
Classical and Non-Classical
Uses of SAT

in Model-Checking

Jean-François Raskin
Université Libre de Bruxelles

Tuesday 26 June 12

Objectives

• Give representative examples of the use
of SAT solvers in verification
algorithms for finite state systems

• Disclaimer 1: not my work

• Disclaimer II: by no means a full review
of the literature (examples only)

Tuesday 26 June 12

Plan

• Bounded model-checking

• Unbounded model-checking

• Inductive invariant generation

Tuesday 26 June 12

Symbolic transition systems

• A Symbolic Transition System (STS) S=(X,I,T) where:

• X is a set of boolean variables

• I ∈ 𝕭(X) defines the initial states

• T ∈ 𝕭(X∪X’) defines the transition relation

• We associate to STS=(X,I,T) an explicit, so
exponentially larger, transition system TS=(S,S0,E):

• S = { v | v : X → {0,1} }

• S0 = { v ∈ S | v ⊨ I }

• E = { (v,v’) | (v,v’) ⊨ T }

Tuesday 26 June 12

Typical verification questions

• Safety: are all the executions of my system
avoiding a set of bad states ?

• Reachability: is there an execution of my
system that reaches bad states ? dual of safety

• Liveness: are all the executions of my system
doing eventually/repeatedly something good ?

Tuesday 26 June 12

Circuit Example

Copyright 2002 Cadence Design Systems.
Permission is granted to reproduce without

modification.

Models

Transition system described by a set of
constraints

a
b c p

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a ∧ b

p = g ∨ c

c' = p

Model:

C = {
 g = a ∧ b,
 p = g ∨ c,
 c' = p
 }

 From McMillan03

Copyright 2002 Cadence Design Systems.
Permission is granted to reproduce without

modification.

Models

Transition system described by a set of
constraints

a
b c p

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a ∧ b

p = g ∨ c

c' = p

Model:

C = {
 g = a ∧ b,
 p = g ∨ c,
 c' = p
 }

Can we reach a state of the circuit
in which c∧¬p holds ?

Tuesday 26 June 12

Bounded model-checking
[BCC+99]

Tuesday 26 June 12

Bounded model-checking

• First, let us falsifying safety properties

• Let STS=(X,I,T) and Bad ∈ 𝕭(X)

• Is there a ⟦T⟧-path from ⟦I⟧ to ⟦Bad⟧ ?

• Bound: Is there a ⟦T⟧-path of length at most k
from ⟦I⟧ to ⟦Bad⟧ ?

Tuesday 26 June 12

System unfolding

Copyright 2002 Cadence Design Systems.
Permission is granted to reproduce without

modification.

Models

Transition system described by a set of
constraints

a
b c p

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a ∧ b

p = g ∨ c

c' = p

Model:

C = {
 g = a ∧ b,
 p = g ∨ c,
 c' = p
 }

Copyright 2002 Cadence Design Systems.
Permission is granted to reproduce without

modification.

Models

Transition system described by a set of
constraints

a
b c p

g

Each circuit element is a constraint
note: a = at and a' = at+1

g = a ∧ b

p = g ∨ c

c' = p

Model:

C = {
 g = a ∧ b,
 p = g ∨ c,
 c' = p
 }

Copyright 2002 Cadence Design Systems.
Permission is granted to reproduce without

modification.

Unfolding

•  Unfold the model k times:
 Uk = C0 ∧ C1 ∧ ... ∧ Ck-1

a
b

c p

g a
b

c p

g a
b

c p

g

... I0 Fk

•  Use SAT solver to check satisfiability of
 I0 ∧ Uk ∧ Fk

•  A satisfying assignment is a counterexample
of k steps

k unfolding

Can the circuit reach a state where c is true in at most k steps ?

