Classical and Non-Classical Uses of SAT in Model-Checking

Jean-François Raskin Université Libre de Bruxelles

Objectives

- Give representative examples of the use of SAT solvers in verification algorithms for finite state systems
- **Disclaimer** I:not my work
- **Disclaimer II**: by no means a full review of the literature (examples only)

Plan

- Bounded model-checking
- Unbounded model-checking
- Inductive invariant generation

Symbolic transition systems

- A Symbolic Transition System (STS) S=(X,I,T) where:
 - X is a set of boolean variables
 - $I \in \mathfrak{B}(X)$ defines the initial states
 - $T \in \mathfrak{B}(X \cup X')$ defines the transition relation
- We associate to STS=(X,I,T) an explicit, so exponentially larger, transition system TS=(S,S₀,E):

•
$$S = \{ v \mid v : X \rightarrow \{0, I\} \}$$

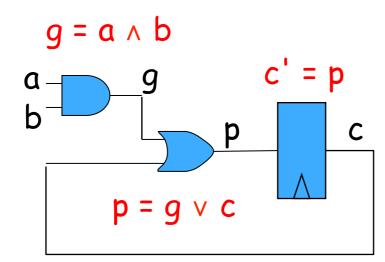
•
$$S_0 = \{ v \in S \mid v \models I \}$$

•
$$E = \{ (v,v') | (v,v') \models T \}$$

Typical verification questions

- **Safety**: are all the executions of my system avoiding a set of bad states ?
- **Reachability**: is there an execution of my system that reaches bad states ? dual of safety
- Liveness: are all the executions of my system doing eventually/repeatedly something good ?

Circuit Example



Model: C = { g = a ^ b, p = g v c, c' = p }

From McMillan03

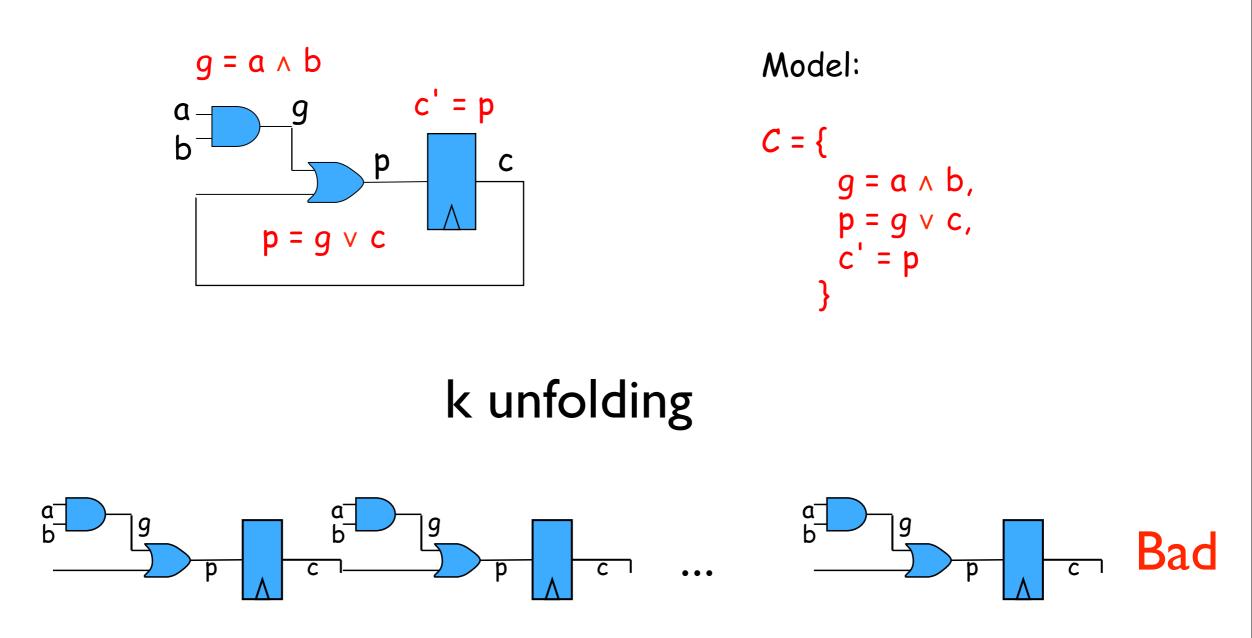
Can we reach a state of the circuit in which $c \land \neg p$ holds ?

Bounded model-checking [BCC+99]

Bounded model-checking

- First, let us **falsifying safety properties**
- Let STS=(X,I,T) and $Bad \in \mathfrak{B}(X)$
- Is there a [[T]]-path from [[I]] to [[Bad]] ?
- Bound: Is there a [[T]]-path of length at most k from [[I]] to [[Bad]] ?

System unfolding



Can the circuit reach a state where c is true in at most k steps ?

Unfolding of T

• **Unfolding** of T k times:

 $\mathsf{T}(\mathsf{X}_0,\mathsf{X}_1)\wedge\mathsf{T}(\mathsf{X}_1,\mathsf{X}_2)\wedge\ldots\wedge\mathsf{T}(\mathsf{X}_{k\text{-}2},\mathsf{X}_{k\text{-}1})$

• Use SAT solver to check **satisfiability** of

 $I(X_0) \land T(X_0,X_1) \land T(X_1,X_2) \land \dots \land T(X_{k-2},X_{k-1}) \land \forall_{i=0..k-1} Bad(X_i)$

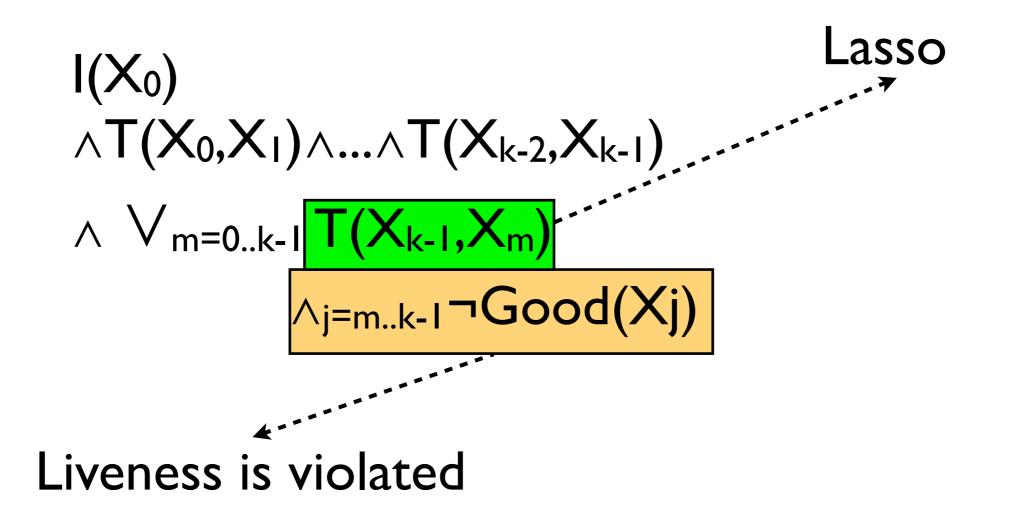
 A satisfying assignment corresponds to a path of length at most k from [I] to [Bad], i.e. a counter-example to the safety property

Beyond safety

- Let Good $\in \mathfrak{B}(x)$
- Given an infinite path ρ in TS, we note **Inf**(ρ) the set of states that appear infinitely many times along ρ
- An infinite path in TS is good if $lnf(\rho) \cap [[Good]] \neq \emptyset$
- **Liveness**: check that every path in TS are good
- Counter-examples are **lasso-path** such that the cycle does not contain any good states
- Bound: find a lasso-path of length at most k that does not cross
 [Good] in the lasso part

Beyond safety

• Encoding in SAT:



Beyond counter-examples

- **Proving properties** is only possible if k is taken sufficiently large
- **Diameter**: maximum length of the shortest path between any two states
- ... is worst-case exponential, furthermore it is PSpace-C to compute it
- So, other techniques are needed

Unbounded Model-Checking

Four examples of unbounded SAT based MC

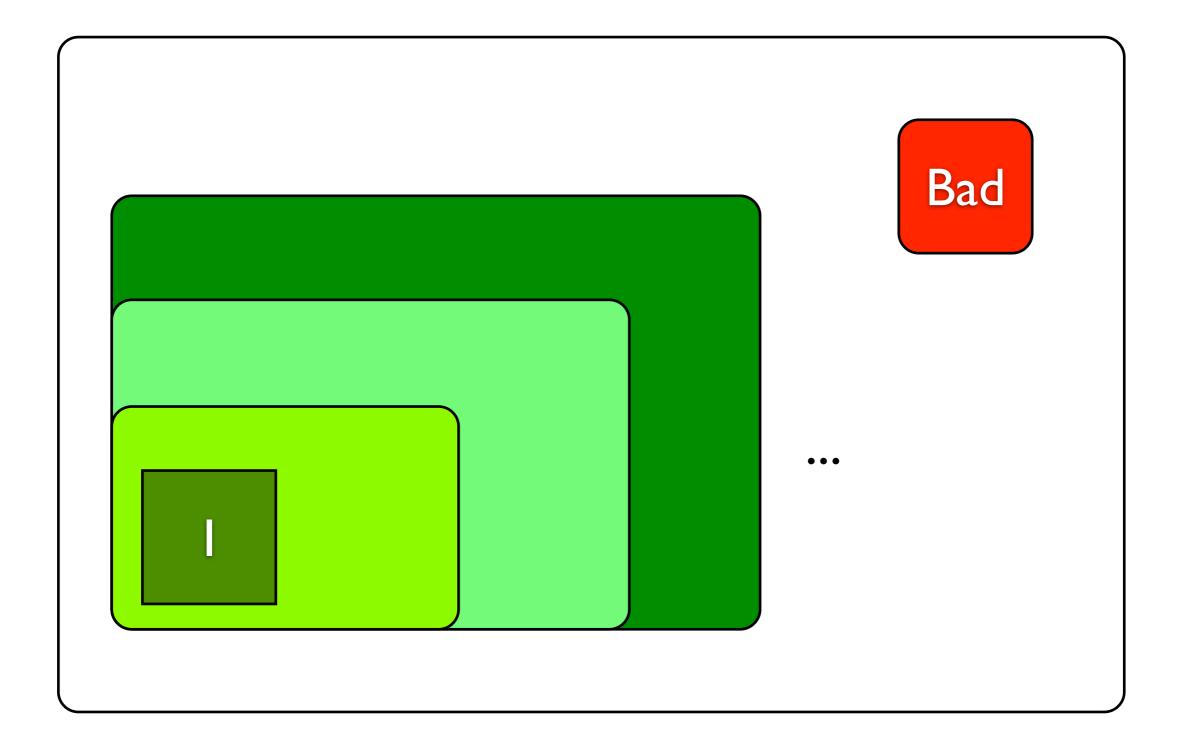
- Symbolic Reachability Analysis based on SAT Solvers [ABE00]
- Unbounded Sat-based model-checking with abstractions [CCKSVW02] + McMillan variant
- Interpolation and unbounded SAT-based model-checking [McMillan03]
- Discovering inductive invariants in subset constructions

