
D
ra

ftOn Search Strategies for
Constraint-Based Bounded Model

Checking

Michel RUEHER

Joined work with Hélène Collavizza , Nguyen Le Vinh,
Olivier Ponsini and Pascal Van Hentenryck

University Nice Sophia-Antipolis
I3S – CNRS, France

CP meets CAV

25 June – 29 June 2012

Turunç, Turkey



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Outline

A CP framework for Bounded Program Verification

CPBPV, a Depth First Dynamic Exploration of the CFG

DPVS, a Dynamic Backjumping Strategy

The Flasher Manager Application

Discussion

2



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Motivations

→ Automatic generation of counterexamples
violating a property on a limited model
of the program is very useful

→ Challenge: finding bugs for realistic time periods
for real time applications

3



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Overall view of CP framework

I Bounded program verification
(the array lengths, the variable values and the loops
are bounded)

• Constraint stores to represent the specification and
the program

• Program is partially correct if the constraint store
implies the post-conditions

I Non deterministically exploration of execution paths

4



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

CP-based BMC ...

l

CP-based BMC mainly involves three steps:

1. the program is unwound k times,

2. An annotated and simplified CFG is built

3. Program is translated in constraints on the fly

A list of solvers tried in sequence (LP, MILP, Boolean,
CP)

5



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

CP framework & BMC ...

I CP framework
• Specification→ constraints

Program→ constraints (on the fly)
• Solving Process
→ List of solvers tried in sequence

on each selected node of the CFG
→ Takes advantage of the structure of the program

I BMC based on SAT / SMT solvers
• Program & specification→ Big Boolean formula
• Solving Process
→ SAT solvers or SMT solvers have a “Global view”
→ Critical issue: minimum conflict sets

(to limit backtracks & spurious solutions)

6



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

CP framework, pre-processing

Pre-processing

1. P is unwound k times→ Puw

2. Puw → DSA, Dynamic Single Assignment form
(each variable is assigned exactly once on each
program path)

3. DSA is simplified according to the specific
property by applying slicing techniques

4. Domains of all variables are filtered by propagating
constant values along the simplified CFG

7



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

A small example

void foo(int a, int b)
int c, d, e, f ;
if(a >= 0) {

if(a < 10) {f = b − 1;}
else {f = b − a; }
c = a;
if(b >= 0) {d = a; e = b;}
else {d = a; e = −b;} }

else {
c = b; d = 1; e = −a;
if(a > b) {f = b + e + a;}
else {f = e ∗ a− b;} }

c = c + d + e;
assert(c >= d + e); // property p1
assert(f >= −b ∗ e); // property p2

8



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

A small example(continued)

Initial CFG

���

�
�
�����

���

	
�
����

�

�
�

	
�
����

�

�
�
���


�
�
�����

�

���

�
�
�����

���

�
�
����

�

�
�
�����

�

���

�
�
����

�

�
�
����

�

�
��

	


���	

�
����

��
���

�

����

���� �����

�����

�
�

�
�
���
�

���

�
�
����

�
����

�

���

�
�
����

�
���


���� �����

���

�
�
����

�

�

�

�
�
����

�
����

�
����

�

�
��

�
�
����

�
����

�
����

�

���� �����

9



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

A small example(continued)

Simplified CFG

���

�
�
�����

���

	
�
����

�

�
�

	
�
����

�

�
�
���


�
�
�����

�

���

�
�
�����

���

�
�
����

�

�
�
�����

�

���

�
�
����

�

�
�
����

�

�
��

	


���	

�
����

��
���

�

����

���� �����

�����

10



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

CP framework, language

I Java programs and JML specifications

JML =
• Comments in java code (“javadoc” like)

(can be compiled and executed at run time)

• Properties are directly expressed on the
program variables
→ no need for abstraction

• Pre-conditions and post-relations

• Exists and Forall quantifiers

I C programs and assertions

11



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

CP framework, restrictions

I Unit code validation

I Data types : Booleans, integers, arrays of integers,
[floats]

I Bounded programs : array lengths, number of
unfoldings of loops, size of integers are known

I Normal behaviours of the method (no exception)

I JML specification :

• post condition : the conjunction of use cases of the
method

• possibly a precondition

12



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Building the constraint store: principle

I Each expression is mapped to a constraint:
ρ transforms program expressions into constraints

