Tutorial: CP by Systematic Search Over Real-Number and Floating-Point Domains

Michel RUEHER

University Nice Sophia-Antipolis I3S – CNRS, France

CP meets CAV

25 June – 29 June 2012

Turunç, Turkey

Outline

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencies

Global constraints

Constraints over the floats

Search

Conclusion

Numeric CSP

Interval Arithmetic

ocal

obal

the floats

earcn

onclusion

stems

Constraint Programming

M. Rueher

Numeric CSP $(\mathcal{X}, \mathcal{D}, \mathcal{C})$:

- $ightharpoonup \mathcal{X} = \{x_1, \dots, x_n\}$ is a set of variables
- ▶ $\mathcal{D} = \{D_{X_1}, \dots, D_{X_n}\}$ is a set of domains $(D_{X_i} \text{ contains all acceptable values for variable } x_i)$
- $ightharpoonup C = \{c_1, \dots, c_m\}$ is a set of constraints

Numeric CSP

Overall scheme

Interval Arithmetic

Local consistencies

Global constraints

Constraints over the floats

Search

Conclusion

Global constraints

he floats

Search

Conclusion

Systems

The constraint programming framework is based on a branch & prune schema which is best viewed as an iteration of two steps:

- 1. Pruning the search space
- 2. Making a choice to generate two (or more) sub-problems
- The pruning step → reduces an interval when it can proved that the upper bound or the lower bound does not satisfy some constraint
- ► The branching step → splits the interval associated to some variable in two intervals (often with the same width)

Continuous CSP

M. Rueher

Interval Arithmetic

_ocal

Global constraints

Constraints ove the floats

Search

Conclusion

Continuous CSP

M. Rueher

Interval Arithmetic

Local consistencie:

Global constraints

Constraints ove the floats

Search

Conclusion

Continuous CSP

M Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local

Global

Constraints ove the floats

Search

Conclusion

Continuous CSP

M. Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local consistencies

Global constraints

Constraints ove the floats

Search

Conclusion

Continuous CSP

M. Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local

Global constraint

Constraints over the floats

Search

Conclusion

vstems

Continuous CSP

M Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local consistencie:

alobal onstraints

Constraints over the floats

Search

Conclusion

vstems

Continuous CSP

M Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local consistencies

Global onstraints

Constraints over the floats

Search

Conclusion

vstems

Continuous CSP

M Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local consistencies

Global constraints

Constraints ove the floats

Search

Conclusion

Continuous CSP

M Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local

alobal onstraints

Constraints ove the floats

Search

Conclusion

M. Rueher

Numeric CSP Overall scheme

Interval Arithmetic

Local consistencies

Global constraint

Constraints over the floats

Search

Conclusion

Why do we need intervals?

Continuous CSP

M. Rueher

► Modelling uncertainty

- Error in Measurement or uncertainty in measurements
- Uncertainty when estimating unknown values
- Safe Computations with floating-point numbers
 - Rounding errors
 - Cancellation, ...

What Every Computer Scientist Should Know About Floating-Point Arithmetic, Goldberg, 1991

Numeric CSP

Interval Arithmetic

Basics on Interval

Local consistencies

Global constraints

Constraints over the floats

Search

Conclusion

Examples

(in simple precision)

- ▶ **Absorption:** $10^7 + 0.5 = 10^7$
- ► Cancellation:

$$((1-10^{-7})-1)*10^7 = -1.192...(\neq -1)$$

- Propertions are not associative: $(10000001 10^7) + 0.5 \neq 10000001 (10^7 + 0.5)$
- No exact representation: 0.1 = 0.000110011001100...

Rump polynomial

- ► RumpFunc[x_, y_]:= $(1335/4 x^2)y^6 + x^2(11x^2y^2 121y^4 2) + (11/2)y^8 + x/(2y)$
- ▶ Value computed with rational numbers: RumpFunc[77617, 33096] = $-\frac{54767}{66192}$ = -0.827396
- Value with floating point numbers: 0
- Value with floating point numbers when 11/2 is replaced by 5.5 in the polynomial: 1.18059 × 10²¹

Numeric CSP

Interval Arithmetic

Basics on Intervals

consistencies

constraints

Constraints ove the floats

Search

Conclusion

An **interval** [a, b] describes a set of real numbers x such that: a < x < b

Assumption:

a and b belong to finite set of numbers representable on a computer: floating-point numbers, subset of integers, rational numbers, ...