Symbolic Reachability Analysis based on SAT Solvers [ABE00]

Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let Bad $\in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[[I]]UPost[[T]](R)

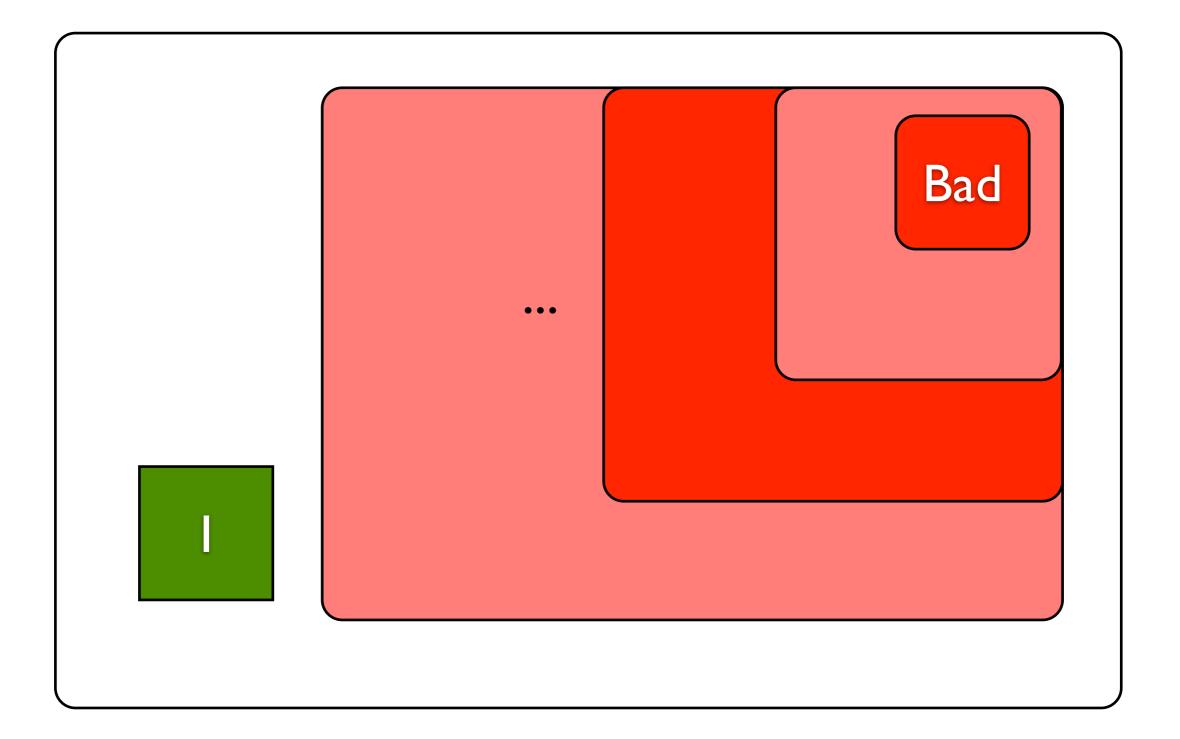
Forward exploration



Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let Bad $\in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[[I]]UPost[[T]](R)
- ReachBack(Bad) is the least set of states
 B such that B=[Bad]UPre[T](B)

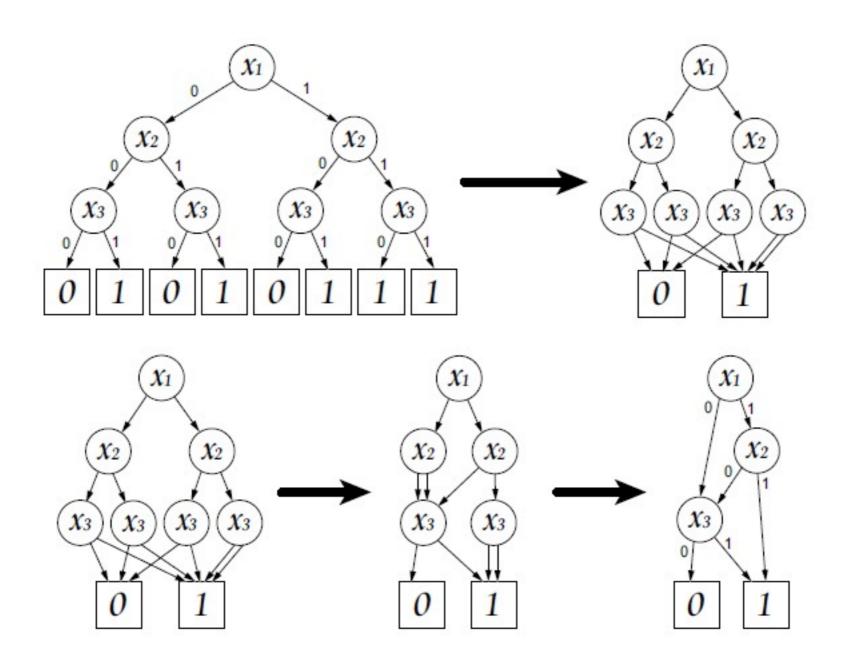
Forward exploration



Symbolic Forward/Backward Reachability

- Let STS=(X,I,T) and let Bad $\in \mathfrak{B}(X)$
- ReachFwd(I) is the least set of states R such that R=[[I]]UPost[[T]](R)
- ReachBack(Bad) is the least set of states
 B such that B=[Bad]UPre[T](B)
- Symbolic MC: fixpoints+data structure for manipulating sets

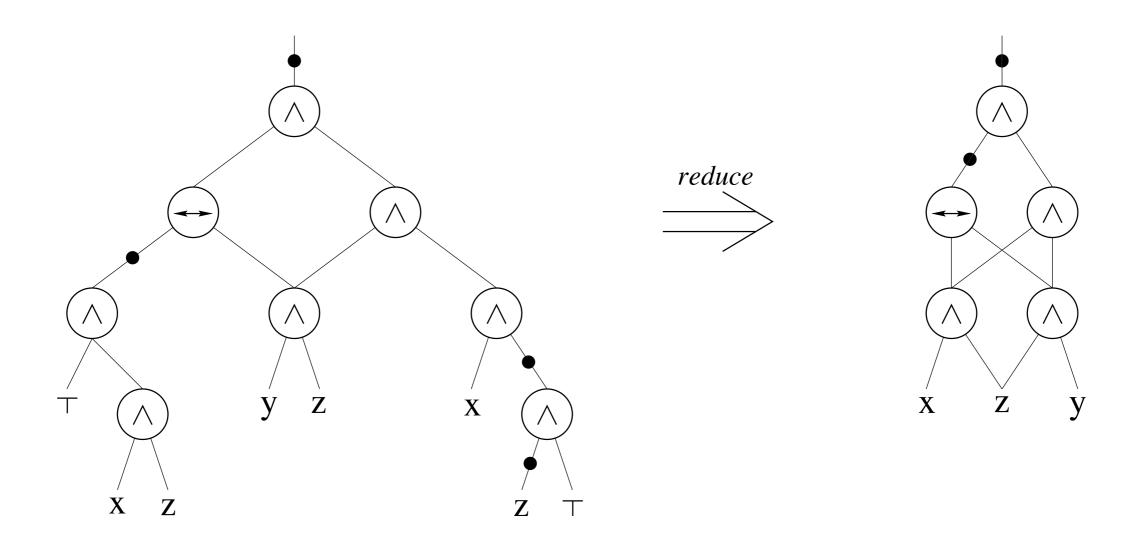
BDDs



BDDs - Canonicity and Succinctness

- BDDs are **canonical** representation for Boolean functions
- Make very **easy** to check fixed-point
- Fact: some Boolean functions have provably large BDD representations, e.g. binary multiplication
- Idea: use potentially more compact representations... at the expense of canonicity and (maybe) some algorithmic efficiency

Boolean circuits



Boolean circuits

- As BDDs, Boolean circuits represent sets of valuations (=states)
- There is **no** (useful) canonical form
- There are often **more compact** than BDDs
- Algorithms for constructing new BCs from existing ones

Boolean circuits and existential quantification

• Expansion rule

$$\exists x \; . \; \phi(x) \; \iff \; \phi(\bot) \lor \phi(\top)$$

• To avoid blow-up:

Inlining:

 $\exists x \ . \ (x \leftrightarrow \psi) \land \phi(x) \iff \phi(\psi) \qquad \qquad (\text{where } x \not\in \operatorname{Vars}(\psi))$

Scope Reduction:

$$\begin{array}{ll} \exists x \ . \ \phi(x) \land \psi & \iff (\exists x . \phi(x)) \land \psi & (\text{where } x \not\in \text{Vars}(\psi)) \\ \exists x \ . \ \phi(x) \lor \psi(x) & \iff (\exists x . \phi(x)) \lor (\exists x . \psi(x)) & \end{array}$$

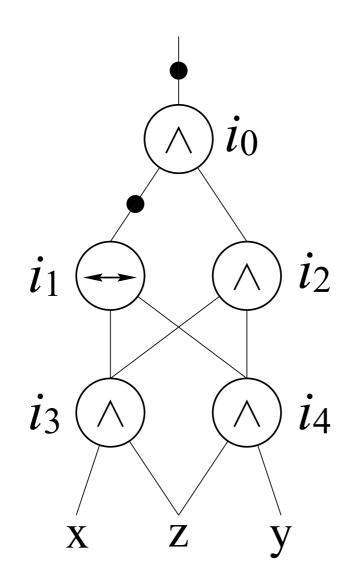
Boolean circuits

- As BDDs, Boolean circuits represent sets of valuations
- There is **no** (useful) canonical form
- There are often **more compact** than BDDs

use SAT

- Algorithms for constructing new BCs from existing ones
- Satisfiability is **NP-Complete**

