflict CDCL:
search for learn lemmas
models from unsatisfiable
New clauses branches
derived
Prop. truth

Theory lemmas -
v assignments

Theory solver(s),
handling (Arithmetic, functions,
conjunctions of arrays, etc.)

theory literals

Some challenging theories

@ Integers
@ Non-linear arithmetic
@ Floating-point arithmetic

@ Words/strings

Quantifiers in SMT

(one of the main challenges)

Prop. truth
assignments
SAT solver, Theory solver(s),
handling handling
propositional conjunctions of
skeleton theory literals

Theory lemmas

Prop. truth
assignments
SAT solver, Theory solver(s),
handling handling
propositional conjunctions of
skeleton theory literals

Theory lemmas

Ground
Instances terms

Instance generator
V.1, V.o, . ..

Prop. truth
assignments
SAT solver, Theory solver(s),
handling handling
propositional conjunctions of
skeleton theory literals

Theory lemmas

Ground
Instances terms

Instance generator
V.1, V.o, . ..

@ E-matching (Simplify, Stanford Pascal Verifier)

@ Complete instantiation; counterexample-based
[Ge, de Moura, 09]

@ Superposition [de Moura, BjA rner, 09]

E-Matching

Matching of triggers (modulo equations)

r VX6 I A

10/49

E-Matching

Matching of triggers (modulo equations)

VXS]] - A

@ |dentify triggers (sub-expressions) in quantified formulae

10/49

E-Matching

Matching of triggers (modulo equations)

FVX.p[EX]] = [t[s]], A

@ Identify triggers (sub-expressions) in quantified formulae
@ Check for matching ground terms

10/49

E-Matching

Matching of triggers (modulo equations)

r,vx.o[t[X]], [x/8leltX]] F [t[E], A
FVx.[HX] -~ W[E] A

@ Identify triggers (sub-expressions) in quantified formulae
@ Check for matching ground terms
@ Create ground instances resulting from match

10/49

E-Matching

Matching of triggers (modulo equations)

r,vx.o[t[X]], [x/8leltX]] F [t[E], A
FVx.[HX] -~ W[E] A

@ Identify triggers (sub-expressions) in quantified formulae
@ Check for matching ground terms
@ Create ground instances resulting from match

\forall int a, 1, v;
sel(sto(a, i, v), 1) = v

\forall int a, 1il, 12, v;
(i1 !'= i2 —>

sel (sto(a, il, wv), i2) = sel(a, i2))

10/49

E-Matching

Matching of triggers (modulo equations)

r,vx.o[t[X]], [x/8leltX]] F [t[E], A
FVx.[HX] -~ W[E] A

@ Identify triggers (sub-expressions) in quantified formulae
@ Check for matching ground terms
@ Create ground instances resulting from match

\forall int a, 1, v;
sel(sto(a, i, v), 1) = v

\forall int a, 1il, 12, v;
(i1 !'= i2 —>

sel (sto(a, il, wv), i2) = sel(a, 1i2))

10/49

b= sto(a,1,2) — sel(b,2)=sel(a,?2)

\forall int a, i, v;
sel (sto(a, i, v), 1) = v

\forall int a, 11, 12, wv;

(11 !'= 12 —>
sel (sto(a, 11, wv), 1i2) = sel(a, 1i2))

11/49

b= sto(a,1,2) — sel(b,2)=sel(a,?2)
b= sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

\forall int a, i, v;
sel (sto(a, i, v), 1) = v

\forall int a, 11, 12, wv;

(11 !'= 12 —>
sel (sto(a, 11, wv), 1i2) = sel(a, 1i2))

11/49

b=sto(a1,2) —» sel(b,2)=sel(a?2)
b=sto(a1,2) — 3Ix.sel(b,x)=sel(a?2)
b= sto(a,1,2) — 3Ix.sel(b,x+1)=sel(a2)
b= sto(a,1,2) — 3Ix.sel(b,x)=sel(a x)

\forall int a, i, v;
sel (sto(a, i, v), 1) = v

\forall int a, 11, 12, wv;

(11 !'= 12 —>
sel (sto(a, 11, wv), 1i2) = sel(a, 1i2))

11/49

E-Matching

Heuristic — incomplete

Good for “simple” instances

User guidance possible — triggers

But also brittle, easy to choose wrong triggers
Fast — only ground reasoning

@ Restrictions particularly problematic for
“deductive verification”
= Complicated specifications without good triggers

