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@ Some SMT challenges from verification

@ Quantifiers in SMT
— First-order version of SMT

@ Computation of Craig interpolants



Disclaimer

@ Highly biased challenges (my point of view)
@ Some results shown are not by myself

@ Some results shown are joint work
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First-order provers

SAT/SMT solvers

Resolution, superposition,
tableaux, etc.

(Free) variables, unification

Complete for FOL

DPLL(T), CDCL, Nelson-
Oppen

E-matching, heuristics

Complete on ground
fragment

Many built-in theories

Tailored to
algebra, logic, etc.

Tailored to verification;
(usually) incomplete on
quantified problems
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From SAT to SMT

Clauses involved

DPLL: in conflict CDCL:
search for learn lemmas
models from unsatisfiable
New clauses branches
derived
Prop. truth

Theory lemmas -
v assignments

Theory solver(s),
handling (Arithmetic, functions,
conjunctions of arrays, etc.)

theory literals



Some challenging theories

@ Integers
@ Non-linear arithmetic
@ Floating-point arithmetic

@ Words/strings



Quantifiers in SMT

(one of the main challenges)
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Prop. truth
assignments
SAT solver, Theory solver(s),
handling handling
propositional conjunctions of
skeleton theory literals

Theory lemmas

Ground
Instances terms

Instance generator
V.1, V.o, . ..

@ E-matching (Simplify, Stanford Pascal Verifier)

@ Complete instantiation; counterexample-based
[Ge, de Moura, 09]

@ Superposition [de Moura, BjA rner, 09]



E-Matching

Matching of triggers (modulo equations)

r VX6 I A
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Matching of triggers (modulo equations)
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@ Check for matching ground terms
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b= sto(a,1,2) — sel(b,2)=sel(a,?2)

\forall int a, i, v;
sel (sto(a, i, v), 1) = v

\forall int a, 11, 12, wv;

(11 !'= 12 —>
sel (sto(a, 11, wv), 1i2) = sel(a, 1i2))
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b= sto(a,1,2) — sel(b,2)=sel(a,?2)
b= sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

\forall int a, i, v;
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\forall int a, 11, 12, wv;
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b=sto(a1,2) —» sel(b,2)=sel(a?2)
b=sto(a1,2) — 3Ix.sel(b,x)=sel(a?2)
b= sto(a,1,2) — 3Ix.sel(b,x+1)=sel(a2)
b= sto(a,1,2) — 3Ix.sel(b,x)=sel(a x)

\forall int a, i, v;
sel (sto(a, i, v), 1) = v

\forall int a, 11, 12, wv;

(11 !'= 12 —>
sel (sto(a, 11, wv), 1i2) = sel(a, 1i2))
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E-Matching

Heuristic — incomplete

Good for “simple” instances

User guidance possible — triggers

But also brittle, easy to choose wrong triggers
Fast — only ground reasoning

@ Restrictions particularly problematic for
“deductive verification”
= Complicated specifications without good triggers
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Small engines

SAT solver, Theory solver(s),
handling handling
propositional conjunctions of

skeleton theory literals
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Small engines

First-order solver: Theory solver(s),
boolean structure, handling
functions, conjunctions of

quantifiers theory literals

13/49



Small engines

First-order solver:
boolean structure,
functions,
quantifiers

Theory solver:
quantified
theory constraints
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First-order SMT



Putting things together

Current choices:
o KE-tableau/DPLL FOL
@ Theory procedures Arithmetic
@ Free variables + constraints Quantifiers

E-matching Axiomatisation of theories

Interesting completeness results
Experimental implementation: PRINCESS
More details in [LPAR’08], [LPAR’12]

Long-term goal: framework as general as SMT
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In the example

AX + b=sto(a,1,2) — 3Ix.sel(b,x)=sel(a?2)

AX =
\forall int a, i, v;
sel(sto(a, i, v), 1) = v
\forall int a, il, 12, v;
(i1 '= i2 —->
sel(sto(a, i1, v), 1i2) = sel(a, 1i2))
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In the example
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The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a‘X‘C‘at+-~+at

