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Constraint Programming

Numeric CSP (X ,D, C):

I X = {x1, . . . , xn} is a set of variables

I D = {Dx1 , . . . ,Dxn} is a set of domains
(Dxi contains all acceptable values for variable xi )

I C = {c1, . . . , cm} is a set of constraints

3



Continuous
CSP

M. Rueher

Numeric CSP
Overall scheme

Interval
Arithmetic

Local
consistencies

Global
constraints

Constraints over
the floats

Search

Conclusion

Systems

Overall scheme

The constraint programming framework is based on a
branch & prune schema which is best viewed as an
iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more)

sub-problems

I The pruning step→ reduces an interval when it can
proved that the upper bound or the lower bound does
not satisfy some constraint

I The branching step→ splits the interval associated
to some variable in two intervals (often with the same
width)
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Filtering & Solving process (example)

Courtesy to Gilles Trombettoni
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Why do we need intervals?

I Modelling uncertainty
I Error in Measurement or uncertainty in measurements
I Uncertainty when estimating unknown values

I Safe Computations with floating-point numbers
I Rounding errors
I Cancellation, ...

What Every Computer Scientist Should Know About
Floating-Point Arithmetic, Goldberg, 1991
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Problem with floating-point computations

Examples
(in simple precision)

I Absorption: 107 + 0.5 = 107

I Cancellation:
((1− 10−7)− 1) ∗ 107 = −1.192...( 6= −1)

I Operations are not associative:
(10000001− 107) + 0.5 6= 10000001− (107 + 0.5)

I No exact representation:
0.1 = 0.000110011001100 . . .

Rump polynomial
I RumpFunc[x_,y_]:=(1335/4− x2)y6 + x2(11x2y2 −

121y4 − 2) + (11/2)y8 + x/(2y)
I Value computed with rational numbers:
RumpFunc[77617, 33096]= − 54767

66192 = −0.827396
I Value with floating point numbers: 0
I Value with floating point numbers when 11/2 is

replaced by 5.5 in the polynomial: 1.18059× 1021
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What is an interval?

An interval [a,b] describes a set of real
numbers x such that: a ≤ x ≤ b

Assumption:

a and b belong to finite set of numbers representable on a
computer: floating-point numbers, subset of integers,
rational numbers, ...

A Box denotes a Cartesian product of intervals

→ a box is a vector of intervals that defines the search
space of problem,
i.e., the space in which are the values of the variables
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Interval arithmetic

Interval arithmetic (Moore-1966)
is based on the representation of variables as intervals

Let f be a real-valued function of n unknowns {x1, . . . , xn},
an interval evaluation F of f for given ranges
X = {X1, . . . ,Xn} for the unknowns is an interval Y such
that

∀{v1, . . . , vn} ∈ {X1, . . . ,Xn} : Y ≤ f (v1, . . . , vn) ≤ Y

Y ,Y : lower and upper bounds for the values of f when the
values of the unknowns are restricted to the box X
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Interval extension

I In general, it is not possible to compute the exact
enclosure of the range for an arbitrary function over
the real numbers

→ The interval extension of a function is an interval
function that computes an outer approximation of the
range of the function over a domain
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Natural interval extension

F the natural interval extension of a real function f is
obtained by replacing:

I Each constant k by its natural interval extension k̃

I Each variable by a variable over the intervals

I Each mathematical operator in f by its optimal interval
extension
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Optimal extensions for basic operators:

• [a,b]	 [c,d ] = [a− d ,b − c]

• [a,b]⊕ [c,d ] = [a + c,b + d ]

• [a,b]⊗ [c,d ] =
[min(ac,ad ,bc,bd),max(ac,ad ,bc,bd)]

• [a,b]� [c,d ] = [min(a
c ,

a
d ,

b
c ,

b
d ),max(a

c ,
a
d ,

b
c ,

b
d )]

if 0 6∈ [c,d ]
otherwise→ [−∞,+∞]

21



Continuous
CSP

M. Rueher

Numeric CSP

Interval
Arithmetic
Basics on Intervals

Local
consistencies

Global
constraints

Constraints over
the floats

Search

Conclusion

Systems

Natural interval extension: Example

Let f = (x + y)− (y × x) be a real function

Let be X = [−2,3],Y = [−9,1]

F = (X ⊕ Y )	 (Y ⊗ X )
= ([−2,3]⊕ [−9,1])	 ([−9,1]⊗ [−2,3])
= [−11,4]	

[min(18,−27,−2,3),max(18,−27,−2,3)]
= [−11,4]	 [−27,18]
= [−29,31]
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Interval arithmetic: extension of relations

Let C : In → Bool be a relation over the intervals

C is an interval extension of the relation c : Rn → Bool iff:

∀X1, . . . ,Xn ∈ I : ∃v1 ∈ X1 ∧ . . . ∧ ∃vn ∈ Xn ∧ c(v1, . . . , vn)
⇒C(X1, . . . ,Xn)

For instance, X1
.