I Bad

Tuesday 26 June 12

Unfolding of T
• Unfolding of T k times:

T(X0,X1)∧T(X1,X2)∧...∧T(Xk-2,Xk-1)

• Use SAT solver to check satisfiability of

I(X0)∧T(X0,X1)∧T(X1,X2)∧...∧T(Xk-2,Xk-1)∧∨i=0..k-1Bad(Xi)

• A satisfying assignment corresponds to a path of length
at most k from ⟦I⟧ to ⟦Bad⟧, i.e. a counter-example
to the safety property

Tuesday 26 June 12

Beyond safety
• Let Good ∈ 𝕭(x)

• Given an infinite path ρ in TS, we note Inf(ρ) the set of states
that appear infinitely many times along ρ

• An infinite path in TS is good if Inf(ρ)∩⟦Good⟧≠∅

• Liveness: check that every path in TS are good

• Counter-examples are lasso-path such that the cycle does not
contain any good states

• Bound: find a lasso-path of length at most k that does not cross
⟦Good⟧ in the lasso part

Tuesday 26 June 12

Beyond safety

Lasso

Liveness is violated

• Encoding in SAT:

I(X0)
∧T(X0,X1)∧...∧T(Xk-2,Xk-1)

∧ ⋁m=0..k-1 T(Xk-1,Xm)
 ∧j=m..k-1¬Good(Xj)

Tuesday 26 June 12

Beyond counter-examples

• Proving properties is only possible if k
is taken sufficiently large

• Diameter: maximum length of the
shortest path between any two states

• ... is worst-case exponential, furthermore it
is PSpace-C to compute it

• So, other techniques are needed

Tuesday 26 June 12

Unbounded
Model-Checking

Tuesday 26 June 12

Four examples of
unbounded SAT based MC

• Symbolic Reachability Analysis based on SAT Solvers [ABE00]

• Unbounded Sat-based model-checking with abstractions
[CCKSVW02] + McMillan variant

• Interpolation and unbounded SAT-based model-checking
[McMillan03]

• Discovering inductive invariants in subset constructions

Tuesday 26 June 12

Symbolic Reachability
Analysis based on SAT

Solvers [ABE00]

Tuesday 26 June 12

Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states B
such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure for
manipulating sets

Tuesday 26 June 12

Forward exploration

I

Bad

...

Tuesday 26 June 12

Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states
B such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure for
manipulating sets

Tuesday 26 June 12

Forward exploration

I

Bad

...

Tuesday 26 June 12

Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states
B such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure
for manipulating sets

Tuesday 26 June 12

BDDs

Tuesday 26 June 12

BDDs - Canonicity
 and Succinctness

• BDDs are canonical representation for Boolean
functions

• Make very easy to check fixed-point

• Fact: some Boolean functions have provably large
BDD representations, e.g. binary multiplication

• Idea: use potentially more compact representations...
at the expense of canonicity and (maybe) some
algorithmic efficiency

Tuesday 26 June 12

Boolean circuits

x z

xzy

z

x z y

reduce

Tuesday 26 June 12

Boolean circuits

• As BDDs, Boolean circuits represent sets
of valuations (=states)

• There is no (useful) canonical form

• There are often more compact than BDDs

• Algorithms for constructing new BCs from
existing ones

• Satisfiability is NP-Complete

use SAT
Tuesday 26 June 12

Boolean circuits and
existential quantification

• Expansion rule

• To avoid blow-up:

Tuesday 26 June 12

Boolean circuits

• As BDDs, Boolean circuits represent sets of
valuations

• There is no (useful) canonical form

• There are often more compact than BDDs

• Algorithms for constructing new BCs from
existing ones

• Satisfiability is NP-Complete

use SAT
Tuesday 26 June 12

Checking satisfiability of
Boolean circuits with SAT

FIXIT

FIXIT

PROVER

PROVER SATO

PROVER FIXIT

VIS BMC CADENCE SMV

x z

xzy

z

x z y

reduce

i0

i1 i2

i3 i4

Not equivalent but
satisfiability is maintained

Tuesday 26 June 12

SMC algorithm using BC and SAT

R0=⟦I⟧ as a BC

Ri+1=Post⟦T⟧(Ri)
as a BC + ∃ elim.