12/49

Small engines

SAT solver, Theory solver(s),
handling handling
propositional conjunctions of

skeleton theory literals

13/49

Small engines

First-order solver: Theory solver(s),
boolean structure, handling
functions, conjunctions of

quantifiers theory literals

13/49

Small engines

First-order solver:
boolean structure,
functions,
quantifiers

Theory solver:
quantified
theory constraints

13/49

First-order SMT

Putting things together

Current choices:
o KE-tableau/DPLL FOL
@ Theory procedures Arithmetic
@ Free variables + constraints Quantifiers

E-matching Axiomatisation of theories

Interesting completeness results
Experimental implementation: PRINCESS
More details in [LPAR’08], [LPAR’12]

Long-term goal: framework as general as SMT

15/49

In the example

AX + b=sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 '= i2 —->
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))

16/49

In the example

AX b= sto(a,1,2) - 3Ix. sel(b,x) =sel(a,?2)
AX F b=sto(a,1,2) — 3Ix. sel(b,x) = sel(a,?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 '= i2 ->
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))
16/49

In the example

AX,b=sto(a,1,2) F sel(b, X)=sel(a,2)
AX b= sto(a,1,2) - 3Ix. sel(b,x) =sel(a,?2)
AX + b=sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 !'= i2 —>
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))
16/49

In the example

L1 #£ X > sel(b,X) =sel(a?2) F sel(b,X) = sel(a,?2)
AX,b = sto(a,1,2) F sel(b,X)=sel(a,?2)
AX b= sto(a,1,2) - 3Ix. sel(b,x) =sel(a,?2)
AX + b=sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 !'= i2 —>
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))
16/49

In the example

*
17 X]
L1 #£ X > sel(b,X) =sel(a?2) F sel(b,X) = sel(a,?2)
AX,b = sto(a,1,2) F sel(b,X)=sel(a,?2)
AX b= sto(a,1,2) - 3Ix. sel(b,x) =sel(a,?2)
AX + b=sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 !'= i2 —>
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))
16/49

The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a‘X‘C‘at+-~+at

¢ = dANP|dVP| -0 |Vxe|Ixe
|t=0|t>0|t<0]|alt]|pt,....1)

t ... terms

¢ ... formulae

X ... variables

c ... constants

p ... uninterpreted predicates (fixed arity)

a ... integer literals (7Z)

17/49

The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a‘X‘C‘at+-~+at

OAG| oV | 0| Vx| Ixe
|t=0|t>0|t<0]|alt]|pt,....1)

o

@ Functions encoded as relations (later)
@ Subsumes FOL and Presburger arithmetic (PA)
@ Valid formulae are not enumerable [Halpern, 1991]

17/49

Constrained sequents

Notation used here:

rea yc
——

Antecedent, Succedent Constraint/approximation
(sets of formulae) (formula)

Definition
= A | Cis validif the formula C — AT — \/ A is valid.

18/49

lterative proof construction

M- A2

19/49

lterative proof construction

about input formula

analytic reasoning T
(SMT-like)

M- A2

19/49

lterative proof construction

about input formula

analytic reasoning T
(SMT-like)

M kA 2

TEA 7

19/49

lterative proof construction

Mo - Ao |7
M- A 7

about input formula

analytic reasoning T
(SMT-like)

TrEA 7

19/49

lterative proof construction

. _ M3 - Ag |7
o casena 1 £ 17
b M A 47

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 - Az |7

analytic reasoning
) Mo H As |7
about input formula T FF A, L7

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 - Az |7

e BRI o
P M F Ay 7 of constraints

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 = Az | G4

e | EERE | o
P M F Ay 7 of constraints

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 = Az | G4

e | EERE | o
P M F Ay 7 of constraints

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 = Az | G4

senems | CTAIC | popsger
P M - Ay | Cs of constraints

(SMT-like)
TEA 7

19/49

lterative proof construction

*

3 = Az | G4

senems | CTAIC | popsger
P M - Ay | Cs of constraints

(SMT-like)
r-AJC

19/49

lterative proof construction

*

3 = Az | G4

analyt_lc reasoning M- A, I Co propagation

about input formula M E A)G of constraints
(SMT-like) 1 1 3
r-Adlyc

@ Constraints are simplified during propagation

@ If Cisvalid, thensoisT F A

o If C is satisfiable, it describes a solution forI' = A
@ If C is unsatisfiable, expand the proof tree further . ..

19/49

lterative proof construction

*

3 = Az | G4

analyt_lc reasoning M- A, I Co propagation

about input formula M E A)G of constraints
(SMT-like) 1 1 3
r-Adlyc

@ Constraints are simplified during propagation

@ If Cisvalid, thensoisT F A

o If C is satisfiable, it describes a solution forI' = A
@ If C is unsatisfiable, expand the proof tree further . ..