I SSA-like variable renaming: σ[v] is the current
renaming of variable v

I JML :

• \forall i→ conjunction of conditions
• \exist i→ disjunction of conditions

(i has bounded values)

13



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I scalar assignment

σ2 = σ1[v/σ1(v) + 1] & c2 ≡ (ρ σ2 v) = (ρ σ1 e)
〈[v ← e , l], σ1, c1〉 7−→ 〈[l], σ2, c1 ∧ c2〉

Program

x=x+1; y=x*y; x=x+y;

Constraints
{x1 = x0 + 1, y1 = x1 ∗ y0, x2 = x1 ∗ y1}

14



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I array assignment
σ2 = σ1[a/σ1(a) + 1]
c2 ≡ (ρ σ2 a)[ρ σ1 e1] = (ρ σ1 e2)
c3 ≡ ∀i ∈ 0..a.length(ρ σ1 e1) 6= i → (ρ σ2 a)[i] = (ρ σ1 a)[i]

〈[a[e1]← e2, l], σ1 , c1〉 7−→ 〈[l], σ2, c1 ∧ c2 ∧ c3〉

Program (a.length=8)

a[i] = x;

Constraints
{a1[i0] = x0, i0 6= 0→ a1[0] = a0[0],
i0 6= 1→ a1[1] = a0[1], ..., i0 6= 7→ a1[7] = a0[7]}

guard → body is a guarded constraint

a[i] = x is the element constraint: i and x are constrained
variables whose values may be unknown

15



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I conditional instruction: if b i ; l

c ∧ (ρ σ b) is satisfiable
〈if b i ; l , σ, c〉 7−→ 〈i ; l , σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈if b i ; l , σ, c〉 7−→ 〈l , σ, c ∧ ¬(ρ σ b)〉

16



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework
Overall view

Pre-processing

A small example

Language and
restrictions

Constraint store

Scalar assignment

Array assignment

Conditional instruction

while instruction

CPBPV

DPVS

FM Application

Discussion

Building the constraint store ...

I while instruction: while b i ; l

c ∧ (ρ σ b) is satisfiable
〈while b i ; l , σ, c〉 7−→ 〈i ;while b i ; l , σ, c ∧ (ρ σ b)〉

c ∧ ¬(ρ σ b) is satisfiable
〈while b i ; l , σ, c〉 7−→ 〈l , σ, c ∧ ¬(ρ σ b)〉

17



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

CPBPV, Overall view

CPBPV, Depth first exploration of the CFG

I Translate precondition of the specification (if it exists)
into a set of constraints PRECOND

I Translate post condition of the specification into a set
of constraints POSTCOND

I Explore each branch Bi of the program and translate
instructions of Bi into a set of constraints PROG_Bi

18



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

CPBPV, the validation process

I For each branch Bi , solve CSPi = PROG_Bi ∧
PRECOND ∧ NOT(POSTCOND)

• If for each branch Bi CSPi is inconsistent , then the
program is conform with its specification

• If for a branch Bi CSPi has a solution , then this
solution is a counterexample which illustrates a
non-conformity

!© Inconsistencies of CSPi are detected at each node
of the control flow graph

19



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation : if
c then ... else ...

I If c can be simplified into constant value “true” or
“false”, select the branch which corresponds to c

I If c is linear
1. add decision c in linear_CSP
2. solve linear_CSP

I if linear_CSP has no solution, condition c is not
feasible for the current path
 choose another path

I if linear_CSP has a solution, we can’t conclude
anything on complete_CSP
 investigate both branches c and ¬c

20



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation : if
c then ... else ...

I If c is NOT linear :
1. abstract decision c and add it in boolean_CSP
2. solve boolean_CSP

I boolean_CSP has no solution choose another
path

I if boolean_CSP has a solution investigate both
branches c and ¬c

Boolean abstraction
• hash-table of decisions : keys are decisions, values

are Boolean variables
• sub-expressions are shared→ rewriting

21



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Current prototype – On the fly validation :
loops

Let c be the entrance condition

• if c is trivially simplified to “true” or “false”
 enter or exit the loop
• if {c + linear_CSP } is inconsistent
 add ¬c to the CSPs and exit the loop

In other cases, unfold loop max times:

• If max is reached
 add ¬c to the CSPs and exit the loop
• Else investigate both paths

22



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (1)