Checking satisfiability of Boolean circuits with SAT

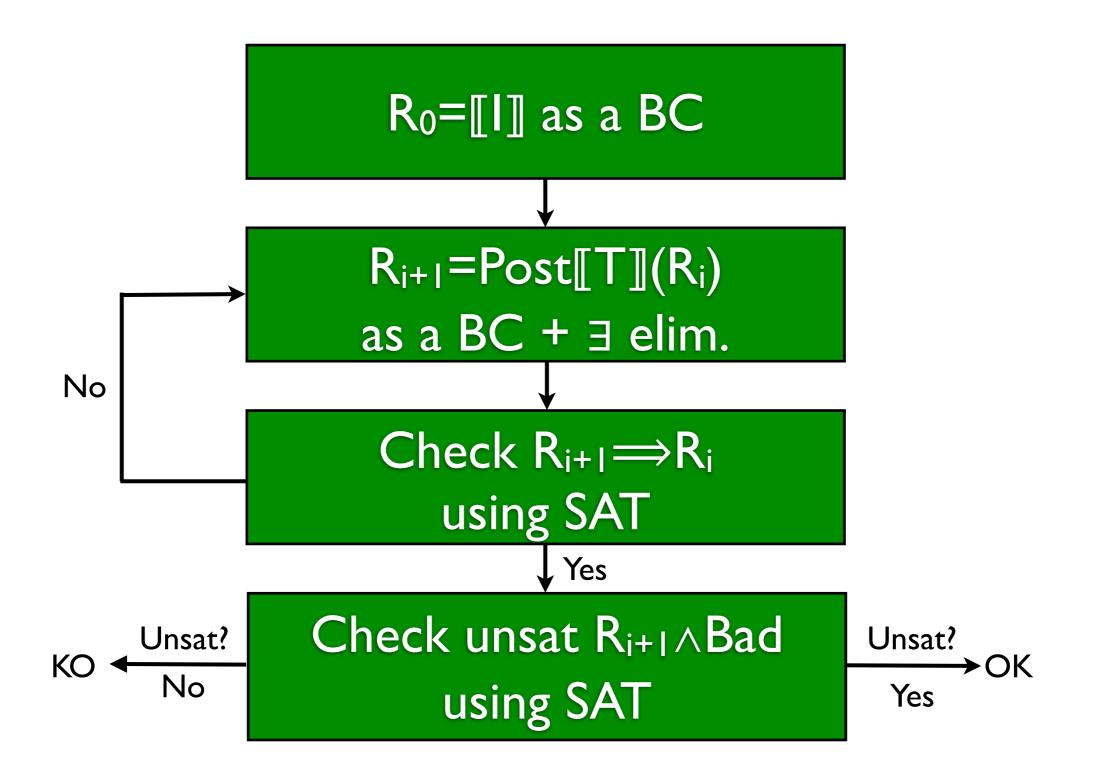


$$(i_0 \leftrightarrow \neg i_1 \wedge i_2)$$

 $\wedge (i_1 \leftrightarrow i_3 \leftrightarrow i_4)$
 $\wedge (i_2 \leftrightarrow i_3 \wedge i_4)$
 $\wedge (i_3 \leftrightarrow x \wedge z)$
 $\wedge (i_4 \leftrightarrow z \wedge y)$
 $\wedge \neg i_0$

Not equivalent but **satisfiability** is maintained

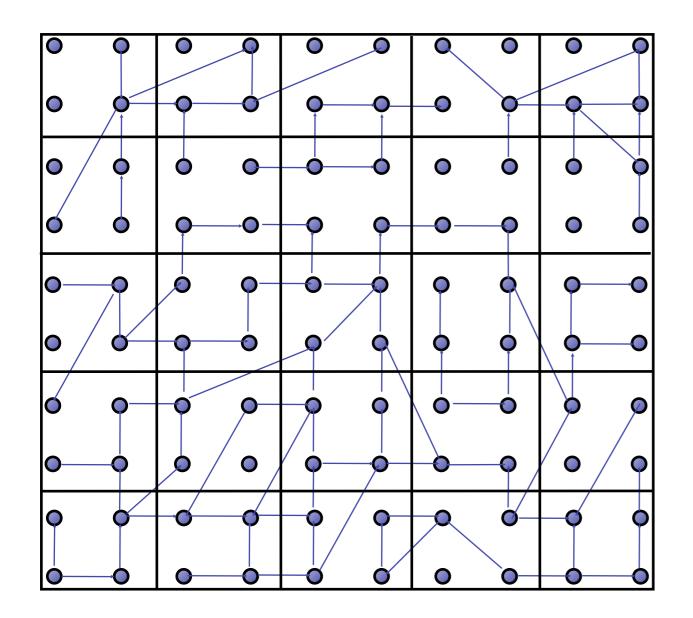
SMC algorithm using BC and SAT



Unbounded SAT-based model-checking with abstractions [CCKSVW02]

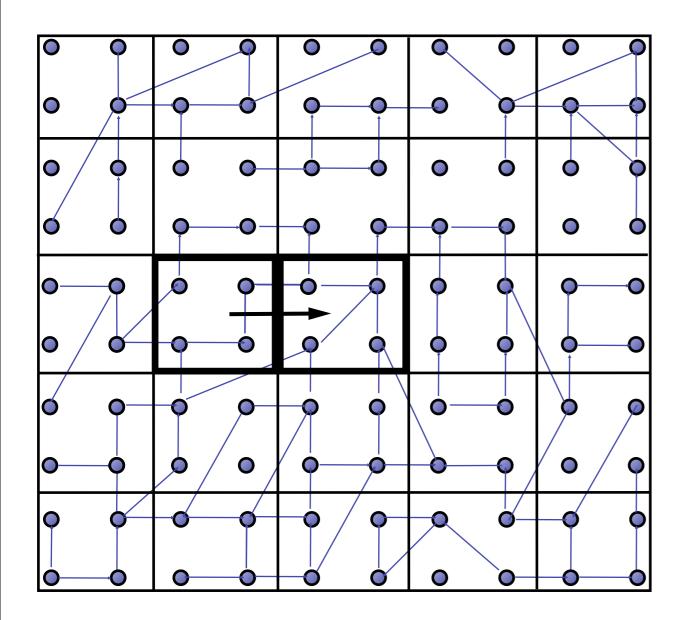
Abstractions

- Symbolic model-checking sensitive to the number of Boolean variables (symbolic state explosion problem)
- But (coarse) abstractions are often sufficient to prove correctness
- Try to **lower the number of variables** using abstraction



Predicates on program/circuit state space

- States satisfying same predicates are
 equivalent
- Merged into one abstract state