= X2 ⇔ (X1 ∩ X2) 6= ∅ is an interval
extension of the relation x1 = x2 over the real numbers

Example:

Relation X1
.

= X2 holds if X1 = [0,17.5] and X2 = [17,27.5]
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Interval extension: properties

I If 0 6∈ F(X), then no value exists in the box X such that
f (X ) = 0 →
Equation f (x) does not have any root in the box X

I Interval arithmetic can be implemented taking into
account round-off errors

I No monotonicity but interval arithmetic preserves
inclusion monotonicity: Y ⊆ X ⇒ F (Y ) ⊆ F (X )

I No distributivity but interval arithmetic is
sub-distributive: X (Y + X ) ⊆ XY + XZ
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Problems when computing the image of an
interval function (1)

I Outward Rounding (required for safe computations
with floating point numbers)
→ enlarges intervals

I Non continuity of interval functions: the image of an
interval is in general not an interval

→ The wrapping effect , which overestimates by a
unique vector the image of an interval vector
Example:

f (x) = 1
x with X = [−1,1]

F ([−1,1]) = 1
[−1,1] = [−∞,−1] ∪ [1,+∞]

→ = [−∞,+∞]
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Problems when computing the image of an
interval function (2)

I The dependency problem, which is due to the
independence of the different occurrences of a
variable during the interval evaluation of an expression

Examples:

Consider X = [0,5]

X − X = [0− 5,5− 0] = [−5,5] instead of [0,0] !

X 2 − X = [0,25]− [0,5] = [−5,25]

X (X − 1) = [0,5]([0,5]− [1,1]) = [0,5][−1,4] = [−5,20]
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Interval extension: using different literal
forms (1)

I Factorized form (Horner for polynomial system) or
distributed form

I First-order Taylor development of f

Ftay(X ) = f (x) + J(X ).(X − x)

with ∀x ∈ X , J() being the Jacobian of f

27
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Interval extension: using different literal
forms (2)

I In general, first order Taylor extensions yield a better
enclosure than the natural extension on small
intervals

I Taylor extensions have a quadratic convergence
whereas the natural extension has a linear
convergence

I In general, neither Fnat nor Ftay won’t allow to compute
the exact range of a function f
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Interval extension: using different literal
forms (3)

Consider f (x) = 1− x + x2, and X = [0,2]

ftay([0,2])= f (x) + (2X − 1)(X − x)
= f (1) + (2[0,2]− 1)([0,2]− 1) = [−2,4]

fnat([0,2])= 1− X + X 2 = [1,1]− [0,2] + [0,2]2 = [−1,5]

ffactor([0,2]) = 1 + X (X − 1) = [1,1] + [0,2]([0,2]− [1,1])
= [−1,3]

whereas the range of f over X = [0,2] is [0.75,3]
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Local consistencies (1)

I Informally speaking, a constraint system C satisfies a
partial consistency property if a relaxation of C is
consistent

I Consider X = [x , x ] and C(x , x1, . . . , xn) ∈ C: if
C(x , x1, . . . , xn) does not hold for any values
a ∈ [x , x ′], then X may be shrunken to X = [x ′, x ]

I A constraint Cj is AC-like-consistent if for any
variable xi in Xj , the bounds Di and Di have a
support in the domains of all other variables of Xj
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Local consistencies (2)

I Let be F : In → I the natural interval extension of
f : Rn → R and
fsol = �{f (v1, . . . , vn) | v1 ∈ I1, . . . , vn ∈ In}

If each variable has only one occurrence in f
then fsol≡F (I1, . . . , In)
else fsol⊆F (I1, . . . , In)
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Local consistencies (3)

I 2B–consistency / Hull–consistency only requires to
check the Arc–Consistency property for each bound
of the intervals

Variable x with X = [x , x ] is 2B–consistent for constraint
f (x , x1, . . . , xn) = 0 if x and x are the leftmost and the

rightmost zero of f (x , x1, . . . , xn)