¢ = dANP|dVP| -0 |Vxe|Ixe
|t=0|t>0|t<0]|alt]|pt,....1)

t ... terms

¢ ... formulae

X ... variables

c ... constants

p ... uninterpreted predicates (fixed arity)

a ... integer literals (7Z)
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The base logic [LPAR’08]

Linear integer arithmetic + uninterpreted predicates:

t = a‘X‘C‘at+-~+at

OAG| oV | 0| Vx| Ixe
|t=0|t>0|t<0]|alt]|pt,....1)

o

@ Functions encoded as relations (later)
@ Subsumes FOL and Presburger arithmetic (PA)
@ Valid formulae are not enumerable [Halpern, 1991]
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Constrained sequents

Notation used here:

rea yc
——

Antecedent, Succedent Constraint/approximation
(sets of formulae) (formula)

Definition
= A | Cis validif the formula C — AT — \/ A is valid.
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lterative proof construction

M- A2
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lterative proof construction

Mo - Ao |7
M- A 7

about input formula

analytic reasoning T
(SMT-like)

TrEA 7

19/49



lterative proof construction

. _ M3 - Ag |7
o casena 1 £ 17
b M A 47

(SMT-like)
TEA 7

19/49



lterative proof construction

*

3 - Az |7

analytic reasoning
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lterative proof construction
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lterative proof construction

*

3 = Az | G4

senems | CTAIC | popsger
P M - Ay | Cs of constraints

(SMT-like)
r-AJC
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lterative proof construction

*

3 = Az | G4

analyt_lc reasoning M- A, I Co propagation

about input formula M E A )G of constraints
(SMT-like) 1 1 3
r-Adlyc

@ Constraints are simplified during propagation

@ If Cisvalid, thensoisT F A

o If C is satisfiable, it describes a solution forI' = A
@ If C is unsatisfiable, expand the proof tree further . ..
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lterative proof construction

*

3 = Az | G4

analyt_lc reasoning M- A, I Co propagation

about input formula M E A )G of constraints
(SMT-like) 1 1 3
r-Adlyc

@ Constraints are simplified during propagation

@ If Cisvalid, thensoisT F A

o If C is satisfiable, it describes a solution forI' = A
@ If C is unsatisfiable, expand the proof tree further . ..

@ Theories have two roles: analytic + propagation
19/49



A few proof rules

r-¢,ALC T FuwAUD
T oA, A L CAD

AND-RIGHT

r[x/cle,Vx.¢ B A | [x/c]C
rvx¢ - A | 3x.C

ALL-LEFT

(cis fresh)

PRED-UNIFY

*
CLOSE
ot B 1,0 JA L=t VeV Ve

(selected formulae are predicate-free)
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A few proof rules

T ¢,ALC T Fy,ALD
T oA, A L CAD

AND-RIGHT

r[x/cle,Vx.¢ B A | [x/c]C
rvx¢ - A | 3x.C

ALL-LEFT

(cis fresh)

PRED-UNIFY

*
CLOSE
ot B 1,0 JA L=t VeV Ve

(selected formulae are predicate-free)

+ Theory rules!
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In the example

*
17 X]
L1 £ X 5 sel(b,X) = sel(a,2) F sel(b X) = sel(a2)
AX b= sto(a1,2) F sel(b, X)=sel(a,?2)
AX b =sto(a,1,2) - Ix. sel(b,x) =sel(a,?2)
AX F b=sto(a,1,2) — 3Ix. sel(b,x)=sel(a?2)
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In the example

F1#£X 4?2 sel(bX)=sel(a2) - sel(b,X)=sel(a2) §?
o1 # X = sel(b, X) =sel(a,2) b sel(b,X) =sel(a2) |7
AX,b=sto(a,1,2) F sel(b,X)=sel(a?2) |7
AX,b = sto(a,1,2) + 3x. sel(b,x) =sel(a?2) |7
AX F b=sto(a1,2) — 3Ix.sel(b,x)=sel(a?2) |7?
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In the example

*
« :

F1#X J1#X  sel(bX)=sel(a2) F sel(b,X)=sel(a2) | true
o1 # X = sel(b, X) =sel(a,2) b sel(b,X) =sel(a2) §1#X
AX b =sto(a1,2) b sel(b,X)=sel(a2) §1#X
AX b= sto(a,1,2) + 3x. sel(b,x) =sel(a2) §IX1#X
AX + b=sto(a1,2) — 3Ix.sel(b,x)=-sel(a?2) | true
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Correctness

Lemma (Soundness)
It's sound!