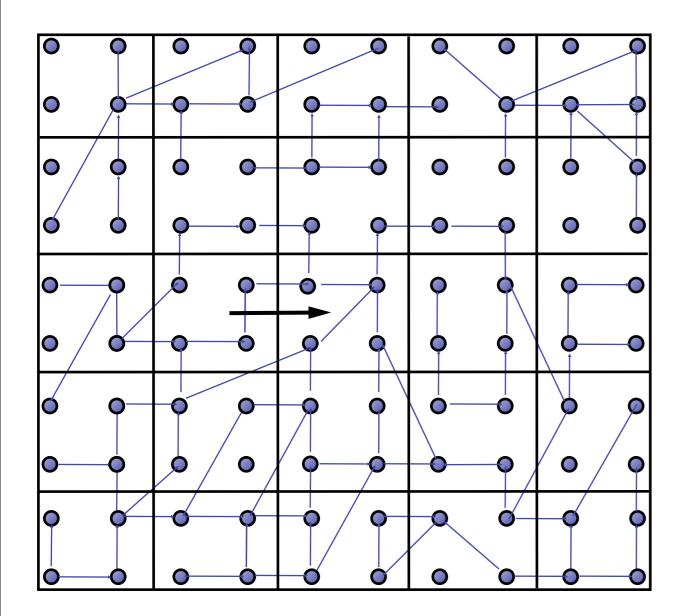


Abstract transition relation

 $T^{\alpha}(A_1,A_2)$

iff

 $\exists_{s_1 \in A_1} \cdot \exists_{s_2 \in A_2} \cdot T(s_1, s_2)$



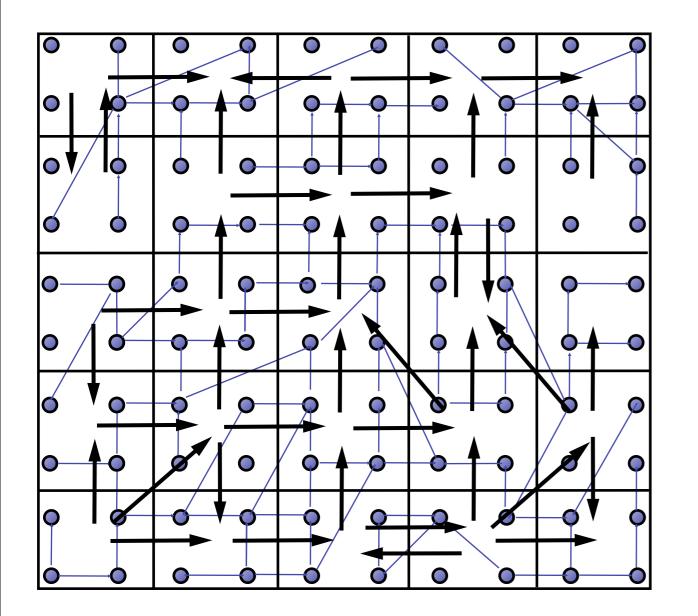
Abstract transition relation

 $T^{\alpha}(A_1,A_2)$

iff

 $\exists s_1 \in A_1 \cdot \exists s_2 \in A_2 \cdot T(s_1, s_2)$

Existential Lifting



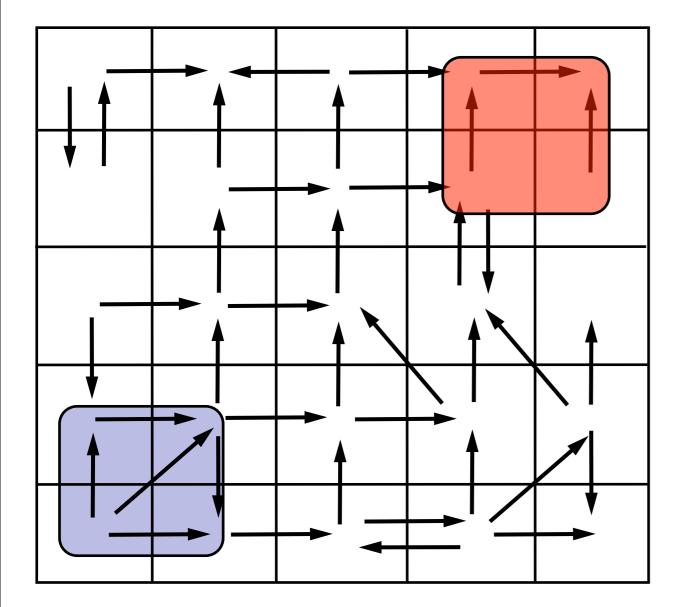
Abstract transition relation

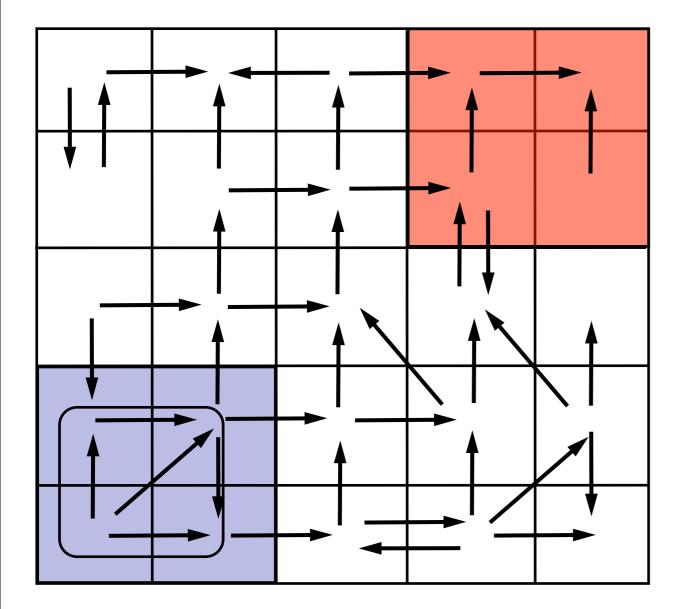
 $T^{\alpha}(A_1,A_2)$

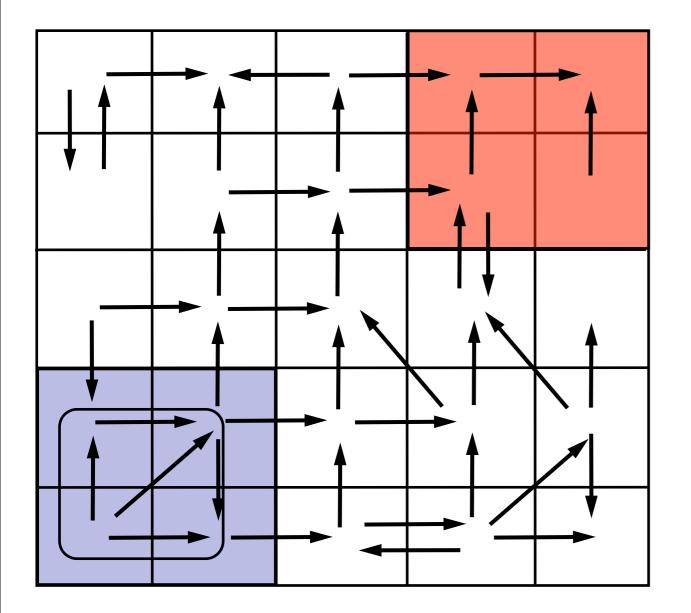
iff

 $\exists_{s_1 \in A_1} \cdot \exists_{s_2 \in A_2} \cdot T(s_1, s_2)$

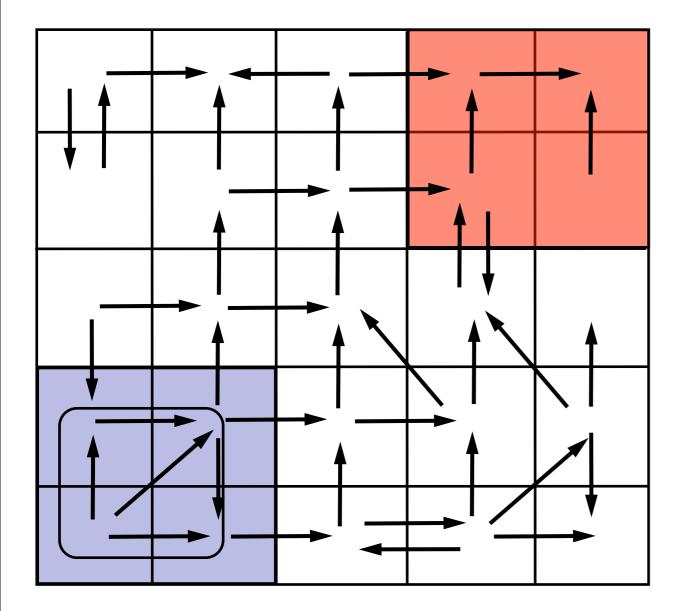
Existential Lifting





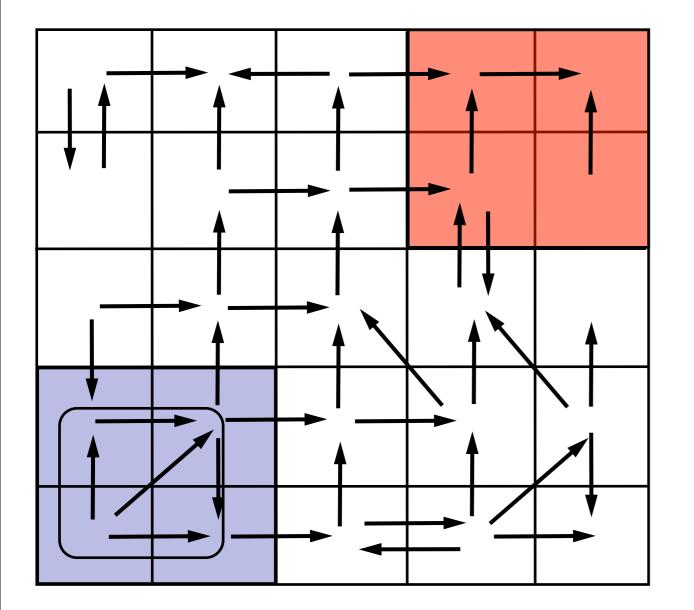


Analyze the abstract graph



Analyze the abstract graph

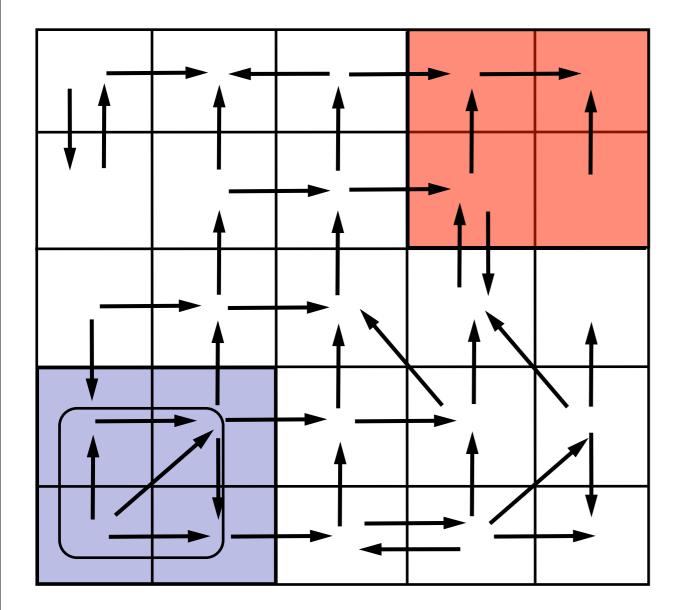
Overapproximation:



Analyze the abstract graph

Overapproximation:

Safe \Rightarrow System Safe

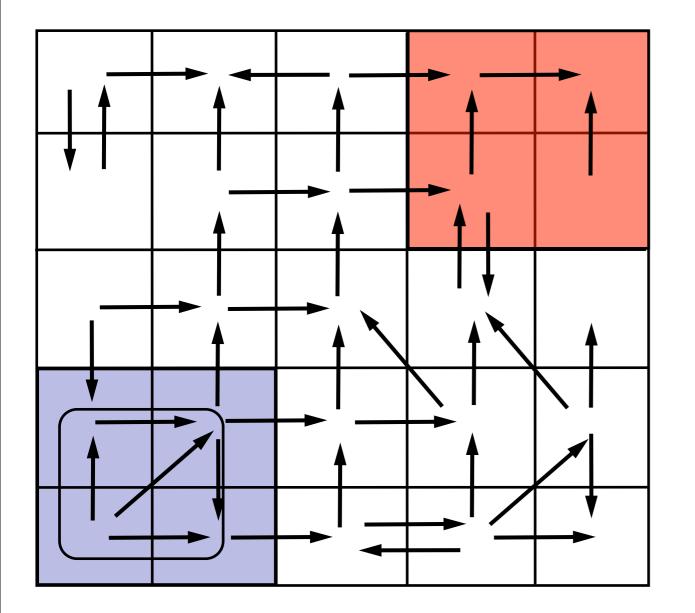


Analyze the abstract graph

Overapproximation:

Safe \Rightarrow System Safe

No false positives



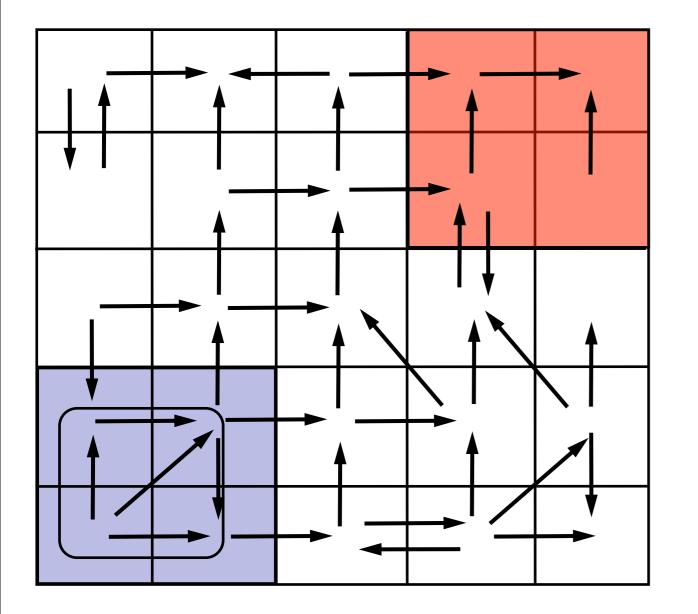
Analyze the abstract graph

Overapproximation:

Safe \Rightarrow System Safe

No false positives

Problem



Analyze the abstract graph

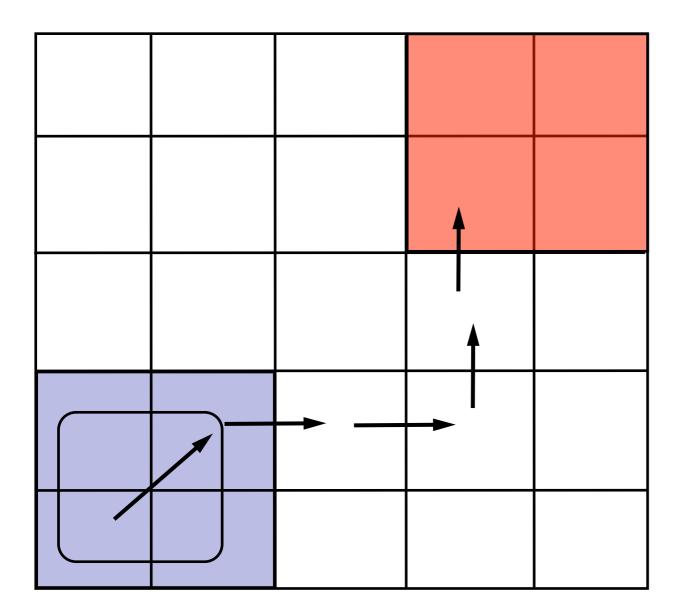
Overapproximation:

Safe \Rightarrow System Safe

No false positives

Problem

Spurious counterexamples



Analyze the abstract graph

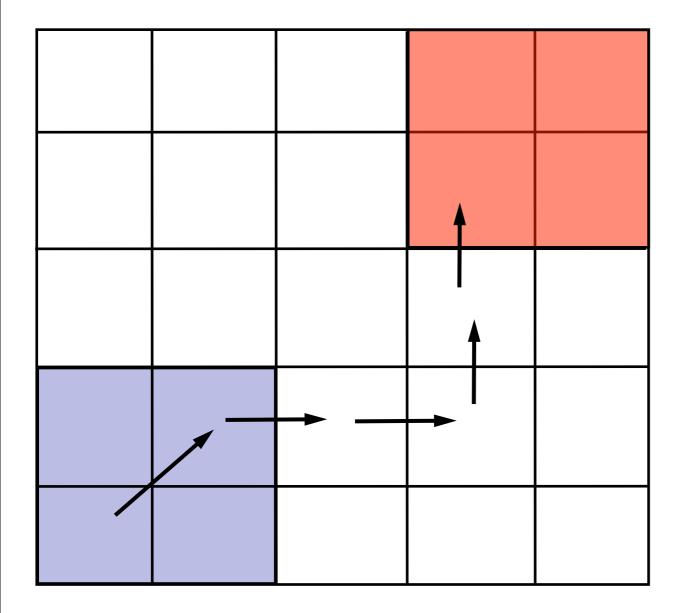
Overapproximation:

Safe \Rightarrow System Safe

No false positives

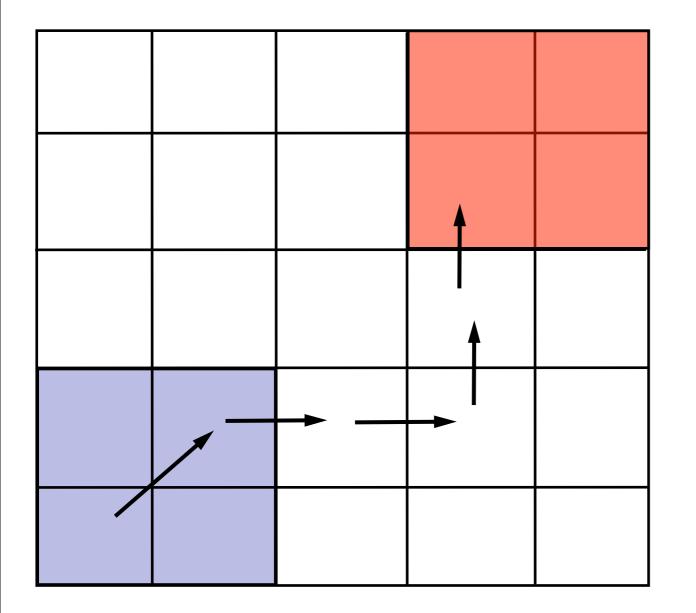
Problem

Spurious counterexamples

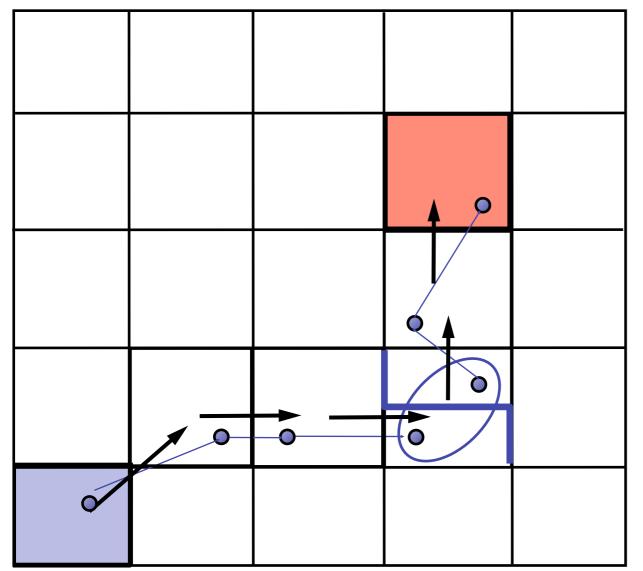


Counterex.-Guided Refinement

[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]



Solution Use spurious counterexamples to refine abstraction !



Solution

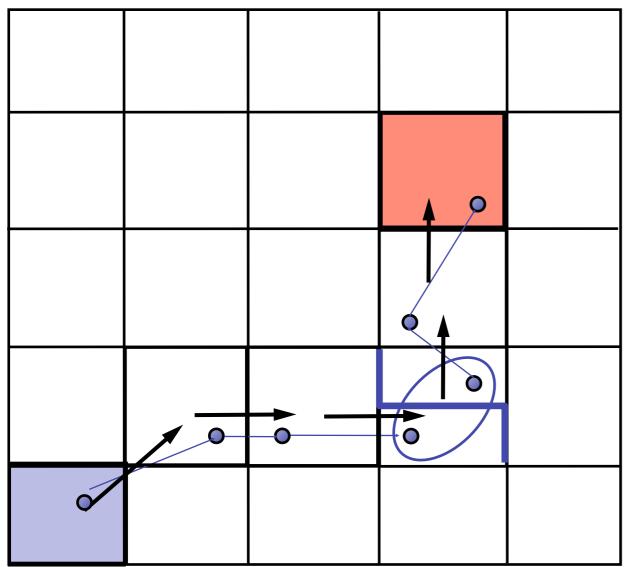
Use spurious **counterexamples** to **refine** abstraction

- I. Add predicates to distinguish states across cut
- 2. Build **refined** abstraction

Imprecision due to merge

Counterex.-Guided Refinement

[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]



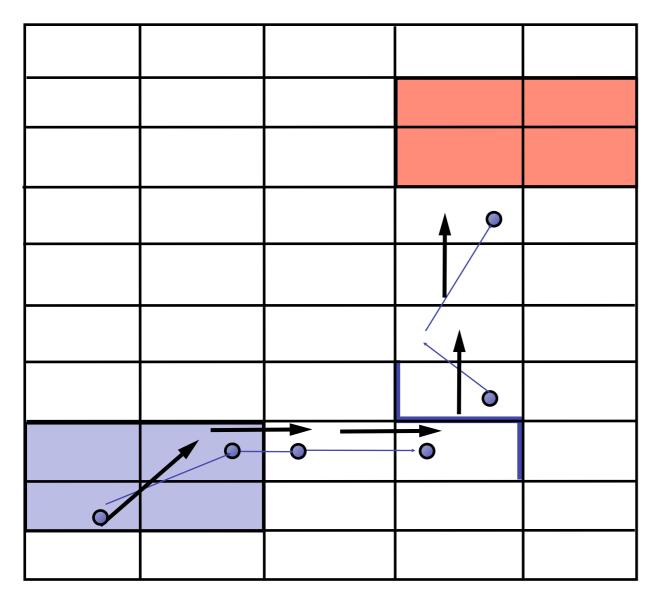
Solution

Use spurious **counterexamples** to **refine** abstraction

- I. Add predicates to distinguish states across cut
- 2. Build **refined** abstraction