A Box denotes a Cartesian product of intervals

 a box is a vector of intervals that defines the search space of problem,

i.e., the space in which are the values of the variables

Global constraints

Constraints over the floats

Search

Conclusion

Systems

Interval arithmetic (Moore-1966)

is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns $\{x_1, \ldots, x_n\}$, an **interval evaluation** F of f for given ranges $\mathbf{X} = \{X_1, \ldots, X_n\}$ for the unknowns is an interval Y such that

$$\forall \{v_1,\ldots,v_n\} \in \{X_1,\ldots,X_n\}: \ \underline{Y} \leq f(v_1,\ldots,v_n) \leq \overline{Y}$$

 $\underline{Y}, \overline{Y}$: lower and upper bounds for the values of f when the values of the unknowns are restricted to the box X

consistencie

constraints

Constraints over the floats

Search

Conclusion

ystems

 In general, it is not possible to compute the exact enclosure of the range for an arbitrary function over the real numbers

→ The interval extension of a function is an interval function that computes an **outer approximation** of the range of the function over a domain

Natural interval extension

Continuous CSP

M. Rueher

Numeric CSP

Arithmetic

Basics on Intervals

Local consistencies

Global constraints

Constraints over the floats

Search

Conclusion

ystems

F the natural interval extension of a real function f is obtained by replacing:

- ▶ Each constant k by its natural interval extension \tilde{k}
- ► Each variable by a variable over the intervals
- ► Each mathematical operator in *f* by its **optimal** interval extension

Numeric Cor

Arithmetic

Basics on Intervals

Local consistencies

Global

Constraints over the floats

Search

Conclusion

•
$$[a, b] \ominus [c, d] = [a - d, b - c]$$

•
$$[a,b] \oplus [c,d] = [a+c,b+d]$$

•
$$[a,b] \otimes [c,d] = [\min(ac,ad,bc,bd),\max(ac,ad,bc,bd)]$$

•
$$[a, b] \oslash [c, d] = [\min(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d}), \max(\frac{a}{c}, \frac{a}{d}, \frac{b}{c}, \frac{b}{d})]$$

if $0 \not\in [c, d]$
otherwise $\rightarrow [-\infty, +\infty]$

Natural interval extension: Example

Continuous CSP

M Rueher

Arithmetic Basics on Intervals

Let $f = (x + y) - (y \times x)$ be a real function

Let be X = [-2, 3], Y = [-9, 1]

Let be
$$X = [-2, 3], Y = [-9, 1]$$

$$F = (X \oplus Y) \ominus (Y \otimes X) = ([-2,3] \oplus [-9,1]) \ominus ([-9,1] \otimes [-2,3])$$

$$= ([-11,4] \ominus ([-0,1]) \ominus ([-0,1]$$

$$[\min(18, -27, -2, 3), \max(18, -27, -2, 3)]$$

$$= [-11, 4] \ominus [-27, 18]$$

$$= [-29, 31]$$

Interval arithmetic: extension of relations

Continuous CSP

M. Rueher

Numeric CSP

Arithmetic

Rasics on Intervals

Local

Global

Constraints over

the floats

Search

Conclusion

ystems

Let $C: \mathcal{I}^n \to \mathcal{B}ool$ be a **relation** over the intervals

C is an **interval extension** of the relation $c : \mathbb{R}^n \to \mathcal{B}ool$ iff:

$$\forall X_1, \ldots, X_n \in \mathcal{I} : \exists v_1 \in X_1 \wedge \ldots \wedge \exists v_n \in X_n \wedge c(v_1, \ldots, v_n) \\ \Rightarrow C(X_1, \ldots, X_n)$$

For instance, $X_1 \doteq X_2 \Leftrightarrow (X_1 \cap X_2) \neq \emptyset$ is an interval extension of the relation $x_1 = x_2$ over the real numbers

Example:

Relation $X_1 \doteq X_2$ holds if $X_1 = [0, 17.5]$ and $X_2 = [17, 27.5]$

Interval extension: properties

Continuous CSP

M. Rueher

Numeric CSP

Interval

Basics on Intervals

Local consistencies

onstraints

Constraints over the floats

Search

Conclusion

- ▶ If $0 \notin F(X)$, then no value exists in the box X such that f(X) = 0 \rightarrow Equation f(X) does not have any root in the box X
- Interval arithmetic can be implemented taking into account round-off errors
- No monotonicity but interval arithmetic preserves inclusion monotonicity: Y ⊆ X ⇒ F(Y) ⊆ F(X)
- ► No distributivity but interval arithmetic is sub-distributive: $X(Y + X) \subseteq XY + XZ$

Problems when computing the image of an interval function (1)

Continuous CSP

M. Rueher

Numeric CSP

Interval

Basics on Intervals

Local consistencies

Global constraints

Constraints over the floats

Search

Conclusion

- Outward Rounding (required for safe computations with floating point numbers)
 - → enlarges intervals
- Non continuity of interval functions: the image of an interval is in general not an interval
 - The wrapping effect, which overestimates by a unique vector the image of an interval vector Example:

$$f(x) = \frac{1}{x} \text{ with } X = [-1, 1]$$

$$F([-1, 1]) = \frac{1}{[-1, 1]} = [-\infty, -1] \cup [1, +\infty]$$

$$\to = [-\infty, +\infty]$$

Problems when computing the image of an interval function (2)

Continuous CSP

M. Rueher

Numeric CSP

nterval Arithmetic

Basics on Intervals

Local consistencies

alobal constraints

Constraints over he floats

Search

Conclusion

ystems

The dependency problem, which is due to the independence of the different occurrences of a variable during the interval evaluation of an expression

Examples:

Consider
$$X = [0, 5]$$

$$X - X = [0 - 5, 5 - 0] = [-5, 5]$$
 instead of $[0, 0]$!