Lemma (Completeness)
Complete for fragments:
@ FOL
PA
Purely existential formulae

°
°
@ Purely universal formulae
°

Universal formulae with finite parametrisation
(same as ME(LIA))
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Functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~  fh(x,¢) A gp(c,a,d)
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Functions

Functions almost like in SMT:
@ Terms are always flattened

@ n-ary function f becomes (n+ 1)-ary predicate f,
E.g.

9(f(x),a) ~ f(x)=cAg(c,a)=d
~  fh(x,¢) A gp(c,a,d)

@ Axioms necessary: Totality + Functionality

vx.3y. fo(X, )
VX, Y1, Yo (To(X, y1) = fo(X, ¥2) = y1 = ¥2)

@ Very closely resembles congruence closure
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Relative completeness

In SMT solvers:
@ Choice of triggers determines provability
@ Bad triggers — bad luck

In the first-order SMT calculus:
@ Choice of triggers determines performance
@ Regardless of triggers, the same formulae are provable

@ E-matching is complemented by
free variables + unification
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Practicality

AUFLIA+p (193)  AUFLIA-p (193)

Z3 191 191
PRINCESS 145 137
CVC3 132 128

Implementation of our calculus in PRINCESS
Unsatisfiable AUFLIA benchmarks from SMT-comp 2011

Intel Core i5 2-core, 3.2GHz, timeout 1200s, 4Gb
http://www.philipp.ruemmer.org/princess.shtml

Currently running: CASC 2012
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Related work

@ ME(LIA):

[Baumgartner, Tinelli, Fuchs, 08], [Baumgartner, Tinelli, 11]
@ SPASS+T

[Prevosto, Waldmann, 06]
@ DPLL(SP)

[de Moura, Bjerner, 08]
@ Complete instantiation
[Ge, de Moura, 09]

@ Saturation + theories, e.qg.
[Stickel, 85], [Burchert, 90],
[Bachmair, Ganzinger, Waldmann, 94],
[Korovin, Voronkov, 07],
[Althaus, Kruglov, Weidenbach, 09]
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Conclusion

@ Overall challenge:
Combine the theories and performance of SMT solvers
with the completeness of FOL provers

@ Presented work is one step in this direction

Ongoing work:
@ Better unification on term level
@ Better heuristics for introducing free variables
@ Lemma learning
@ Generalisation to other theories
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Computation of Craig Interpolants



Motivation: inference of invariants

Generic verification problem (“safety”)
{ pre } while (%) Body { post }

Standard approach: loop rule using invariant

pre=¢ { ¢ } Body { ¢ }  ¢=> post

{ pre } while (*) Body { post }

How to compute ¢ automatically?
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From intermediate assertions to invariants

{pre} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion )4

{pre} Body {91} {11} Body {post}

[McMillan, 2003]
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{pre} Body {91} {11} Body {post}
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pre is invariant [McMillan, 2003]
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From intermediate assertions to invariants

{pre} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion )4

{pre} Body {91} {11} Body {post}

[¢1 = pre] [otherwise]

pre is invariant [McMillan, 2003]

30/49



From intermediate assertions to invariants

{pre V 11} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion

{pre V 11} Body {1o} {12} Body {post}

[¢1 = pre] [otherwise]

pre is invariant [McMillan, 2003]
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From intermediate assertions to invariants

{pre V ¥1} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion )

{pre V 91} Body {92} {12} Body {post}

[V = pre V] [otherwise]

V )¢ is invariant
pre V¢ Isinvari [McMillan, 2003]
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From intermediate assertions to invariants

{pre V ¥1} Body; Body {post} ?
Bounded model checking problem

Compute intermediate assertion )

{pre V 91} Body {92} {12} Body {post}

[2 = pre V4]

pre V4 IS invariant [McMillan, 2003]
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How to compute intermediate assertions?