I Box–consistency :
→ coarser relaxation of AC than 2B–consistency

but may achieve a better filtering

Variable x with X = [x , x ] is Box–Consistent for constraint
f (x , x1, . . . , xn) = 0 if x and x are the leftmost and the
rightmost zero of F(X,X1, . . . ,Xn), the optimal interval

extension of f (x , x1, . . . , xn)
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Local consistency filtering (1)

Algorithms that achieve a local consistency filtering
are based upon projection functions

I Solution functions express the variable xi in terms
of the other variables of the constraint. The solution
functions of x + y = z are:
fx = z − y , fy = z − x , fz = x + y

I For complex constraints, no analytic solution
function may exist
Example: x + log(x) = 0
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Local consistency filtering (2)

I Analytic functions exist when the variable to express
in terms of the others appears only once in the
constraint

I Otherwise→ to consider that each occurrence is a
different new variable

For x + log(x) = 0 we obtain
{x1 + log(x2) = 0, x1 = x2}
→ fx1 = − log(x2) , fx2 = exp−x1

I Decomposition does not change the semantics of the
initial constraints system

I ... but it amplifies the dependency problem
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2B-consistency filtering(1)

Algorithms that achieve 2B-consistency filtering are
based upon projection functions

→ considers that each occurrence is a different new
variable

→ initial constraints are decomposed into “primitive”
constraints
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Early stopping of the propagation
algorithm

In case of asymptotic convergence, it is not realistic to try
to reduce the intervals until no more floating point number
can be removed !

→ To Stop the propagation before reaching the fixed
point
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Example of slow convergence

Let be :
X = 2× Y
Y = X
DX = [−10,10],DY = [−10,10]

2B-consistency will make the following reductions:

DY = [−5,5] DX = [−5,5]
DY = [−2.5,2.5] DX = [−2.5,2.5]
DY = [−1.25,1.25] DX = [−1.25,1.25]
DY = [−0.625,0.625] DX = [−0.625,0.625]
......

... better to stop propagation before reaching the fixed
point !
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“Width” of the bound

a+w stands for (w + 1)th float after a
a−w stands for (w + 1)th float before a
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2B(w)–Consistency

Let be (X ,D, C) a CSP, x ∈ X , Dx = [a,b], w a positive
integer Dx is 2B(w)–Consistent for variable x if:

1. ∃v ∈ [a,a+w ) and v is the leftmost zero of
f (x , x1, . . . , xn)

2. ∃v ′ ∈ (b−w ,b] and v ′ is the rightmost zero of
f (x , x1, . . . , xn)
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Problems with 2B(w)-Consistency

I 2B(w)-Consistency filtering depends on the
evaluation order of projection functions (no fixed
point)

I There is no direct relationship between the value of w
and the accuracy of filtering
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Box–consistency filtering

Transformation of the constraint Cj(xj1 , ...xjk ) into k
mono-variable constraints by substituting all variables

but one by their intervals

I The two extremal zeros of Cj,l can be found by a
dichotomy algorithm combined with a mono-variable
version of the interval Newton method

I Box–consistency does not amplify the locality problem
but it may generate a huge number of constraints
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3B–Consistency

3B–Consistency, a relaxation of path consistency

→

checks whether 2B–Consistency can be enforced when the
domain of a variable is reduced to the value of one of its

bounds in the whole system
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3B–Consistency (2)

Definition: 3B–Consistency
Let (X ,D, C) be a CSP and x a variable of X with
Dx = [a,b].
Let also:

I Let PD1
x←[a,a+) be the CSP derived from P by

substituting Dx in D with D1
x = [a,a+)

I Let PD2
x←(b−,b] be the CSP derived from P by

substituting Dx in D with D2
x = (b−,b]

X is 3B–Consistent iff
Φ2B(PD1

x←[a,a+)) 6= P∅ and Φ2B(PD2
x←(b−,b]) 6= P∅

43



Continuous
CSP

M. Rueher

Numeric CSP

Interval
Arithmetic

Local
consistencies
Definitions

Relations between 2B
and Box

Implementation issues

Global
constraints

Constraints over
the floats

Search

Conclusion

Systems

3B–Consistency (3)

Let (X ,D, C) be a CSP and Dx = [a,b], if
Φ2B(PDx←[a, a+b

2 ]) = ∅
I then the part [a, a+b

2 ) of Dx will be removed and the
filtering process continues on the interval [a+b

2 ,b]
I otherwise, the filtering process continues on the

interval [a, 3a+b
4 ].
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Relations between numeric CSP