$$X^2 - X = [0, 25] - [0, 5] = [-5, 25]$$

$$X(X-1) = [0,5]([0,5]-[1,1]) = [0,5][-1,4] = [-5,20]$$

Interval extension: using different literal forms (1)

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Basics on Intervals

Local consistencie

constraints

Constraints over the floats

Search

Conclusion

Systems

 Factorized form (Horner for polynomial system) or distributed form

► First-order Taylor development of f

$$F_{\mathsf{tav}}(X) = f(x) + J(X).(X - x)$$

with $\forall x \in X$, J() being the Jacobian of f

Interval extension: using different literal forms (2)

Continuous CSP

M. Rueher

Numeric CSP

Arithmetic

Basics on Intervals

Local consistencies

Global constraints

Constraints ove the floats

Search

Conclusion

ystems

 In general, first order Taylor extensions yield a better enclosure than the natural extension on small intervals

- Taylor extensions have a quadratic convergence whereas the natural extension has a linear convergence
- ► In general, neither F_{nat} nor F_{tay} won't allow to compute the exact range of a function f

Interval extension: using different literal forms (3)

Continuous CSP

M Rueher

Arithmetic

Basics on Intervals

Consider
$$f(x) = 1 - x + x^2$$
, and $X = [0, 2]$

orisider
$$I(x) = 1 - x + x^2$$
, and $X = [0, 2]$

$$f_{\text{tay}}([0,2]) = f(x) + (2X-1)(X-x)$$

$$= f(1) + (2[0,2] - 1)([0,2] - 1) = [-2,4]$$

$$f_{\text{nat}}([0,2]) = 1 - X + X^2 = [1,1] - [0,2] + [0,2]^2 = [-1,5]$$

$$f_{\text{factor}}([0,2]) = 1 + X(X-1) = [1,1] + [0,2]([0,2] - [1,1])$$

= [-1,3]

whereas the range of f over X = [0, 2] is [0.75, 3]

► Informally speaking, a constraint system C satisfies a partial consistency property if a relaxation of C is consistent

- ► Consider $X = [\underline{x}, \overline{x}]$ and $C(x, x_1, ..., x_n) \in \mathcal{C}$: if $C(x, x_1, ..., x_n)$ does not hold for any values $a \in [\underline{x}, x']$, then X may be shrunken to $X = [x', \overline{x}]$
- ▶ A constraint C_j is AC-like-consistent if for any variable x_i in \mathcal{X}_j , the bounds \underline{D}_i and \overline{D}_i have a support in the domains of all other variables of \mathcal{X}_j

Numeric CSF

Interval Arithmetic

.ocal

Definitions
Relations between 2B

Implementation issue

constraints

ne floats

Search

Conclusion

Relations between 2B

▶ Let be $F: \mathcal{I}^n \to \mathcal{I}$ the natural interval extension of $f: \mathbb{R}^n \to \mathbb{R}$ and $f_{sol} = \square \{ f(v_1, \dots, v_n) \mid v_1 \in I_1, \dots, v_n \in I_n \}$

If each variable has only one occurrence in f then $f_{sol} \equiv F(I_1, \dots, I_n)$ else $f_{sol} \subseteq F(I_1, \ldots, I_n)$

 2B-consistency / Hull-consistency only requires to check the Arc-Consistency property for each bound of the intervals

Variable x with $X = [\underline{x}, \overline{x}]$ is 2B–consistent for constraint $f(x, x_1, ..., x_n) = 0$ if \underline{x} and \overline{x} are the leftmost and the rightmost zero of $f(x, x_1, ..., x_n)$

- ► Box-consistency
 - → coarser relaxation of AC than 2B-consistency but may achieve a better filtering

```
Variable x with X = [\underline{x}, \overline{x}] is Box–Consistent for constraint f(x, x_1, \dots, x_n) = 0 if \underline{x} and \overline{x} are the leftmost and the rightmost zero of F(X, X_1, \dots, X_n), the optimal interval extension of f(x, x_1, \dots, x_n)
```

Numeric CSP

Interval

ocal

Definitions
Relations between 2B

nd Box nplementation issue

constraints

Constraints over the floats

Search

Conclusion

Numeric CSP

Interval

Arithmetic

consistencie

Definitions Relations between 2B

Implementation issue

constraints

he floats

Search

Conclusion

Algorithms that achieve a local consistency filtering are based upon projection functions

Solution functions express the variable x_i in terms of the other variables of the constraint. The solution functions of x + y = z are:

$$f_X = z - y$$
, $f_Y = z - x$, $f_Z = x + y$

 For complex constraints, no analytic solution function may exist

Example:
$$x + log(x) = 0$$

- Analytic functions exist when the variable to express in terms of the others appears only once in the constraint
- ► Otherwise → to consider that each occurrence is a different new variable

For
$$x + log(x) = 0$$
 we obtain $\{x_1 + log(x_2) = 0, x_1 = x_2\}$
 $\rightarrow f_{x_1} = -log(x_2)$, $f_{x_2} = exp^{-x_1}$

- Decomposition does not change the semantics of the initial constraints system
- ... but it amplifies the dependency problem

Numeric CSP

Interval Arithmetic

_ocal

Definitions Relations between 2B

and Box mplementation issue

ilobal

Constraints over

Search

Conclusion

systems

2B-consistency filtering(1)

Continuous

M. Rueher

Algorithms that achieve 2B-consistency filtering are based upon projection functions

ightarrow considers that each occurrence is a different new variable

 \rightarrow initial constraints are decomposed into "primitive" constraints

Numeric CSP

Interval Arithmetic

_ocal

Definitions Relations between 2B

Implementation issue

constraints

Constraints over he floats

earch

Conclusion

Early stopping of the propagation algorithm

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

ocal

Definitions Relations between 2B

nd Box mplementation issue

lobal onstraints

onstraints over e floats

earch

Conclusio

/stems

In case of **asymptotic convergence**, it is not realistic to try to reduce the intervals until no more floating point number can be removed!