{ pre } pre (So)
Body; — Body (Sp, S1)
Body — Body (51, S2)
{ post } — post (82)
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How to compute intermediate assertions?

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

@ A— land|— C are valid,
@ every non-logical symbol of | occurs in both A and C.
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How to compute intermediate assertions?

{ pre } pre (SO) A(SOSS1)
Body; — Body (Sp, S1) !
.-...-..B.O-(.j.y.-...-........_.)..B;O.a.y.(-;:,.;;)..-..l /(81)
{ post } — post (S2) C(S1l, )

Theorem (Craig, 1957)

Suppose A — C is a valid FOL implication.
Then there is a formula | (an interpolant) such that

@ A— land | — C are valid,
@ every non-logical symbol of | occurs in both A and C.
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lllustration

Interpolation problem: A—/— C

c

& N
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lllustration

Interpolation problem: A—/— C

c

& N\
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Reverse interpolants

Definition

Suppose A A B is unsatisfiable.
A reverse interpolant is a formula / such that

@ A— [and B — —/ are valid,
@ every non-logical symbol of / occurs in both A and B.

| is reverse interpolant for AN B
=
| is interpolant for A — —B
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Available interpolation engines (incomplete .. .)

@ Foci

@ CSlsat

@ MathSAT

@ SMTlInterpol
@ OpenSMT
@ iZ3

@ Princess
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Proof-based interpolation techniques

Implication A — C

[Theorem prover] Model

Proof of A— C

Interpolating proof of A — C

Craig interpolant A — | — C
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Interpolating propositional logic

@ Interpolation procedures available for many calculi
@ Overview paper for resolution proofs: [D’Silva et al, 2010]

@ Shown here: interpolants from a Gentzen-style proof
(similar to calculus from before, but without constraints)
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*
M3 F Ag
M F A
M F A

AL C
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C
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annotation of M - A
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AlL F [Cla

37/49



Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

s+ A
annotation of N - A propagation of
formulae with labels s |— A3 interpolants

AL E (Gl
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s = A » 1y
Mo = Az l propagation of

annotation of
T+ A7 interpolants

formulae with labels

AlL F [Cla
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s = A5 » g
F Ay e b l propagation of

annotation of P
interpolants

formulae with labels TR AT

AlL F [Cla
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s+ A5 »l
3 = A5 » b l propagation of

annotation of 2 /2 ™2
= A7 »h interpolants

formulae with labels

AlL F [Cla
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Basic idea of proof lifting in a sequent calculus

Interpolation problem: A—/— C

*

s+ A5 »l
3 = A5 » b l propagation of

annotation of 2 /2 ™2
= A7 »h interpolants

formulae with labels

AlL - [Cla »
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Labelled formulae

Interpolation problem: A—/— C

Labelled formula Intuition
I “¢ is subformula of A”
l¢]R “¢ is subformula of C”
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Non-interpolating proof:

*

pl_ paqar *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr
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Non-interpolating proof:

*

pl_ p7q>r *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr

Lifted interpolating proof:

lple F plL %
=Pl Pl = - gl Pl = 1alR LrR
l~pVvalL, el = Lalr 1R
lmpVvale el - lgVvr]s
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Non-interpolating proof:

*

pl_ p7q>r *
-p,p - qr q.pt qr
-pVvVaq,pt qr

-pVvVQq,pt qVvr

Lifted interpolating proof:

*x

lple = |plL » false %
l=pJe, Pl = ... »false  [qli, Pl |QlR Irlr »q
=PV alL, [pl. = Q)R [rlr » falseV q
[meVvallpl - lgVvrlr »q
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Interpolating propositional rules