I D′ ⊆ D means D′xi
⊆ Dxi for all i ∈ 1..n

I CSP P = (X ,D, C) is smaller than P ′ = (X ,D′, C) if
D ⊆ D′, we note P ≺ P ′
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Relation between Box–consistency and
2B-consistency (1)

General case: Φ2B(P) � ΦBox (P)

Particular case: Φ2B(P) ≡ ΦBox (P)

if no variable has multiple occurrences in any
constraint
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Box versus 2B(decomp)

2B-consistency on the decomposed system is weaker
than Box–consistency on the initial system

ΦBox (P)�Φ2B(Pdecomp)

Proof:
For local consistencies CSP Pdecomp is a relaxation of P
→ 2B–consistency (P) � 2B–consistency (Pdecomp).
Since there aren’t any multiple occurrences of variables in
Pdecomp, ΦBox (Pdecomp) ≡ Φ2B(Pdecomp)
and thus ΦBox (P) � Φ2B(Pdecomp)
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Implementation issues

I Standard narrowing algorithm

I HC4-Revise computes the optimal box (under
continuity assumptions) when no constraint contains
multiple occurrences of a variable

I Box-Revise computes the optimal box (under
continuity assumptions) when each constraint contains
at most one variable appearing several times

48



Continuous
CSP

M. Rueher

Numeric CSP

Interval
Arithmetic

Local
consistencies
Definitions

Relations between 2B
and Box

Implementation issues

Global
constraints

Constraints over
the floats

Search

Conclusion

Systems

Standard narrowing algorithm (schema) (1)

1 IN–1 ( in C, inout D)
2
rangle Q ← {〈xi ,Cj〉| Cj ∈ C and xi ∈ Var(Cj)}
3 while Q 6= ∅
4 extract 〈xi ,Cj〉 from Q
5 D′ ← narrowing(D, xi ,Cj)
6 if D′ 6= D then
7 D ← D′
8 Q ← Q ∪ {〈xl ,Ck〉|(xl , xi) ∈ Var(Ck)}
10 endif
11 endwhile
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Standard narrowing algorithm (schema) (1)

→ Computation of extremum functions in function
narrowing of algorithm IN-1

1 function narrow (D, xi ,Cj) : set of domains
2 m← Minxi (C,Dxi )
3 M ← Maxxi (C,Dxi )
4 return D[Dxi ← [m,M]]
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2B-consistency filtering

Algorithm schema

I Generate projection functions for each variable of
each constraint

I Use interval extension of the projection functions to
compute Minxi (C,Dxi ) and Maxxi (C,Dxi )
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Computing Box–consistency filtering

La function narrow(c,D) (generic algorithm IN) reduces
the variable domains of c until c is Box–consistency :

I For each variable x of constraint c, a uni-variate
interval function is generated by replacing all
variables but x by their domains

I Searching the leftmost zero and the rightmost zero of
these uni-variate functions on intervals that are of the
form:

C(Dx1 , ..,Dxi−1 , x ,Dxi+1 , ...,Dxk ) = 0̃.

Use NEWTON(Fx , Ix ) (interval extension of Newton’s
method) to compute extremum functions in function
narrowing
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Algorithm HC4

Goal
Limit the loss of information due to the decomposition of
the constraints required by 2B–consistency filtering
Principle of algorithm HC4

I HC4 works on a CSP where each constraint is
represented by its syntax tree
(no explicit decomposition: the nodes of the tree are
primitive constraints)

I HC4: standard propagation scheme
I A projection is implemented by the function

HC4Revise which shrinks the current box with a
constraint c

BC4: similar to HC4, adapted for Box-consistency
filtering
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Algorithm HC4-Revise

Implementation of HC4-Revise

I Double exploration of the syntax tree of c

I Synthesis : evaluation (over intervals) at each node of
the tree

I Heritage : elementary projection at each node of the
tree
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Global constraints

I Global constraints played a key role in the success of
CP on finite domains

I QUAD: a linear approximation

I A tight linear relaxation of the quadratic constraints
adapted from a classical RLT techniques
(Sherali-Tuncbilek 92,Sherali-Adams 99)

I Use of LP algorithm to narrow the domain of each
variable
→ the coefficient of these linear constraints are
updated

Courtesy to Yahia Lebbah, Claude Michel
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The QUAD framework

I Reformulation
I capture the linear part of the problem
→ replace each non linear term by a new variable
eg x2 by yi

I Linearisation/relaxation
I introduce redundant linear constraints
→ tight approximations of the non-linear terms (RLT)

I Computing min(x) = xi and max(x) = xi in LP
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Linearisation of x2