 \rightarrow To Stop the propagation before reaching the fixed point

Let be:

$$X = 2 \times Y$$

 $Y = X$
 $D_X = [-10, 10], D_Y = [-10, 10]$

2B-consistency will make the following reductions:

$$D_Y = [-5, 5]$$
 $D_X = [-5, 5]$ $D_X = [-2.5, 2.5]$ $D_X = [-2.5, 2.5]$ $D_X = [-1.25, 1.25]$ $D_X = [-1.25, 1.25]$ $D_X = [-1.25, 1.25]$ $D_X = [-0.625, 0.625]$

... better to stop propagation before reaching the fixed point !

Numeric CSP

Interval Arithmetic

ocal

Definitions Relations between 2B

and Box mplementation issue

Global onstraints

Constraints over he floats

Search

Conclusion

ystems

"Width" of the bound

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local

Definitions Relations between 2B

and Box Implementation issu

Global constraints

Constraints over the floats

Search

Conclusion

Systems

 a^{+w} stands for $(w+1)^{th}$ float after a a^{-w} stands for $(w+1)^{th}$ float before a

2B(w)-Consistency

Continuous CSP

M. Rueher

Let be $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ a CSP, $x \in \mathcal{X}$, $D_x = [a, b]$, w a positive integer D_x is 2B(w)–Consistent for variable x if:

- 1. $\exists v \in [a, a^{+w})$ and v is the leftmost zero of $f(x, x_1, \dots, x_n)$
- 2. $\exists v' \in (b^{-w}, b]$ and v' is the rightmost zero of $f(x, x_1, \dots, x_n)$

Numeric CSP

Interval Arithmetic

Local

Definitions Relations between 2B

and Box Implementation issue

Global constraints

Constraints over

Search

Conclusion

Systems

Problems with 2B(w)-Consistency

Continuous CSP

M Rueher

Numeric CSP

Interval Arithmetic

Local

Definitions Relations between 2B

and Box Implementation issu

onstraints

onstraints ove e floats

Search

Conclusion

ystems

 2B(w)-Consistency filtering depends on the evaluation order of projection functions (no fixed point)

► There is no direct relationship between the value of w and the accuracy of filtering

Box-consistency filtering

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencie

Relations between 2B and Box

Implementation issue

constraints

ne floats

Search

Conclusion

ystems

Transformation of the constraint $C_j(x_{j_1},...x_{j_k})$ into k mono-variable constraints by substituting all variables but one by their intervals

- The two extremal zeros of C_{j,l} can be found by a dichotomy algorithm combined with a mono-variable version of the interval Newton method
- Box-consistency does not amplify the locality problem but it may generate a huge number of constraints

3B-Consistency

Continuous CSP

M. Rueher

3B-Consistency, a relaxation of path consistency

 \rightarrow

checks whether 2B-Consistency can be enforced when the domain of a variable is reduced to the value of one of its bounds in the whole system

Numeric CSP

Interval

Arithmetic Local

Definitions Relations between 2B

and Box Implementation issue

constraints

the floats

Search

Conclusion

ystems

3B-Consistency (2)

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistenc

Definitions Relations between 2B and Box

and Box Implementation issu

constraints

Constraints ove the floats

Search

Conclusion

Systems

Definition: 3B-Consistency

Let $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ be a CSP and x a variable of \mathcal{X} with $D_x = [a, b]$.

Let also:

- ▶ Let $P_{D_x^1 \leftarrow [a,a^+)}$ be the CSP derived from P by substituting D_x in \mathcal{D} with $D_x^1 = [a,a^+)$
- ► Let $P_{D_x^2 \leftarrow (b^-, b]}$ be the CSP derived from P by substituting D_x in \mathcal{D} with $D_x^2 = (b^-, b]$

$$X$$
 is 3B–Consistent iff $\Phi_{2B}(P_{D_x^1\leftarrow[a,a^+)}) \neq P_{\emptyset}$ and $\Phi_{2B}(P_{D_x^2\leftarrow(b^-,b]}) \neq P_{\emptyset}$

3B-Consistency (3)

Continuous CSP

M. Rueher

Interval

Arithmetic Local

Definitions
Relations between 2B

and Box Implementation issu

alobal onstraints

Constraints over the floats

Search

Conclusion

Systems

Let $(\mathcal{X}, \mathcal{D}, \mathcal{C})$ be a CSP and $D_{x} = [a, b]$, if $\Phi_{2B}(P_{D_{x} \leftarrow [a, \frac{a+b}{2}]}) = \emptyset$

- ▶ then the part $[a, \frac{a+b}{2})$ of D_X will be removed and the filtering process continues on the interval $[\frac{a+b}{2}, b]$
- ► otherwise, the filtering process continues on the interval $[a, \frac{3a+b}{4}]$.