Imprecision due to merge

Iterative Abstraction-Refinement



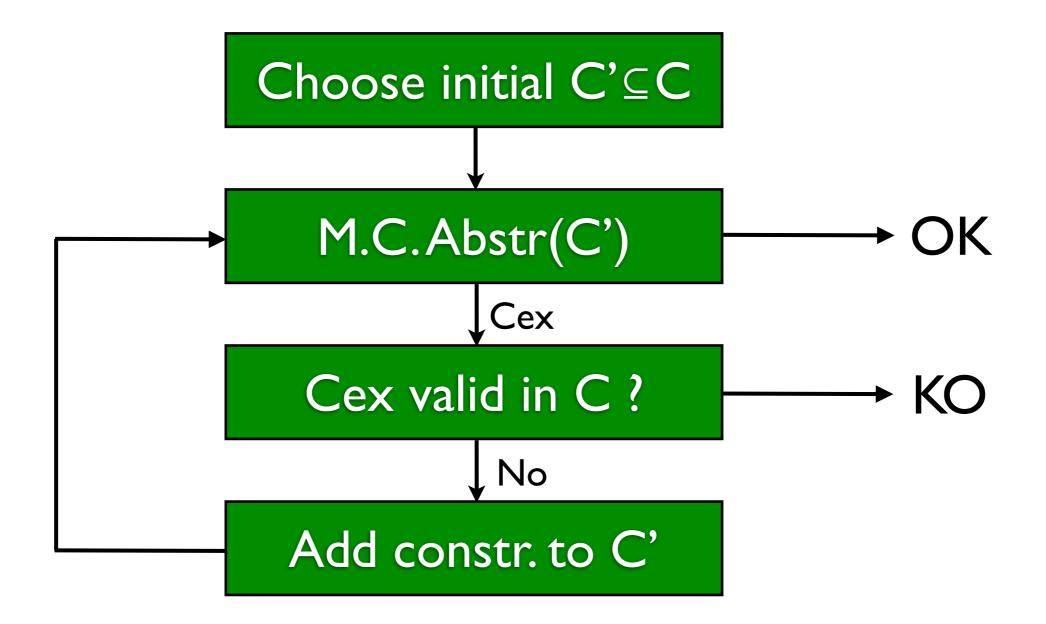
Solution

Use spurious **counterexamples** to **refine** abstraction

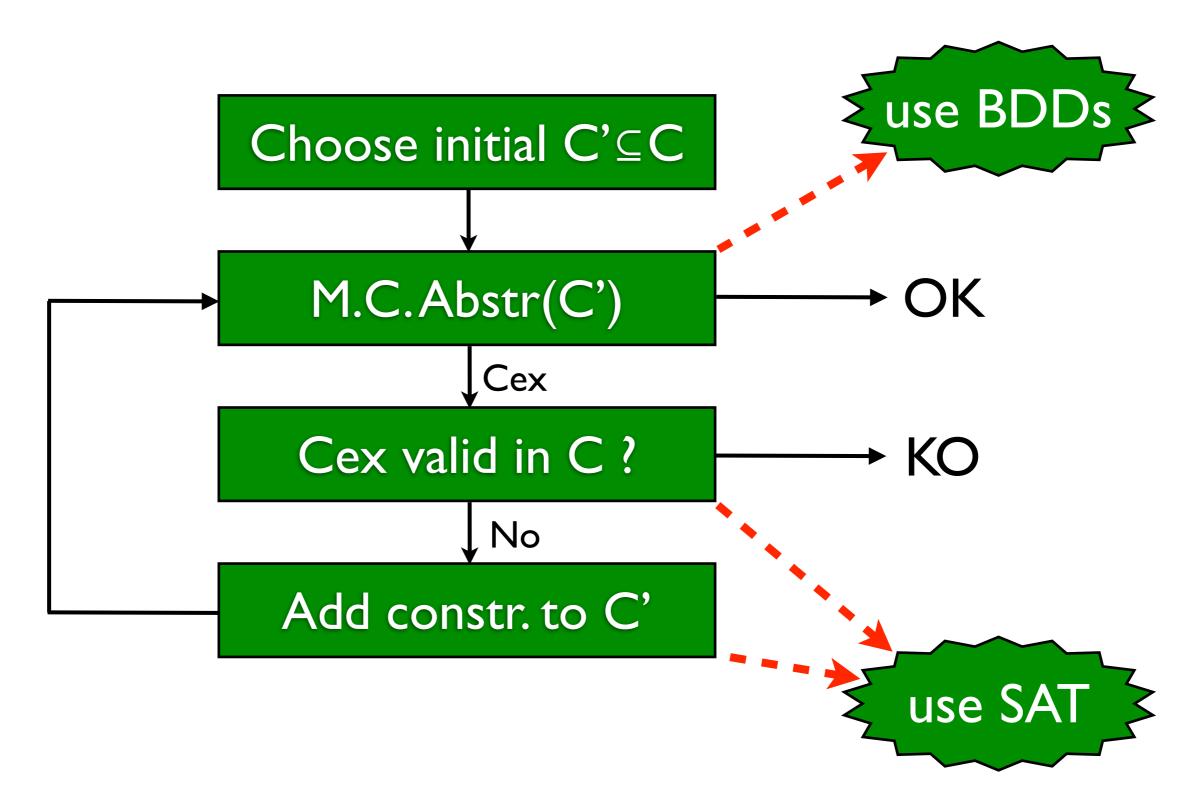
- I.Add predicates to distinguish states across **cut**
- 2. Build **refined** abstraction -eliminates counterexample
- 3. Repeat search
 - Till real counterexample

or system proved safe

Abstraction refinement



Abstraction refinement



Abstract Cex - Safety

- **Abstract variables** Y=Support(C',I,F)
- Abstract system is model-checked using BDD-based symbolic MC with variables in Y only and |Y| « |X|
- Abstract counter-example is a truth assignment to $\{x_t \mid x \in Y \land 0 \le t \le k\}$ where k is the number of steps in the counter-example

Concretization of Cex

- The abstract Cex A^{α} satisfies: $I(Y_0) \wedge T_{0..k-1}(Y_0,...,Y_{k-1}) \wedge \bigvee_{i=0..k-1} Bad(Y_i)$
- Search for a concrete A consistent with \mathbf{A}^{α} :

 $\mathbf{A}^{\alpha}(\mathbf{Y}) \land I(X_0) \land T_{0..k-1}(X_0,...,X_{k-1}) \land \forall_{i=0..k-1} \operatorname{Bad}(X_i)$

=BMC but guided by the abstract Cex

 If unsat Cex cannot be made concrete and it is thus spurious

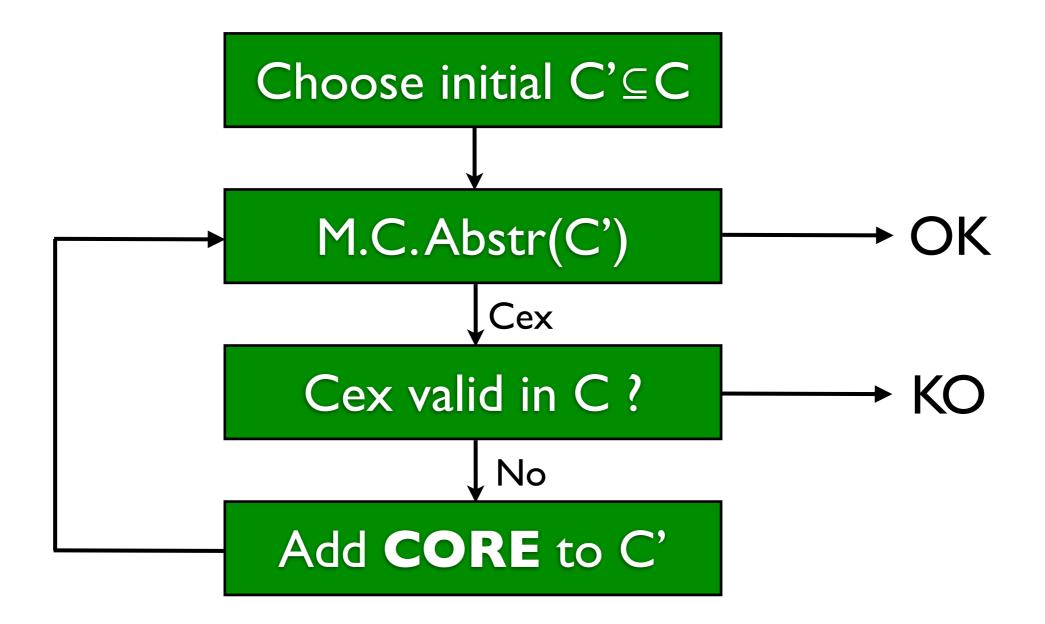
Refinement

- Refinement: add constraints to C'
- Goal: rule out the Cex in the next abstract model
- There are many technics for that
- One based on SAT machinery: use resolution based refutation of the unsat formula underlying the concretization of the abstract counter-example

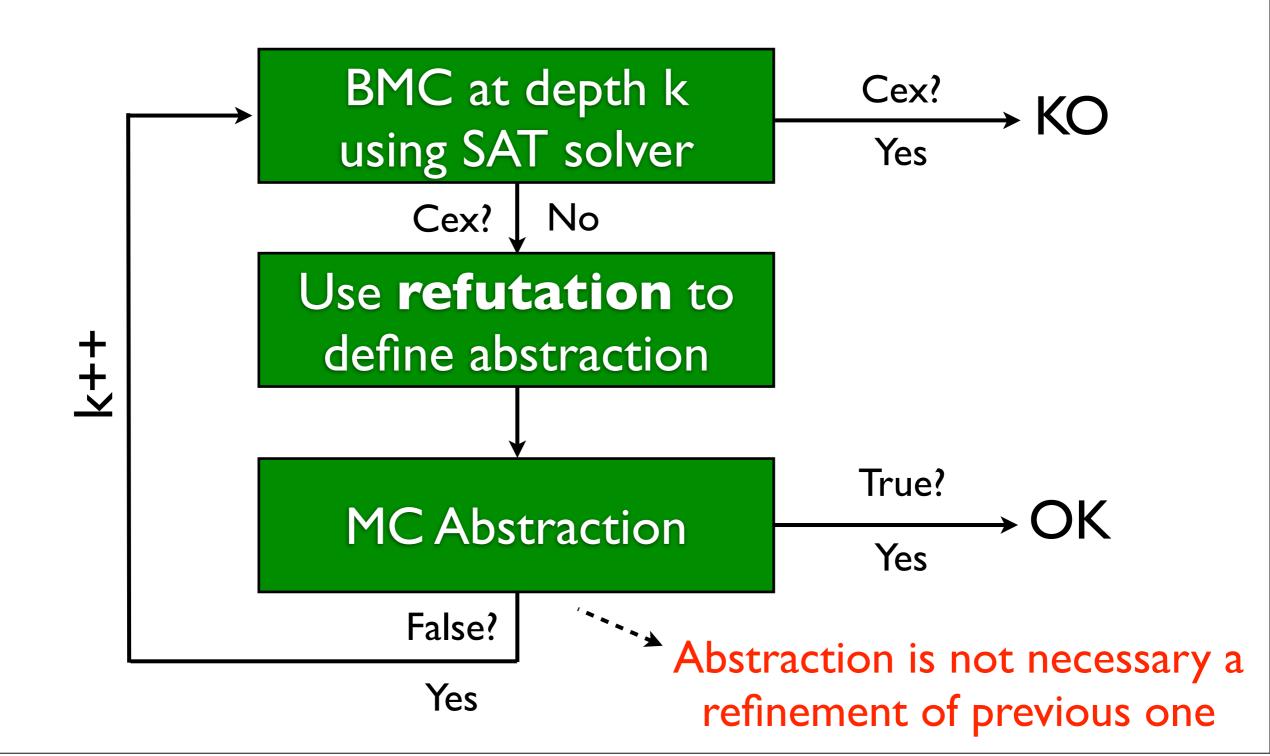
Resolution based refinement

- $A^{\alpha}(Y) \wedge I(X_0) \wedge T_{0..k-1}(X_0,...,X_{k-1}) \wedge \vee_{i=0..k-1} Bad(X_i)$ is unsatisfiable
- SAT solver returns unsatisfiable and produce an UNSAT core CORE
- A^α cannot be extended to a concrete Cex:
 CORE is sufficient to prove it
- Add CORE to C'

Abstraction refinement



Variation [McMillan03]



Interpolation based unbounded Sat-based model-checking [McMillan03]