I f (x) = x2 with x ≤ x ≤ x is approximated by :

L1(y , α) : y ≥ 2αx − α2

(x − α)2 ≥ 0 where α ∈ [x , x ]
L2(y) : y ≤ (x + x)x − x ∗ x

(x + x)x − y − x ∗ x ≥ 0

• L1(y , α) generates the tangents to y = x2 at x = αi

• L1(y , x) and L1(y , x) : underestimations of y
L2(y) : overestimation of y

QUAD only computes L1(y , x) and L1(y , x)
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Linearisation of x2

Example 1: relaxation of x2 with x ∈ [−4,5]

I L1(y , α) : y ≥ 2αx − α2

L1(y ,−4) : y ≥ −8x − 16

L1(y ,5) : y ≥ 10x − 25

I

L2(y) : y ≤ (x + x)x − x ∗ x

L2(y) : y ≤ x + 20
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Linearisation of xy

Relaxation of xy
L3(z) ≡ [(x − xi)(y − xj) ≥ 0]l
L4(z) ≡ [(x − xi)(xj − y) ≥ 0]l
L5(z) ≡ [(xi − x)(y − xj) ≥ 0]l
L6(z) ≡ [(xi − x)(xj − y) ≥ 0]l

Example 2:
z = xy with x ∈ [−5,+5], y ∈ [−5,+5]
L3(z) : z + 5x + 5y + 25 ≥ 0
L4(z) : −z + 5x − 5y + 25 ≥ 0
L5(z) : −z − 5x + 5y + 25 ≥ 0
L6(z) : z − 5x − 5y + 25 ≥ 0

Let’s take z = 5
L3(z) : y ≥ −x − 6
L4(z) : y ≤ 4− x
L5(z) : y ≥ x − 4
L6(z) : y ≤ 6− x
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QUAD filtering algorithm (1)

Function QUAD_filtering(IN: X , D, C, ε) return D′

1. Reformulation
→ linear inequalities [C]R for the nonlinear terms in C

2. Linearisation/relaxation of the whole system [C]L
→ a linear system LR = [C]L ∪ [C]R

3. D′ := D

4. Pruning
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QUAD filtering algorithm (2)

I Pruning

While reduction of some bound > ε and ∅ 6∈ D′ Do

1. Update the coefficients of [C]R according to D′

2. Reduce the lower and upper bounds x ′i and x ′i of
each initial variable xi ∈ X by computing min and max
of xi subject to LR with a LP solver

3. Propagate reductions with local consistencies,
newton
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Issues in the use of linear relaxation

� Coefficients of linear relaxations are scalars
⇒ computed with floating point numbers

� Efficient implementations of the simplex algorithm
⇒ floating point numbers

I All the computations with floating point numbers
require right corrections
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Safe approximations of L1

L1(y , α) ≡ y ≥ 2αx − α2

Effects of rounding:
I rounding of 2α
⇒ rotation on y axis

I rounding of α2

⇒ translation on y axis
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Safe approximations of L1

[L1IF (y , α) approximations]

Let α ∈ IF and

L1IF (y , α) ≡

{
y − b2αcx + dα2e ≥ 0 iff α ≥ 0
y − d2αex + dα2e ≥ 0 iff α < 0

∀x ∈ x, and y ∈ [0,max{x2, x2}],

if L1(y , α) holds, then L1IF (y , α) holds too
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Generalisation to n-ary linearisations

Let
∑n

i=1 aixi + b ≥ 0
then ∀xi ∈ xi :

n∑
i=1

aixi+sup(b +
n∑

i=1

sup(sup(aix i)− aix i)) ≥
n∑

i=1

aixi+b ≥ 0
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Correction of the Simplex algorithm

Consider the following LP :

minimise cT x

subject to b ≤ Ax ≤ b

• Solution = vector xIR ∈ IRn

• CPLEX computes a vector xIF ∈ IF n 6= xIR .