Numeric CSP

Interval Arithmetic

> onsistencies Definitions

Relations between 2B and Box

Global

onstraints ov ie floats

earch

Conclusion

Systems

► CSP $P = (\mathcal{X}, \mathcal{D}, \mathcal{C})$ is **smaller** than $P' = (\mathcal{X}, \mathcal{D}', \mathcal{C})$ if $\mathcal{D} \subseteq \mathcal{D}'$, we note $P \prec P'$

Relation between Box-consistency and 2B-consistency (1)

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

ocal

Relations between 2B and Box

Alohal

Constraints over

Soarch

Conclusion

ystems

General case: $\Phi_{2B}(P) \leq \Phi_{Box}(P)$

Particular case: $\Phi_{2B}(P) \equiv \Phi_{Box}(P)$

if no variable has multiple occurrences in any constraint

2B-consistency on the decomposed system is weaker than Box–consistency on the initial system

$$\Phi_{Box}(P) \leq \Phi_{2B}(\mathbf{P_{decomp}})$$

Proof:

For local consistencies CSP P_{decomp} is a relaxation of $P \to 2B$ —consistency (P) $\preceq 2B$ —consistency (P_{decomp}). Since there aren't any multiple occurrences of variables in P_{decomp} , $\Phi_{Box}(P_{decomp}) \equiv \Phi_{2B}(P_{decomp})$ and thus $\Phi_{Box}(P) \preceq \Phi_{2B}(P_{decomp})$

- Standard narrowing algorithm
- HC4-Revise computes the optimal box (under continuity assumptions) when no constraint contains multiple occurrences of a variable
- Box-Revise computes the optimal box (under continuity assumptions) when each constraint contains at most one variable appearing several times

Numeric CSP

Interval Arithmetic

ncal

Definitions
Relations between 2B

Implementation issues

Global

constraints

Constraints over the floats

Search

Conclusion

ystems

Standard narrowing algorithm (schema) (1)

Continuous CSP

M. Rueher

```
IN-1 (in \mathcal{C}, inout \mathcal{D})
rangle Q \leftarrow \{\langle x_i, C_i \rangle | C_i \in \mathcal{C} \text{ and } x_i \in Var(C_i) \}
3
           while Q \neq \emptyset
                       extract \langle x_i, C_i \rangle from Q
                       \mathcal{D}' \leftarrow \text{narrowing}(\mathcal{D}, \mathbf{x}_i, \mathbf{C}_i)
6
                        if \mathcal{D}' \neq \mathcal{D} then
                              \mathcal{D} \leftarrow \mathcal{D}'
8
                              Q \leftarrow Q \cup \{\langle x_l, C_k \rangle | (x_l, x_i) \in Var(C_k)\}
10
                        endif
11
           endwhile
```

Numeric CSP

Interval Arithmetic

ocal

onsistencies Definitions

Relations between 2B and Box Implementation issues

Global

Constraints over

earch

Conclusion

Systems

Standard narrowing algorithm (schema) (1)

CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencie

Definitions
Relations between 2B

Implementation issues

Global constraints

Constraints over the floats

Search

Conclusion

Systems

→ Computation of extremum functions in function narrowing of algorithm IN-1

- 1 function narrow (\mathcal{D}, x_i, C_i) : set of domains
- $2 \qquad m \leftarrow Min_{x_i}(C, D_{x_i})$
 - $3 \qquad M \leftarrow Max_{x_i}(C, D_{x_i})$
- 4 return $\mathcal{D}[D_{x_i} \leftarrow [m, M]]$

Relations between 2B and Box Implementation issues

Global

constraints

the floats

Search

Conclusion

ystems

Algorithm schema

- Generate projection functions for each variable of each constraint
- ► Use interval extension of the projection functions to compute $Min_{x_i}(C, D_{x_i})$ and $Max_{x_i}(C, D_{x_i})$

La function $narrow(c, \mathcal{D})$ (generic algorithm IN) reduces the variable domains of c until c is Box–consistency:

- For each variable x of constraint c, a uni-variate interval function is generated by replacing all variables but x by their domains
- Searching the leftmost zero and the rightmost zero of these uni-variate functions on intervals that are of the form:

$$C(D_{x_1},..,D_{x_{i-1}},x,D_{x_{i+1}},...,D_{x_k})=\tilde{0}.$$

Use $NEWTON(F_x, I_x)$ (interval extension of Newton's method) to compute extremum functions in function narrowing

Goal

Limit the loss of information due to the decomposition of the constraints required by 2B–consistency filtering **Principle of algorithm HC4**

- HC4 works on a CSP where each constraint is represented by its syntax tree (no explicit decomposition: the nodes of the tree are primitive constraints)
- HC4: standard propagation scheme
- A projection is implemented by the function HC4Revise which shrinks the current box with a constraint c