@ Theories have two roles: analytic + propagation
19/49

A few proof rules

r-¢,ALC T FuwAUD
T oA, A L CAD

AND-RIGHT

r[x/cle,Vx.¢ B A | [x/c]C
rvx¢ - A | 3x.C

ALL-LEFT

(cis fresh)

PRED-UNIFY

*
CLOSE
ot B 1,0 JA L=t VeV Ve

(selected formulae are predicate-free)

20/49

A few proof rules

T ¢,ALC T Fy,ALD
T oA, A L CAD

AND-RIGHT

r[x/cle,Vx.¢ B A | [x/c]C
rvx¢ - A | 3x.C

ALL-LEFT

(cis fresh)

PRED-UNIFY

*
CLOSE
ot B 1,0 JA L=t VeV Ve

(selected formulae are predicate-free)

+ Theory rules!

20/49

In the example

*
17 X]
L1 £ X 5 sel(b,X) = sel(a,2) F sel(b X) = sel(a2)
AX b= sto(a1,2) F sel(b, X)=sel(a,?2)
AX b =sto(a,1,2) - Ix. sel(b,x) =sel(a,?2)
AX F b=sto(a,1,2) — 3Ix. sel(b,x)=sel(a?2)

21/49

In the example

F1#£X 4?2 sel(bX)=sel(a2) - sel(b,X)=sel(a2) §?
o1 # X = sel(b, X) =sel(a,2) b sel(b,X) =sel(a2) |7
AX,b=sto(a,1,2) F sel(b,X)=sel(a?2) |7
AX,b = sto(a,1,2) + 3x. sel(b,x) =sel(a?2) |7
AX F b=sto(a1,2) — 3Ix.sel(b,x)=sel(a?2) |7?

21/49

In the example

*
« :

F1#X J1#X sel(bX)=sel(a2) F sel(b,X)=sel(a2) | true
o1 # X = sel(b, X) =sel(a,2) b sel(b,X) =sel(a2) §1#X
AX b =sto(a1,2) b sel(b,X)=sel(a2) §1#X
AX b= sto(a,1,2) + 3x. sel(b,x) =sel(a2) §IX1#X
AX + b=sto(a1,2) — 3Ix.sel(b,x)=-sel(a?2) | true

21/49

Correctness

Lemma (Soundness)
It's sound!

Lemma (Completeness)
Complete for fragments:
@ FOL
PA
Purely existential formulae

°
°
@ Purely universal formulae
°

Universal formulae with finite parametrisation
(same as ME(LIA))

22/49

Functions

23/49

Functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

23/49

Functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

@ Axioms necessary: Totality + Functionality

vX.3y. (X, y)
VX, Y1, Yo. (fo(X, 1) = fo(X, ¥2) = ¥1 = Vo)

23/49

Functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~ fh(x,¢) A gp(c,a,d)

@ Axioms necessary: Totality + Functionality

vx.3y. fo(X,)
VX, Y1, Yo (To(X, y1) = fo(X, ¥2) = y1 = ¥2)

@ Very closely resembles congruence closure

23/49

Relative completeness

In SMT solvers:
@ Choice of triggers determines provability
@ Bad triggers — bad luck

In the first-order SMT calculus:
@ Choice of triggers determines performance
@ Regardless of triggers, the same formulae are provable

@ E-matching is complemented by
free variables + unification

24/49

Practicality

AUFLIA+p (193) AUFLIA-p (193)

Z3 191 191
PRINCESS 145 137
CVC3 132 128

Implementation of our calculus in PRINCESS
Unsatisfiable AUFLIA benchmarks from SMT-comp 2011

Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
http://www.philipp.ruemmer.org/princess.shtml

Currently running: CASC 2012

25/49

http://www.philipp.ruemmer.org/princess.shtml

Related work

@ ME(LIA):

[Baumgartner, Tinelli, Fuchs, 08], [Baumgartner, Tinelli, 11]
@ SPASS+T

[Prevosto, Waldmann, 06]
@ DPLL(SP)

[de Moura, Bjerner, 08]
@ Complete instantiation
[Ge, de Moura, 09]

@ Saturation + theories, e.qg.
[Stickel, 85], [Burchert, 90],
[Bachmair, Ganzinger, Waldmann, 94],
[Korovin, Voronkov, 07],
[Althaus, Kruglov, Weidenbach, 09]

26/49

Conclusion

@ Overall challenge:
Combine the theories and performance of SMT solvers
with the completeness of FOL provers

@ Presented work is one step in this direction

Ongoing work:
@ Better unification on term level
@ Better heuristics for introducing free variables
@ Lemma learning
@ Generalisation to other theories

27/49

Computation of Craig Interpolants

Motivation: inference of invariants

Generic verification problem (“safety”)
{ pre } while (%) Body { post }

Standard approach: loop rule using invariant

pre=¢ { ¢ } Body { ¢ } ¢=> post

{ pre } while (*) Body { post }

How to compute ¢ automatically?