/*@ requires (\forall int i;i>=0
@ && i<t.length-1;t[i]<=t[i+1])
@ ensures
@ (\result!=-1 ==> t[\result] == v) &&
@ (\result==-1 ==>

\forall int k; 0<=k<t.length; t[k]!=v)
@*/

1 static int binary_search(int[] t, int v)
2 int l = 0;
3 int u = t.length-1;
4 while (l <= u)
5 int m = (l + u) / 2;
6 if (t[m]==v) return m;
7 if (t[m] > v)
8 u = m - 1;
9 else
10 l = m + 1; // ERROR else u = m - 1;
11 return -1;

23



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (2)

• Precondition

\forall int i;i>=0
&& i<t.length-1;t[i]<=t[i+1]

CSP← t0[0] ≤ t0[1] ∧ t0[1] ≤ t0[2] ∧ ... ∧ t0[6] ≤ t0[7]

• Initialization

int l=0;int u=t.length-1;

CSP← CSP ∧ l0 = 0 ∧ u0 = 7

24



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (2)

• Precondition

\forall int i;i>=0
&& i<t.length-1;t[i]<=t[i+1]

CSP← t0[0] ≤ t0[1] ∧ t0[1] ≤ t0[2] ∧ ... ∧ t0[6] ≤ t0[7]

• Initialization

int l=0;int u=t.length-1;

CSP← CSP ∧ l0 = 0 ∧ u0 = 7

25



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (3)

I Loop

while (l<=u)

Enter into the loop since l0 ≤ u0 is consistent
with the current constraint store
CSP← CSP ∧ l0 ≤ u0

I Assignment

int m=(l+u)/2;

CSP← CSP ∧m0 = (l0 + u0)/2 = 3

26



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (3)

I Loop

while (l<=u)

Enter into the loop since l0 ≤ u0 is consistent
with the current constraint store
CSP← CSP ∧ l0 ≤ u0

I Assignment

int m=(l+u)/2;

CSP← CSP ∧m0 = (l0 + u0)/2 = 3

27



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (4)

I Conditional

if (t[m]==v) return m;

t0[m0] = v0 is consistent with the constraint store
so take the if part
CSP← CSP ∧ t0[m0] = v0

I Complete execution path p whose constraint store
cp is:
cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = 3 ∧ t0[m0] = v0

28



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (4)

I Conditional

if (t[m]==v) return m;

t0[m0] = v0 is consistent with the constraint store
so take the if part
CSP← CSP ∧ t0[m0] = v0

I Complete execution path p whose constraint store
cp is:
cpre ∧ l0 = 0 ∧ u0 = 7 ∧ m0 = 3 ∧ t0[m0] = v0

29



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (5)

Return statement has been reached

I add negation of post condition and link JML \result
variable with returned value m0

\result!=-1 ==> t[\result] == v) &&
(\result==-1 ==> \forall int k;

0<=k<t.length; t[k]!=v)

\m0! = −1 ∧ t0[m0]! = v0∨
\m0 = −1 ∧ (t0[0] = v0 ∨ t0[1] = v0 ∨ ... ∨ t0[6] = v0)

I solve the CSP
There is No solution so the program is correct along
this execution path

Go back to conditional if (t[m]==v) to explore
the else part

30



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Example: binary search (5)

Return statement has been reached

I add negation of post condition and link JML \result
variable with returned value m0

\result!=-1 ==> t[\result] == v) &&
(\result==-1 ==> \forall int k;

0<=k<t.length; t[k]!=v)

\m0! = −1 ∧ t0[m0]! = v0∨
\m0 = −1 ∧ (t0[0] = v0 ∨ t0[1] = v0 ∨ ... ∨ t0[6] = v0)

I solve the CSP
There is No solution so the program is correct along
this execution path

Go back to conditional if (t[m]==v) to explore
the else part

31



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Implementation

I Dedicated solvers
• ad-hoc simplifier : trivial simplifications and calculus

on constants
• linear solver (LP algorithm) + MIP solver
• Boolean solver (SAT solver)

(Boolean relaxation of the non linear constraints)
• CSP solver : used if none of the other solver did find

an inconsistency

I Prototype
• Solvers : Ilog CPLEX11 and JSolver4verif
• Written in Java using JDT (eclipse) for parsing Java

programs

!! CPLEX is unsafe but Neumaier & Shcherbina
→ method for computing a certificate of infeasibility