BC4: similar to HC4, adapted for Box-consistency filtering

Numeric CSF

Interval Arithmetic

ocal

Definitions

Relations between 2B and Box

Implementation issues

Global

Constraints over

Search

Conclusion

Systems

Algorithm HC4-Revise

M. Rueher

Implementation of HC4-Revise

- ► Double exploration of the syntax tree of c
- Synthesis: evaluation (over intervals) at each node of the tree
- Heritage: elementary projection at each node of the tree

Numeric CSP

Interval Arithmetic

ical

Definitions
Relations between 2B

and Box Implementation issues

Clobal

Global constraints

Constraints over

Search

Conclusion

ystems

Global constraints

CSP

M. Rueher

 Global constraints played a key role in the success of CP on finite domains

Interval Arithmetic

► QUAD: a linear approximation

⊥ocai consistencies

 A tight linear relaxation of the quadratic constraints adapted from a classical RLT techniques (Sherali-Tuncbilek 92, Sherali-Adams 99)

Global constraints

Use of LP algorithm to narrow the domain of each variable

Algorithm
Issues with LP
Safe approximations

 \rightarrow the coefficient of these linear constraints are updated

Quadrification
Power terms
Product terms

Constraints over the floats

Search

Conclusion

vstems

Courtesy to Yahia Lebbah, Claude Michel

▶ Reformulation

- capture the linear part of the problem
 - \rightarrow replace each non linear term by a new variable eg x^2 by y_i
- ► Linearisation/relaxation
 - introduce redundant linear constraints
 - → tight approximations of the non-linear terms (RLT)
- ► Computing min(x) = x_i and max(x) = $\overline{x_i}$ in LP

Numeric CSP

Interval Arithmetic

Local consistencie

Global

Linearisation Algorithm

Issues with LP Safe approximations

Correction of LP Quadrification Power terms

Constraints over

Search

Search

Systems

Linearisation of x^2

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencies

Global constraints Linearisation

Algorithm
Issues with LP
Safe approximations

Safe approximation

Correction of LP

Quadrification

Power terms
Product term

Constraints over

Search

Conclusion

Systems

▶ $f(x) = x^2$ with $x \le x \le \overline{x}$ is approximated by :

$$L_{1}(y,\alpha) : y \geq 2\alpha x - \alpha^{2}$$

$$(x - \alpha)^{2} \geq 0 \text{ where } \alpha \in [\underline{x}, \overline{x}]$$

$$L_{2}(y) : y \leq (\underline{x} + \overline{x})x - \underline{x} * \overline{x}$$

$$(x + \overline{x})x - y - x * \overline{x} \geq 0$$

- $L_1(y,\alpha)$ generates the tangents to $y=x^2$ at $x=\alpha_i$
- L₁(y, x̄) and L₁(y, x̄): underestimations of y
 L₂(y): overestimation of y

QUAD only computes $L_1(y, \overline{x})$ and $L_1(y, \underline{x})$

Linearisation of χ^2

M. Rueher

.

Interval Arithmetic

Local consistencies

Global constraints Linearisation

Algorithm
Issues with LP
Safe approximations
Correction of LP

Quadrification
Power terms

Constraints over the floats

Coore

Conclusion

Sveteme

Example 1: relaxation of x^2 with $x \in [-4, 5]$

 $\blacktriangleright L_1(y,\alpha): y \geq 2\alpha x - \alpha^2$

$$L_1(y, -4): y \ge -8x - 16$$

$$L_1(y,5): y \ge 10x - 25$$

 $L_2(y): y \leq (x + \overline{x})x - x * \overline{x}$

$$L_2(y): y < x + 20$$

Linearisation of xy

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencies

Global constraints Linearisation

Linearisation Algorithm

Issues with LP
Safe approximations

Quadrification
Power terms

Constraints ov

Searc

Conclusion

Systems

Relaxation of xy

$$L_3(z) \equiv [(x - \underline{x_i})(y - \underline{x_j}) \ge 0]_I$$

$$L_4(z) \equiv [(x - \underline{x_i})(\overline{x_j} - \overline{y}) \ge 0]_I$$

$$L_5(z) \equiv [(\overline{x_i} - \overline{x})(y - x_i) \geq 0]_I$$

$$L_6(z) \equiv [(\overline{x_i} - x)(\overline{x_j} - \overline{y}) \geq 0]_I$$

Example 2:

$$z = xy$$
 with $x \in [-5, +5], y \in [-5, +5]$

$$L3(z): z + 5x + 5y + 25 \ge 0$$

$$L4(z): -z + 5x - 5y + 25 \ge 0$$

$$L5(z): -z - 5x + 5y + 25 \ge 0$$

$$L6(z): z - 5x - 5y + 25 \ge 0$$

Let's take z = 5

$$L3(z): y \ge -x - 6$$

$$L4(z): y \le 4 - x$$

$$L5(z): y \ge x - 4$$

$$L6(z): y \le 6 - x$$

Global

Function QUAD filtering(IN: \mathcal{X} , \mathcal{D} , \mathcal{C} , ϵ) **return** \mathcal{D}'