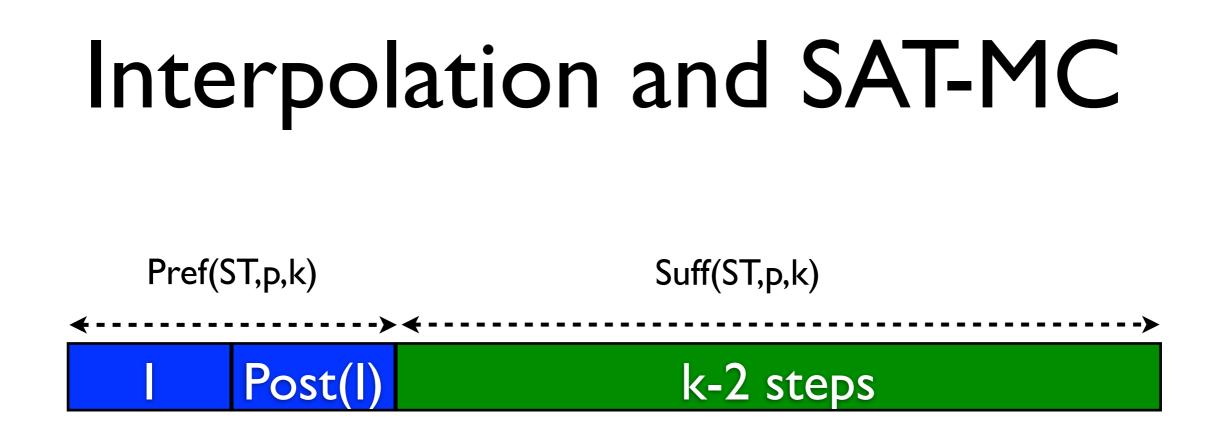
Interpolant

- An **interpolant** I for an unsatisfiable formula $A \land B$ is a formula such that
 - $A \Longrightarrow \mathbb{I}$
 - I∧B is unsatisfiable
 - I only refers to the common variables of A and B
- Ex: $A \equiv p \land q$, $B \equiv \neg q \land r$, $\mathbb{I} \equiv q$

Interpolation and SAT-MC

- First, call **BMC**(ST,p,k)
- Decompose BMC(ST,p,k) into Pref(ST,p,k) \Suff(ST,p,k), where
 - Pref(ST,p,k)=init+first transition
 - Suff(ST,p,k)=k-I last transitions+¬p
 - if formula is SAT, we have Cex
- Otherwise, compute I for Pref(ST,p,k) \ Suff(ST,p,k)

Pref(ST,p,k)		Suff(ST,p,k)
	Post(I)	k-2 steps



Fact: the interpolant I **overapproximates** the set of initial states and those accessible in one step and that do **not** lead to bad states within k steps (quality of the overapproximation)

Idea: iterate from a new set of initial states : I

procedure interpolation (M, p)

1. initialize k

2. while true do

3. if BMC(M, p, k) is SAT then return *counterexample*

4. R = I

5. while true do

 $6. \qquad M' = (S, R, T, L)$

7. let
$$C = Pref(M', p, k) \land Suff(M', p, k)$$

8. if
$$C$$
 is SAT then break (goto line 15)

9. /* C is UNSAT */

10. compute interpolant \mathcal{I} of $Pref(M', p, k) \wedge Suff(M', p, k)$

11.
$$R' = \mathcal{I}$$
 is an over-approximation of states reachable from R in one step.

12. if
$$R \Rightarrow R'$$
 then return *verified*

13. $R = R \lor R'$

14. end while

15. increase k

16. end while

end

procedure interpolation (M, p)	Discover negative instances		
1. initialize k			
2. while $true$ do			
3. If $BMC(M, p, k)$ is SAT then return <i>counteres</i>	xample		
4. $R = I$			
5. while true do			
6. M' = (S, R, T, L)			
7. let $C = Pref(M', p, k) \land Suff(M', p, k)$			
8. if C is SAT then break (goto line 15)			
9. $/* C$ is UNSAT $*/$			
10. compute interpolant \mathcal{I} of $Pref(M', p, k) \wedge Suff(M', p, k)$			
11. $R' = \mathcal{I}$ is an over-approximation of states reachable from R in one step.			
12. if $R \Rightarrow R'$ then return <i>verified</i>			
13. $R = R \lor R'$			
14. end while			
15. increase k			
16. end while			
end			

procedure interpolation (M, p)

1. initialize k

2. while true do

- 3. if BMC(M, p, k) is SAT then return *counterexample*
- 4. R = I

9.

15.

end

- while true do 5.
- M' = (S, R, T, L)6.
- $let C = Pref(M', p, k) \land Suff(M', p, k)$ 7.
- if C is SAT then break (goto line 15) 8.
 - /* C is UNSAT */
- compute interpolant \mathcal{I} of $Pref(M', p, k) \wedge Suff(M', p, k)$ 10.
- $R' = \mathcal{I}$ is an over-approximation of states reachable from R in one step. 11.
- 12. if $R \Rightarrow R'$ then return *verified*
- $R = R \vee R'$ 13.
- 14. end while

increase kPotentially spurious counter-example 16. end while due to over-approximation

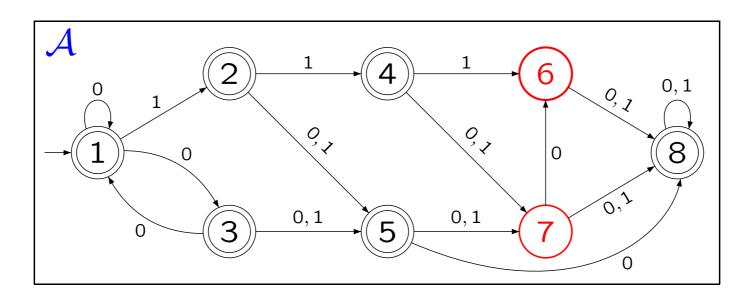
procedure interpolation (M, p)1. initialize k2. while true do 3. if BMC(M, p, k) is SAT then return *counterexample* 4. R = Iwhile true do 5. $M' = (S, \underline{R}, T, L)$ 6. let $C = Pref(M', p, k) \land Suff(M', p, k)$ if C is SAT then break (goto line 15) 7.8. 9. /* C is UNSAT */ compute interpolant \mathcal{I} of $Pref(M', p, k) \wedge Suff(M', p, k)$ 10. $R' = \mathcal{I}$ is an over-approximation of states reachable from R in one step. 11. if $R \Rightarrow R'$ then return *verified* 12. $R = R \vee R'$ 13. 14. end while Abstract fixpoint computation 15.increase kthrough interpolants 16. end while end

procedure interpolation (M, p)1. initialize k2. while true do 3. if BMC(M, p, k) is SAT then return *counterexample* 4. R = Iwhile true do 5. $M' = (S, \underline{R}, T, L)$ 6. let $C = Pref(M', p, k) \land Suff(M', p, k)$ if C is SAT then break (goto line 15) 7.8. 9. /* C is UNSAT */ compute interpolant \mathcal{I} of $Pref(M', p, k) \wedge Suff(M', p, k)$ 10. $R' = \mathcal{I}$ is an over-approximation of states reachable from R in one step. 11. 12. if $R \Rightarrow R'$ then return *verified* $R = R \vee R'$ 13. 14. end while when k=diameter, the abstract algorithm concludes ! 15.increase k16. end while But most often it concludes **much earlier** ! end This is a complete framework !

Discovering inductive invariants in subset constructions

Universality of NFA

• Nond. finite automata $A=(Q,\Sigma,q0,\delta,F)$



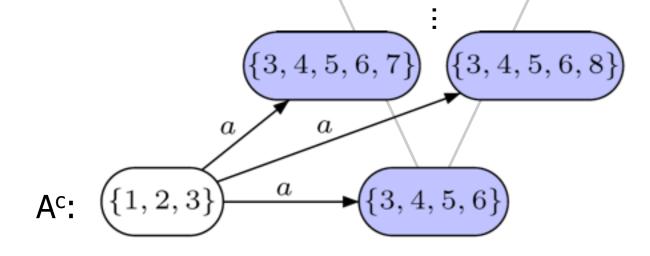
- $L(A) \neq \Sigma^*$ iff there exists a word w such that all runs on w end up in Q\F.
- Special case for $L(A) \subseteq {}^{?}L(B)$, PSpace-C.

Universality of NFA

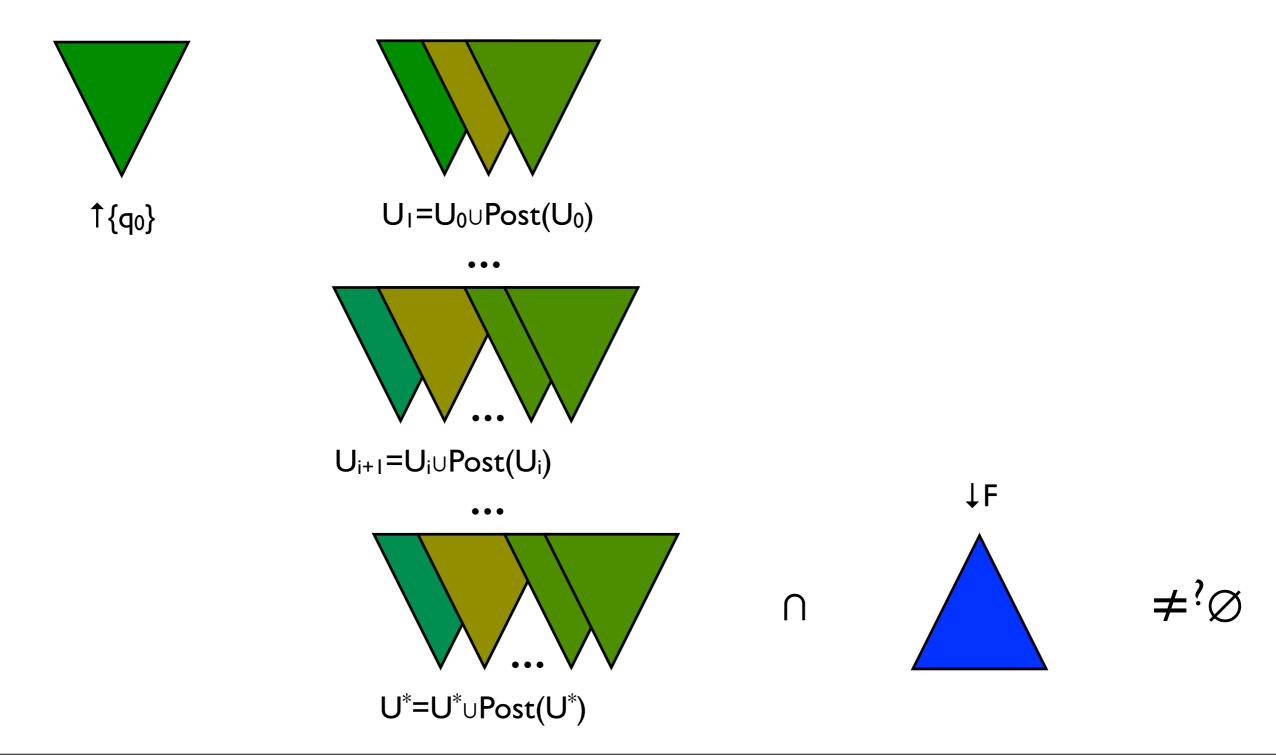
- Can be solved through reachability in STS (subset construction)
- Hard because one Boolean variable per state of the automaton - BDDs do not scale
- But special class of STS: monotonicity
- There are practical alternative algorithms to BDDs, based on antichains for example