32



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Binary search

length 8 16 32 64 128
CPBPV time 1.08s 1.69s 4.04s 17.01s 136.80s
CBMC time 1.37s 1.43s KO

Table: Results for a correct binary search program

length CPBPV CBMC
8 0.027s 1.38s

16 0.037s 1.69s
32 0.064s 7.62s
64 0.115s 27.05s

128 0.241s 189.20s

Table: Results for an incorrect binary search

!! CBMC only shows the decisions taken along the faulty path (they do
not provide any value for the array nor the searched data)

33



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Role of the different solvers

• CPLEX, the MIP solver, plays a key role

• There are only length calls to the CP solver (and
much more calls to CPLEX)

• Almost 75% of the CPU time is spent in the CP
solver

34



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV
Overall view

Example

Implementation

Experiments

DPVS

FM Application

Discussion

Critical issues

I We do not need the Boolean abstraction to capture the
control structure of the program

→ Use the CFG and constraints to prune the
search space

I Depth first dynamic exploration of the CFG

• Efficient if the variables are instantiated early

• Blind searching: post-condition becomes active very
late

35



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS

DPVS, a Dynamic Backjumping Strategy

→ Generating Counterexamples

→ Starts from the postcondition and jumps to the
locations where the variables are assigned

36



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

A Dynamic Backjumping Strategy

Why can we do it ?

Essential observation:

When the program is in an SSA-like form, a path can be
built in a non-sequential dynamic way

→ CFG does not have to be explored in a top down (or
bottom up) way: compatible blocks can just be

collected in a non-deterministic way

37



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

A Dynamic Backjumping Strategy

DPVS starts from the post-condition and
dynamically collects program blocks which involve
variables of the post-condition

Why does it pay off ?

→ Enforces the constraints on the domains of the
selected variables

→ Detects inconsistencies earlier

38



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple

void foo(int a, int b)
int c, d, e, f ;
if(a >= 0) {

if(a < 10) {f = b − 1;}
else {f = b − a; }
c = a;
if(b >= 0) {d = a; e = b;}
else {d = a; e = −b;} }

else {
c = b; d = 1; e = −a;
if(a > b) {f = b + e + a;}
else {f = e ∗ a− b;} }

c = c + d + e;
assert(c >= d + e); // property p1
assert(f >= −b ∗ e); // property p2

39



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple(continued)

To prove property p1, select node (12), then select node
(4)
→ the condition in node (0) must be true
S = {c1 < d0 + e0 ∧ c1 = c0 + d0 + e0 ∧ c0 = a0 ∧ a0 ≥ 0}

= {a0 < 0 ∧ a0 ≥ 0} ... inconsistent

40



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

A small exemple(continued)

Select node (8)→ condition in node (0) must be false
S = {c1 < d0 + e0 ∧ c1 = c0 + d0 + e0 ∧ c0 = b0

∧a0 < 0 ∧ d0 = 1 ∧ e0 = −a0}
= {a0 < 0 ∧ b0 < 0}

Solution {a0 = −1,b0 = −1}

41



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS, pre-processing

Pre-processing

1. P is unwound k times→ Puw

2. Puw → DSAPuw , Dynamic Single Assignment form
(each variable is assigned exactly once on each
program path)

3. DSAPuw is simplified according to the specific
property prop by applying slicing techniques

4. Domains of all variables are filtered by propagating
constant values along G, the simplified CFG

42



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS
Example

Pre-processing

Algorithm

FM Application

Discussion

DPVS, Algorithm (scheme)

S ← negation of prop % constraint store
Q ← variables in prop % queue of variables

• While Q 6= ∅, v ← POP(Q)
• Search for a program block PB(v) where v is

defined
PUSH(Q,new_var ), new_var = new variables (6=
input variables) of PB(v)
S ← S ∪ {definition of v and conditions required to
reach definition of v }

• IF S is inconsistent, backtrack & search another
definition (otherwise the dual condition is cut off)

• IF Q = ∅ search for an instantiation of the input
variables (= counterexample)
If no solution exists, DPVS backtracks.