29/49

From intermediate assertions to invariants

{pre} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion)4

{pre} Body {91} {11} Body {post}

[McMillan, 2003]

30/49

From intermediate assertions to invariants

{pre} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion)4

{pre} Body {91} {11} Body {post}

[1 = pre]

pre is invariant [McMillan, 2003]

30/49

From intermediate assertions to invariants

{pre} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion)4

{pre} Body {91} {11} Body {post}

[¢1 = pre] [otherwise]

pre is invariant [McMillan, 2003]

30/49

From intermediate assertions to invariants

{pre V 11} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion

{pre V 11} Body {1o} {12} Body {post}

[¢1 = pre] [otherwise]

pre is invariant [McMillan, 2003]

30/49

From intermediate assertions to invariants

{pre V ¥1} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion)

{pre V 91} Body {92} {12} Body {post}

[V = pre V] [otherwise]

V)¢ is invariant
pre V¢ Isinvari [McMillan, 2003]

30/49

From intermediate assertions to invariants

{pre V ¥1} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion)

{pre V 91} Body {92} {12} Body {post}

[2 = pre V4]

pre V4 IS invariant [McMillan, 2003]

30/49

How to compute intermediate assertions?

{ pre } pre (So)
Body; — Body (Sp, S1)
Body — Body (51, S2)
{ post } — post (82)

31/49

How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

@ A— land|— C are valid,
@ every non-logical symbol of | occurs in both A and C.

31/49

How to compute intermediate assertions?

{ pre } pre (SO) A(SOSS1)
Body; — Body (Sp, S1) !
.-...-..B.O-(.j.y.-...-........_.)..B;O.a.y.(-;:,.;;)..-..l /(81)
{ post } — post (S2) C(S1l,)

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

@ A— land | — C are valid,
@ every non-logical symbol of | occurs in both A and C.

31/49

lllustration

Interpolation problem: A—/— C

c

& N

32/49

lllustration

Interpolation problem: A—/— C

c

& N\

32/49

Reverse interpolants

Definition

Suppose A A B is unsatisfiable.
A reverse interpolant is a formula / such that

@ A— [and B — —/ are valid,
@ every non-logical symbol of / occurs in both A and B.

| is reverse interpolant for AN B
=
| is interpolant for A — —B

33/49

Available interpolation engines (incomplete .. .)

@ Foci

@ CSlsat

@ MathSAT

@ SMTlInterpol
@ OpenSMT
@ iZ3

@ Princess

34/49

Proof-based interpolation techniques

Implication A — C

[Theorem prover] Model

Proof of A— C

Interpolating proof of A — C

Craig interpolant A — | — C

35/49

Interpolating propositional logic

@ Interpolation procedures available for many calculi
@ Overview paper for resolution proofs: [D’Silva et al, 2010]

@ Shown here: interpolants from a Gentzen-style proof
(similar to calculus from before, but without constraints)

36/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*
M3 F Ag
M F A
M F A

AL C

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

M3 F Ag

annotation of M - Ao
formulae with labels M = Aq

AL C

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

M3 F Ag

annotation of > F As
formulae with labels M = Aq

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

M3 F Ag
annotation of o F Ao
formulae with labels = A

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

M3 F A

annotation of M - A
formulae with labels = A

AlL F |Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s+ A

annotation of M - A
formulae with labels = A

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

s+ A
annotation of N - A propagation of
formulae with labels s |— A3 interpolants

AL E (Gl

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s = A » 1y
Mo = Az l propagation of

annotation of
T+ A7 interpolants

formulae with labels

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s = A5 » g
F Ay e b l propagation of

annotation of P
interpolants

formulae with labels TR AT

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s+ A5 »l
3 = A5 » b l propagation of

annotation of 2 /2 ™2
= A7 »h interpolants

formulae with labels

AlL F [Cla

37/49

Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s+ A5 »l
3 = A5 » b l propagation of

annotation of 2 /2 ™2
= A7 »h interpolants

formulae with labels

AlL - [Cla »

37/49

Labelled formulae

Interpolation problem: A—/— C

Labelled formula Intuition
I “¢ is subformula of A”
l¢]R “¢ is subformula of C”

38/49

Non-interpolating proof:

*

pl_ paqar *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr

39/49

Non-interpolating proof:

*

pl_ p7q>r *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr

Lifted interpolating proof:

lple F plL %
=Pl Pl = - gl Pl = 1alR LrR
l~pVvalL, el = Lalr 1R
lmpVvale el - lgVvr]s

39/49

Non-interpolating proof:

*

pl_ p7q>r *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr

Lifted interpolating proof:

*x

lple = |plL » false %
l=pJe, Pl = ... »false [qli, Pl |QlR Irlr »q
=PV alL, [pl. = Q)R [rlr » falseV q
[meVvallpl - lgVvrlr »q

39/49

Interpolating propositional rules

Mot - A»l Clola - A »
Ll Awd Mlvle - A »J
LoVl B AwiIvd OR-LEFTL 7 OVOlAF B »IAd OR-LEFT-R
r7 L(Z)JDa LwJD A » r e |_¢JD7A >/
Flonvlo - o w i ANOLEFT A e NOTLEFT
* *
F 1ol - [0)ua »false COSEYY FGIn T [olna » frue CHOSERR
* *
r, |_¢JL YN CLOSE-LR o lo)n - L¢JL>A > o CLOSE-RL

OUx /el [Vxgle = A w a0 T Lx/Hé]r, [VXdlr = A w1 5.
r|Vx.¢|. - A » Vgl LEFTL r,|vx.¢lg - A » 3,1 LEFTR

I Lx/clélo B A w1 gy M F lx/clolo, A » 1 p -

r,|3x.¢lp - A » | LEFT I+ |Vx.¢|p,A » | RIGHT

40/49

Interpolating integer arithmetic . . .

Some theory rules for integers

Linear combination of inequalities (o« > 0,3 > 0)

[...,as+Bt<0F A
[,s<0, t<0F A

FM-ELIM’

Strengthening inequalities (subsumes rounding, Gomory cuts)

t=0FA T,t+1<0F A
t<o0r A

STRENGTHEN'

42/49

Some theory rules for integers

Linear combination of inequalities (o« > 0,3 > 0)

[...,as+Bt<0F A
[,s<0, t<0F A

FM-ELIM’

Strengthening inequalities (subsumes rounding, Gomory cuts)

t=0FA T,t+1<0F A
Mt<okF A

STRENGTHEN'

@ Calculus contains both analytic and synthetic rules
= More general form of labels needed

42/49

Extended labelled formulae

Interpolation problem: A—/— C

Labelled formula Intuition
Kan “¢ is subformula of A”
l¢]R “¢ is subformula of C”

“y is A-contribution to ¢”

atd 1 is the partial interpolant of ¢

43/49

Selection of interpolating integer rules

Linear combination of inequalities (o« > 0,3 > 0)

M,...,a8+Bt<0[as?+6tA<0] - A » I
s<O0[sA<O0,t<0[tA<0] - A »

FM-ELIM

*

: . : CLOSE-INEQ
NLa<O[A<0lF A»tA<0

44/49

Interpolating proof example

%
...,3<0[6x<0] - »x<0
., 3x<0[8x<0], 2x+1<0[0<0] - »x<0
L BXx—2X0[Bx—2%0], 2x+1<0[0<0] F »x<0
a+x<0[a+x<0],
—a+2x-2<0[-a+2x-2<0], - »x<0
—2x+1<0[0<0]

Original proof
INEQ-CLOSE’
FM-ELIM’

..., 3Z0F
..., 3x<0, 2x+1<0 F
..., 3x—2<0, 2x+1<0 F
a+x<0, —a+2x-2<0, 2x+1<0 +

~ STRENGTHEN' x 2

FM-ELIM’

45/49

@ Difference logic
[McMillan, 2006]

@ Integer equalities + divisibility constraints
[Jain, Clarke, Grumberg, 2008]

@ Unit-two-variable-per-inequality
[Cimatti, Griggio, Sebastiani, 2009]

@ Simplex-based, full PA

[Lynch, Tang, 2008]
= Leaves local symbols/quantifiers in interpolants

46/49

Literature (2)

Proof-based methods for full PA:

@ Sequent calculus-based
[Brillout, Kroening, Rimmer, Wahl, 2010]

@ Simplex-based, special branch-and-cut rule
[Kroening, Leroux, Rimmer, 2010]

@ Simplex-based, targeting SMT
[Griggio, Le, Sebastiani, 2011]

@ From Z3 proofs
[McMillan, 2011]

47/49

Conclusion

@ Interpolation engines are today available for many
logics/theories

@ Not quite as mature yet as SMT in general

Remaining challenges:

@ mixed-integer, bit-vectors, full first-order logic,
quantifier-free arrays, . ..

@ exploration of the interpolant space

48/49

Thanks for your attention!

49/49