- 1. Reformulation
 - ightarrow linear inequalities $[\mathcal{C}]_R$ for the nonlinear terms in \mathcal{C}
- 2. Linearisation/relaxation of the whole system $[\mathcal{C}]_L$
 - \rightarrow a linear system $LR = [\mathcal{C}]_L \cup [\mathcal{C}]_R$
- 3. $\mathcal{D}' := \mathcal{D}$
- 4. Pruning

► Pruning

While reduction of some bound $> \epsilon$ and $\emptyset \notin \mathcal{D}'$ Do

- 1. Update the coefficients of $[\mathcal{C}]_R$ according to \mathcal{D}'
- 2. Reduce the lower and upper bounds \underline{x}'_i and \overline{x}'_i of each initial variable $x_i \in \mathcal{X}$ by computing min and max of x_i subject to LR with a LP solver
- Propagate reductions with local consistencies, newton

Numeric CSP

Interval Arithmetic

Local consistencies

Global constraints

Linearisation

Algorithm

Issues with LP
Safe approximations
Correction of LP

Quadrification
Power terms

Constraints over

Search

Conclusion

Systems

Issues in the use of linear relaxation

Continuous CSP

M Rueher

Arithmetic

Issues with LP Safe approximations

- Coefficients of linear relaxations are scalars ⇒ computed with **floating point numbers**
- Efficient implementations of the simplex algorithm ⇒ floating point numbers
- ► All the computations with floating point numbers require right corrections

Safe approximations of L_1

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencies

Global constraints Linearisation Algorithm

Issues with LP Safe approximations

Correction of LP Quadrification Power terms

Constraints over

0 - - - -

Conclusion

Systems

Effects of rounding:

- ▶ rounding of 2α
 - \Rightarrow rotation on y axis
- ▶ rounding of α^2
 - \Rightarrow translation on y axis

Let $\alpha \in F$ and

$$L_{1F}(y,\alpha) \equiv \begin{cases} y - \lfloor 2\alpha \rfloor x + \lceil \alpha^2 \rceil \ge 0 & \text{iff } \alpha \ge 0 \\ y - \lceil 2\alpha \rceil x + \lceil \alpha^2 \rceil \ge 0 & \text{iff } \alpha < 0 \end{cases}$$

 $\forall x \in \mathbf{x}$, and $y \in [0, max\{\underline{x}^2, \overline{x}^2\}]$,

if $L_1(y,\alpha)$ holds, then $L_1F(y,\alpha)$ holds too

Numeric CSP

Interval Arithmetic

> cal nsistencies

Linearisation
Algorithm
Issues with LP

Safe approximations
Correction of LP
Quadrification

Power terms Product terms

the floats

Search

Conclusion

Systems

Generalisation to n-ary linearisations

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

> ocal onsistencies

Linearisation
Algorithm
Issues with LP
Safe approximations

correction of LP uadrification lower terms

onstraints over ne floats

earch

Conclusion

Systems

Let $\sum_{i=1}^{n} a_i x_i + b \ge 0$ then $\forall x_i \in \mathbf{x}_i$:

$$\sum_{i=1}^n \overline{a}_i x_i + \sup(\overline{b} + \sum_{i=1}^n \sup(\sup(\mathbf{a}_i \underline{x}_i) - \overline{a}_i \underline{x}_i)) \ge \sum_{i=1}^n a_i x_i + b \ge 0$$

Correction of the Simplex algorithm

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

> ₋ocal consistencies

onstrain

Linearisation Algorithm

Issues with LP
Safe approximations

Correction of LP

Quadrification
Power terms
Product terms

Constraints over

Search

Conclusion

Systems

Consider the following LP:

- Solution = vector $x_R \in R^n$
- CPLEX computes a vector $x_F \in F^n \neq x_R$.
- x_F is safe for the objective if $c^T x_B \ge c^T x_F$
- Neumaier and Shcherbina
 - → cheap method to obtain a rigorous bound of the objective
 - → rigorous computation of the certificate of infeasibility

Algorithm lecuse with LP Safe approximations

Power terms

A power term of the form x^n can be approximated by n+1inequalities with a procedure proposed by Sherali and Tuncbilek, called "bound-factor product RLT constraints" It is defined by the following formula:

$$[x^n]_R = \{[(x-\underline{x})^i(\overline{x}-x)^{n-i} \ge 0]_L, i = 0...n\}$$
 (1)

Quadrification: product term

Continuous CSP

M. Rueher

For the product term

$$X_1 X_2 ... X_n \tag{2}$$

The Quadrification step brings back the multi-linear term into a set of quadratic terms as follows:

where $x_{i...j} = [x_i x_{i+1} ... x_j]_L$.