Mot - A»l Clola - A »
Ll Awd Mlvle - A »J
LoVl B AwiIvd OR-LEFTL 7 OVOlAF B »IAd OR-LEFT-R
r7 L(Z)JDa LwJD A » r e |_¢JD7A >/
Flonvlo - o w i ANOLEFT A e NOTLEFT
* *
F 1ol - [0)ua »false COSEYY FGIn T [olna » frue CHOSERR
* *
r, |_¢JL YN CLOSE-LR o lo)n - L¢JL>A > o CLOSE-RL

OUx /el [Vxgle = A w a0 T Lx/Hé]r, [VXdlr = A w1 5.
r|Vx.¢|. - A » Vgl LEFTL r,|vx.¢lg - A » 3,1  LEFTR

I Lx/clélo B A w1 gy M F lx/clolo, A » 1 p -

r,|3x.¢lp - A » | LEFT I+ |Vx.¢|p,A » | RIGHT
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Interpolating integer arithmetic . . .



Some theory rules for integers

Linear combination of inequalities (o« > 0,3 > 0)

[ ...,as+Bt<0F A
[,s<0, t<0F A

FM-ELIM’

Strengthening inequalities (subsumes rounding, Gomory cuts)

t=0FA T,t+1<0F A
t<o0r A

STRENGTHEN'
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Some theory rules for integers

Linear combination of inequalities (o« > 0,3 > 0)

[ ...,as+Bt<0F A
[,s<0, t<0F A

FM-ELIM’

Strengthening inequalities (subsumes rounding, Gomory cuts)

t=0FA T,t+1<0F A
Mt<okF A

STRENGTHEN'

@ Calculus contains both analytic and synthetic rules
= More general form of labels needed
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Extended labelled formulae

Interpolation problem: A—/— C

Labelled formula Intuition
Kan “¢ is subformula of A”
l¢]R “¢ is subformula of C”

“y is A-contribution to ¢”

atd 1 is the partial interpolant of ¢
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Selection of interpolating integer rules

Linear combination of inequalities (o« > 0,3 > 0)

M,...,a8+Bt<0[as?+6tA<0] - A » I
s<O0[sA<O0,t<0[tA<0] - A »

FM-ELIM

*

: . : CLOSE-INEQ
NLa<O[A<0lF A»tA<0
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Interpolating proof example

%
...,3<0[6x<0] - »x<0
., 3x<0[8x<0], 2x+1<0[0<0] - »x<0
L BXx—2X0[Bx—2%0], 2x+1<0[0<0] F »x<0
a+x<0[a+x<0],
—a+2x-2<0[-a+2x-2<0], - »x<0
—2x+1<0[0<0]

Original proof
INEQ-CLOSE’
FM-ELIM’

..., 3Z0F
..., 3x<0, 2x+1<0 F
..., 3x—2<0, 2x+1<0 F
a+x<0, —a+2x-2<0, 2x+1<0 +

~ STRENGTHEN' x 2

FM-ELIM’
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@ Difference logic
[McMillan, 2006]

@ Integer equalities + divisibility constraints
[Jain, Clarke, Grumberg, 2008]

@ Unit-two-variable-per-inequality
[Cimatti, Griggio, Sebastiani, 2009]

@ Simplex-based, full PA

[Lynch, Tang, 2008]
= Leaves local symbols/quantifiers in interpolants

46/49



Literature (2)

Proof-based methods for full PA:

@ Sequent calculus-based
[Brillout, Kroening, Rimmer, Wahl, 2010]

@ Simplex-based, special branch-and-cut rule
[Kroening, Leroux, Rimmer, 2010]

@ Simplex-based, targeting SMT
[Griggio, Le, Sebastiani, 2011]

@ From Z3 proofs
[McMillan, 2011]
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Conclusion

@ Interpolation engines are today available for many
logics/theories

@ Not quite as mature yet as SMT in general

Remaining challenges:

@ mixed-integer, bit-vectors, full first-order logic,
quantifier-free arrays, . ..

@ exploration of the interpolant space
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Thanks for your attention!
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