43



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Description of the module

• A real time industrial application from a car
manufacturer (provided by Geensoft)

• Flasher Manager (FM): controller that drives several
functions related to the flashing lights

Purpose:

• to indicate a direction change
• to lock and unlock the car from the distance
• to activate the warning lights

• Simulink model of FM→ C function f1

44



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: functionalities

I Direction change: Boolean input R or L rises from 0
to 1. The corresponding light then oscillates between
on/off states with a period of 6 time-units (e.g. 3 s)
→ output sequence of the form [111000]

I Lock and unlock of the car
I If the unlock button is pressed while the car is

unlocked, nothing shall happen.
I If the unlock button is pressed while the car is locked,

both lights shall flash with a period of 2 time-units
during 20 time-units (fast flashes for a short time)

I If the lock button is pressed while the car is unlocked,
both lights shall go on for 10 time-units, and then shall
go off for another 10 time-units

I If the lock button is pressed while the car is locked,
both lights shall flash during 60 time-units with a
period of 2 time-units (fast flashes for a long time) ..

I Warning function: when the warning is on, both lights
flash with a period of 6 time-units 45



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Simulink model(1)

	
  

46



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Simulink model (2)

	
  

47



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: Function f1

Simulink model of FM→ C function f1

• 81 Boolean variables (6 inputs, 2 outputs) and 28
integer variables

• 300 lines of code: nested conditionals including
linear operations and constant assignments
Piece of code:

48



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: properties

p1 The lights should never remain lit

p2 The Warning function has priority over other flashing
functions

p3 When the warning button has been pushed and then
released, the Warning function resumes to the
Flashers_left (or Flashers_right) function, if
this function was active when the warning button was
pushed

p4 When the F signal (for flasher active) is off, then the
Flashers_left, Flashers_right and Warning
functions are desabled. On the contrary, all the
functions related to the lock and unlock of the car are
maintained

49



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: property p1

• Property p1: The lights should never remain lit

Property p1 concerns the behaviour of FM for an
infinite time period

→ p1 is violated when the lights remain on for N
consecutive time period

→ a loop (bounded by N) that counts the number of
times where the output of FM has consecutively been
true

Challenge: bound N as great as possible

50



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

FM Application: property p1

Program under test for Property:

51



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

Experiments: tools

• DPVS, implemented in Comet, a hybrid optimization
platform for solving combinatorial problems

• CPBPV*, an optimized version of CPBPV based on a
dynamic top down strategy

• CBMC, one of the best bounded model checkers

Experiments were performed on a Quad-core Intel Xeon
X5460 3.16GHz clocked with 16Gb memory
All times are given in seconds.

52



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

Experiments (property p1)

Solving time:
N CBMC DPVS CPBPV*
5 0.03 0.02 0.84

100 58.52 1.11 TO
200 232.19 1.7 TO
400 TO 3.83 TO
800 TO 9.35 TO

1600 TO 26.2 TO
Presolving time:

N CBMC DPVS & CPBPV*
5 0.366 0.48

100 96.21 14.95
200 395.46 21.65
400 TO 83.81
800 TO 218.15

1600 TO 531.82

53



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application
Description

Simulink model

Program

Experiments

Tools

Exp. on FM

Discussion

Experiments (cont)

I Presolving, search, and total times in seconds for
checking Property p2 with 10 unfoldings

Tool Presolving Search Total
CBMC 0.89 0.23 1.12
CBMCz3 0.85 2.7 3.55
DPVS 3.89 0.08 3.97
DPVSz3 0.34 4.23

This propety does not hold (only 3 unfoldings are
required)

I Property 3 and 4 couldn’t be checked

54



D
ra

ftCSP & BMC

M. Rueher

The CP
Framework

CPBPV

DPVS

FM Application

Discussion

Discussion

Experiments on the binary search
Length CBMC DPVS CPBPV*
4 5.732 0.529 0.107
8 110.081 35.074 0.298
16 TO TO 1.149
64 TO TO 27.714
128 TO TO 153.646

• DPVS and CBMC waste a lot of time in exploring
the different paths

• CPBPV* incrementally adds the decisions taken
along a path
→ well adapted for the Binary Search program

On going work : Combining strategies

55


	A CP framework for Bounded Program Verification
	Overall view
	Building the constraint store

	CPBPV, a Depth First Dynamic Exploration of the CFG
	Overall view
	Example
	Implementation
	Experiments

	DPVS, a Dynamic Backjumping Strategy
	A small exemple
	Pre-processing
	Algorithm

	The Flasher Manager Application
	Description of the module
	Simulink model
	Program under test
	Experiments
	 Tools
	 Experiments on the Flasher Manager

	Discussion