• xIF is safe for the objective if cT xIR ≥ cT xIF
I Neumaier and Shcherbina
→ cheap method to obtain a rigorous bound of the

objective
→ rigorous computation of the certificate of

infeasibility
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Quadrification: Power terms

A power term of the form xn can be approximated by n + 1
inequalities with a procedure proposed by Sherali and
Tuncbilek , called “bound-factor product RLT constraints”
It is defined by the following formula:

[xn]R = {[(x − x)i(x − x)n−i ≥ 0]L, i = 0...n} (1)
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Quadrification: product term

For the product term

x1x2...xn (2)

The Quadrification step brings back the multi-linear term
into a set of quadratic terms as follows:

x1x2...xn︸ ︷︷ ︸ = x1...xd1︸ ︷︷ ︸ xd1+1...xn︸ ︷︷ ︸
x1...n = x1...d1 × xd1+1...n

x1...xd2︸ ︷︷ ︸ xd2+1...xd1︸ ︷︷ ︸
x1...d1 = x1...d2 × xd2+1...d1

xd1+1...xd3︸ ︷︷ ︸ xd3+1...xn︸ ︷︷ ︸
xd1+1...n = xd1+1...d3 × xd3+1...n

...

where xi...j = [xixi+1...xj ]L.
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Constraints over the floats

→ Testing and verifying floating point computations

I Problem: solvers over IR lose solutions over IF

Example (double precision, rounding to the nearest):
I over IR, (x + y) + z = x + (y + z)

over IF , (x + y) + z 6= x + (y + z)
I x < 0 ∧ x + 16.1 = 16.1

no solution over IR but ... many solutions over IF !!
e.g., x ∈ [−1.776356839400250046e−15,0−]

I x ∗ x = 2
2 solutions over IR, no solution over IF

Intervals over IF :
[x , x ]IF denotes the finite set {x ∈ IF , x ≤ x ∧ x ≤ x}
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Box over IF

I Observation: if the order of the operations is
respected, interval computation (outward rounded)
provides a safe refutation procedure over IF

I Procedure:
Let c(x1, . . . , xn) be a constraint over IF and
x ′i ∈ [xi , xi ], if C(X1, . . . ,Xi−1, [x , x ′i ],Xi , . . . ,Xn) hasn’t
any solutions, then Xi can be reduce to [x ′i , xi ]

xi x ′i xi

I Problem: may be slow since x ′i has to be computed
iteratively (Newton does not apply here)
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2B over IF

I Projection functions of elementary constraints
zIF = xIF + yIF

direct projection: z′IF ← zIF ∩ (xIF + yIF )

inverse projections: x′IF ← xIF ∩ (zIF − yIF )

y′IF ← yIF ∩ (zIF − xIF )
I Direct projection: use of interval arithmetic with the

known rounding direction (that of the program)
I Inverse projections: rounding mode dependant

with a rounding mode set to −∞:

x′IF = xIF ∩ [round+
+∞(zIF

− − yIF ), round−∞(zIF − yIF )]

where

round+
+∞(x) =

{
x+ iff x ∈ IF ,
round+∞(x) otherwise.
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2B over IF

I Improvement:
Consider z = x + y and z ∈ [2−,2−]

then x and y ∈ [−2−,4−]

→ improves filtering speed and cuts some slow
convergence issues

I Higher consistencies: kb-consistencies can be
computed by using 2b-consistency
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CSP over IF

→ Good approximation of the “numerical semantics” of
arithmetic operations of C programs

→ Identifying solutions spaces over the floats that do
not contain any solution over the real numbers
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Search

I Main heuristics

I Mind the Gaps
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Main heuristics

In the search tree, the choice of the next variable to
bisect is very important
Three heuristics are commonly used:

I Round robin
I Select first the largest interval
I Smear function (Kearfott 1990)

I For each (f , x), in the current box [B] :
compute smear(f , x) = | ∂f

∂x ([B])| × Diam([x ]) ;
I For some variable x :

smear(x) =
∑

j (smear(fj , x)) (or Maxj (smear(fj , x))) ;
I Bisect the variable with the strongest impact.
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Standard splitting vs Mind The Gaps

I Collect gaps while filtering (HC4 Revise)
I Eliminate non relevant gaps
I Select relevant gaps
I Generate sub problems
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Conclusion

I Local consitencies
→ power-full refutation capabilities

I Main difficulty:
→ finding a good trade-off between pruning and search

I Applications
I Global optimisation: boosting safe techniques

I Program verification:
→ Refining Approximations
→ Finding counterexamples
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Realpaver:
http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/index.html

Gaol:
http://sourceforge.net/projects/gaol

IBEX
http://www.emn.fr/z-info/ibex/index.html

GlobSol :
http://interval.louisiana.edu/GlobSol/download_

GlobSol.html

ICOS :
http://sites.google.com/site/ylebbah/icos

Solvers over IF :
I FPSE (Mathieu Carlier, INRIA Rennes)
I COLIBRI (Bruno Marre, LIST/CEA)
I FPLib (Claude Michel, I3S/UNS)
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