Numeric CSP

Interval Arithmetic

> ocal consistencies

Global onstraint

Linearisation
Algorithm
Issues with LP
Safe approximations

orrection of LP ladrification

Power terms Product terms

Constraints over the floats

Search

Conclusion

systems

M Rueher

Testing and verifying floating point computations

Problem: solvers over R lose solutions over F

Example (double precision, rounding to the nearest):

- over R, (x + y) + z = x + (y + z)over F, $(x + y) + z \neq x + (y + z)$
- $x < 0 \land x + 16.1 = 16.1$ no solution over R but ... many solutions over F! e.g., $x \in [-1.776356839400250046e^{-15}, 0^{-1}]$
- x * x = 22 solutions over R, no solution over F

Intervals over F:

 $[\underline{x},\overline{x}]_F$ denotes the *finite set* $\{x \in F, \underline{x} \leq x \land x \leq \overline{x}\}$

 Observation: if the order of the operations is respected, interval computation (outward rounded) provides a safe refutation procedure over F

► Procedure:

Let $c(x_1,\ldots,x_n)$ be a constraint over F and $x_i' \in [\underline{x_i},\overline{x_i}]$, if $C(X_1,\ldots,X_{i-1},[\underline{x},x_i'],X_i,\ldots,X_n)$ hasn't any solutions, then X_i can be reduce to $[x_i',\overline{x_i}]$

Problem: may be slow since x'_i has to be computed iteratively (Newton does not apply here)

Projection functions of elementary constraints

$$\begin{aligned} \mathbf{z}_{F} &= \mathbf{x}_{F} + \mathbf{y}_{F} \\ & \text{direct projection:} & \mathbf{z}_{F}' \leftarrow \mathbf{z}_{F} \cap (\mathbf{x}_{F} + \mathbf{y}_{F}) \\ & \text{inverse projections:} & \mathbf{x}_{F}' \leftarrow \mathbf{x}_{F} \cap (\mathbf{z}_{F} - \mathbf{y}_{F}) \\ & \mathbf{y}_{F}' \leftarrow \mathbf{y}_{F} \cap (\mathbf{z}_{F} - \mathbf{x}_{F}) \end{aligned}$$

- ▶ **Direct projection:** use of interval arithmetic with the known rounding direction (that of the program)
- ▶ Inverse projections: rounding mode dependant with a rounding mode set to $-\infty$:

$$\mathbf{x}_{F}' = \mathbf{x}_{F} \cap [round_{+\infty}^{+}(\underline{z_{F}}^{-} - \overline{y_{F}}), round_{-\infty}(\overline{z_{F}} - \underline{y_{F}})]$$
 where

$$round_{+\infty}^+(x) = \begin{cases} x^+ & \text{iff } x \in F, \\ round_{+\infty}(x) & \text{otherwise.} \end{cases}$$

Numeric CSP

Interval Arithmetic

_ocal

consistencies

constraints

the floats

Box over F

2B over F

searcn

Conclusion

Systems

► Improvement:

Consider
$$z = x + y$$
 and $z \in [2^-, 2^-]$
then x and $y \in [-2^-, 4^-]$

→ improves filtering speed and cuts some slow convergence issues

► Higher consistencies: kb-consistencies can be computed by using 2b-consistency Numeric CSP

Interval Arithmetic

Local consistencie

constraints

Box over F

2B over F

Interval Arithmetic

Local consistencie:

constraints

Box over F

Sparch

Canalusian

systems

 Good approximation of the "numerical semantics" of arithmetic operations of C programs

 Identifying solutions spaces over the floats that do not contain any solution over the real numbers

Search

Continuous CSP

M. Rueher

Numeric CSP

Interval Arithmetic

Local consistencies

constraints

Constraints ove the floats

Search

Heuristics Mind the Gaps

onclusion

Systems

► Mind the Gaps

► Main heuristics

Arithmetic

Houristics Mind the Gaps

In the search tree, the choice of the next variable to bisect is very important

Three heuristics are commonly used:

- Round robin
- Select first the largest interval
- Smear function (Kearfott 1990)
 - For each (f, x), in the current box [B]: compute $smear(f, x) = \left| \frac{\partial f}{\partial x}([B]) \right| \times Diam([x])$;
 - For some variable x: $smear(x) = \sum_{i} (smear(f_i, x))$ (or $Max_i(smear(f_i, x))$);
 - Bisect the variable with the strongest impact.

- ► Collect gaps while filtering (HC4 Revise)
- Eliminate non relevant gaps
- Select relevant gaps
- Generate sub problems

Numeric CSP

Interval Arithmetic

Local consistencies

constraints

Constraints over the floats

Search Heuristics

Mind the Gaps

Systems

- Local consitencies
 - → power-full refutation capabilities
- ► Main difficulty:
 - → finding a good trade-off between pruning and search
- ► Applications
 - Global optimisation: boosting safe techniques
 - Program verification:
 - → Refining Approximations
 - → Finding counterexamples

Numeric CSP

Interval Arithmetic

Local consistencie

constraints

Sparch

Conclusion

systems

Systems

Continuous CSP

M Rueher

Arithmetic

Systems

Realpaver:

http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/index.html

Gaol:

http://sourceforge.net/projects/gaol

IBEX

http://www.emn.fr/z-info/ibex/index.html

GlobSol:

http://interval.louisiana.edu/GlobSol/download

GlobSol.html

ICOS:

http://sites.google.com/site/ylebbah/icos

Solvers over F:

- ► FPSE (Mathieu Carlier, INRIA Rennes)
- COLIBRI (Bruno Marre, LIST/CEA)
- ► FPLib (Claude Michel, I3S/UNS)