"Closed" subset construction

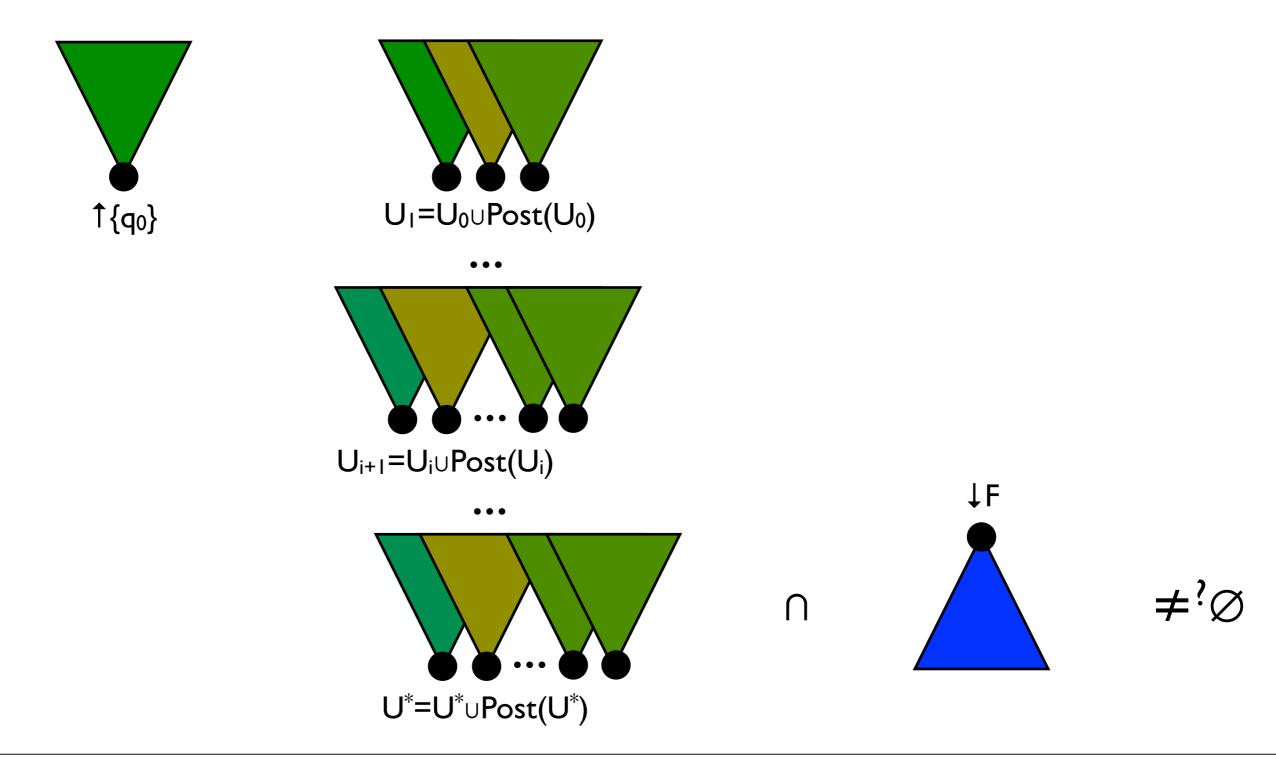
Transition relation can be "closed" without changing the language.



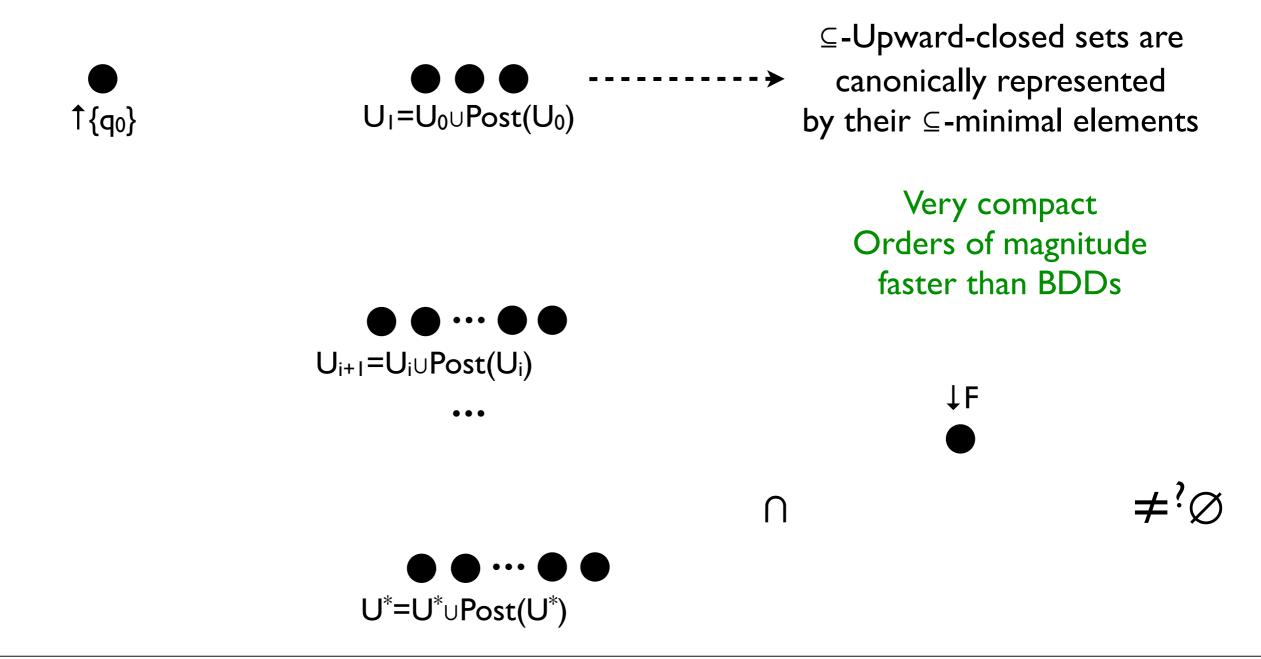
Forward analysis



Forward analysis



Forward analysis with antichains

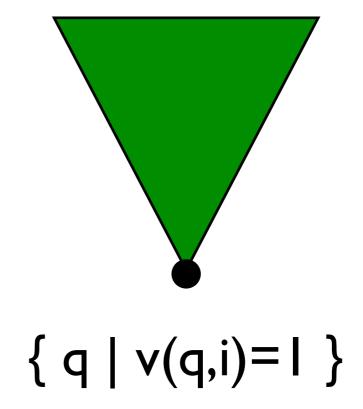


Discover post-fixpoint using SAT

- A set of sets S⊆2^Q is a post-fixpoint of Post[A] if:
 - $\{q_0\} \in S$
 - Post[[A]](\$) ⊆ \$
- Problem: find S such that $S \cap F = \emptyset$
- Rely on the **antichain representation** of **S**

Using SAT to synthesize \$

- Fix k the size of the antichain
- X={ (q,i) | $q \in Q \land I \leq i \leq k$ }
- any v : X → {0, I} represent an antichain



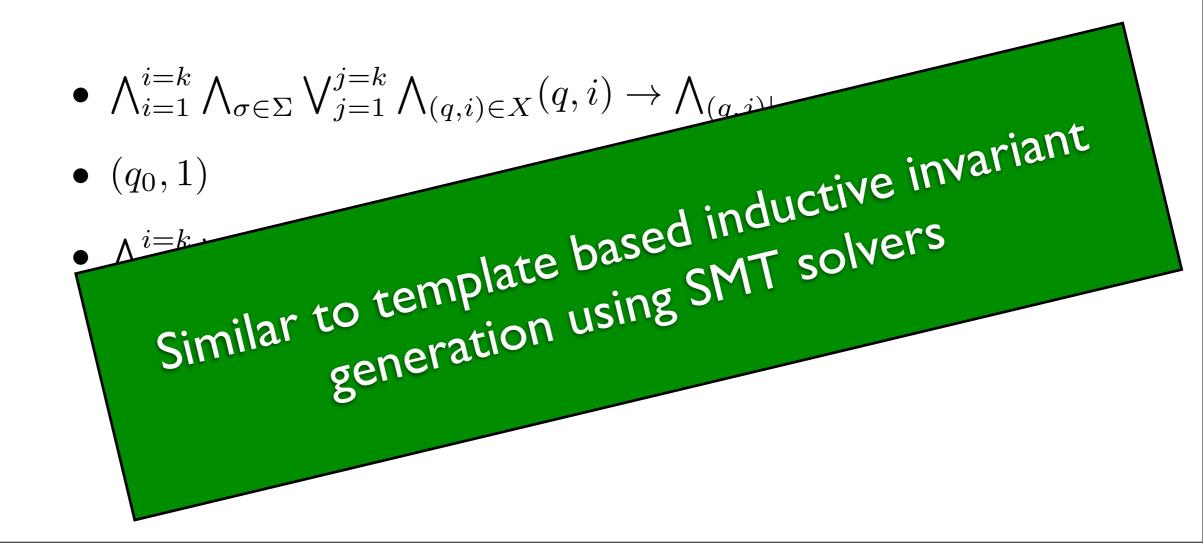
Boolean encoding

 S is a post-fixpoint of Post[A] and S does not intersect with ↓F

- $\bigwedge_{i=1}^{i=k} \bigwedge_{\sigma \in \Sigma} \bigvee_{j=1}^{j=k} \bigwedge_{(q,i) \in X} (q,i) \to \bigwedge_{(q,j)|q \in \delta(q,\sigma)} (q,j)$
- $(q_0, 1)$
- $\bigwedge_{i=1}^{i=k} \bigvee_{q \in F} \neg(q, i)$

Boolean encoding

 S is a post-fixpoint of Post[A] and S does not intersect with ↓F



Conclusion

- There are several uses of SAT solvers beyond Bounded MC
- SAT can be used **to help** SMC
- UNSAT Core are important and rich objects, useful for abstraction refinements
- Interpolation pushes the idea further (no more BDDs)
- Direct construction of **inductive invariants** can be useful too