Check Ri+1⟹Ri

using SAT

Check unsat Ri+1∧Bad
using SAT

Yes

No

Unsat?

Yes
OK

Unsat?
No

KO

Tuesday 26 June 12

Unbounded SAT-based
model-checking with

abstractions [CCKSVW02]

Tuesday 26 June 12

Abstractions

• Symbolic model-checking sensitive to the
number of Boolean variables
(symbolic state explosion problem)

• But (coarse) abstractions are often sufficient
to prove correctness

• Try to lower the number of variables
using abstraction

Tuesday 26 June 12

☛ Predicates on program/circuit
state space

☛ States satisfying same predicates are
equivalent

☛ Merged into one abstract state

State-space partitioning

Tuesday 26 June 12

State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)

Tuesday 26 June 12

Existential Lifting

State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)

Tuesday 26 June 12

Existential Lifting

State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)

Tuesday 26 June 12

State-space partitioning

Tuesday 26 June 12

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:
Safe ⇒ System Safe

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:
Safe ⇒ System Safe

No false positives

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:
Safe ⇒ System Safe

No false positives

Problem

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:
Safe ⇒ System Safe

No false positives

Problem
Spurious counterexamples

State-space partitioning

Tuesday 26 June 12

Analyze the abstract graph

Overapproximation:
Safe ⇒ System Safe

No false positives

Problem
Spurious counterexamples

State-space partitioning

Tuesday 26 June 12

Tuesday 26 June 12

Counterex.-Guided Refinement
[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]

Solution
Use spurious

counterexamples
to refine abstraction !

Tuesday 26 June 12

1. Add predicates to distinguish
 states across cut
2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Imprecision due to merge

Tuesday 26 June 12

1. Add predicates to distinguish
 states across cut
2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Imprecision due to merge

Counterex.-Guided Refinement
[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]

Tuesday 26 June 12

Iterative Abstraction-Refinement

1. Add predicates to distinguish
 states across cut
2. Build refined abstraction
	
 -eliminates counterexample

3. Repeat search
	
 Till real counterexample
	
 or system proved safe

Solution
Use spurious counterexamples
to refine abstraction

Tuesday 26 June 12

Abstraction refinement

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add constr. to C’

OK

KO

Cex

No

Tuesday 26 June 12

Abstraction refinement

use SAT

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add constr. to C’

OK

KO

Cex

No

use BDDs

Tuesday 26 June 12

Abstract Cex - Safety

• Abstract variables Y=Support(C’,I,F)

• Abstract system is model-checked using
BDD-based symbolic MC with variables in
Y only and |Y| ≪ |X|

• Abstract counter-example is a truth
assignment to { xt | x ∈ Y ∧ 0≤t≤k }
where k is the number of steps in the
counter-example

Tuesday 26 June 12

Concretization of Cex

• The abstract Cex Aα satisfies:

I(Y0)∧T0..k-1(Y0,...,Yk-1)∧∨i=0..k-1Bad(Yi)

• Search for a concrete A consistent with Aα:

Aα(Y)∧I(X0)∧T0..k-1(X0,...,Xk-1) ∧∨i=0..k-1Bad(Xi)

=BMC but guided by the abstract Cex

• If unsat Cex cannot be made concrete and it is
thus spurious

Tuesday 26 June 12

Refinement

• Refinement: add constraints to C’

• Goal: rule out the Cex in the next abstract
model

• There are many technics for that

• One based on SAT machinery: use
resolution based refutation of the
unsat formula underlying the concretization
of the abstract counter-example

Tuesday 26 June 12

Resolution based
refinement

• Aα(Y)∧I(X0)∧T0..k-1(X0,...,Xk-1)∧∨i=0..k-1Bad(Xi)
is unsatisfiable

• SAT solver returns unsatisfiable and produce
an UNSAT core CORE

• Aα cannot be extended to a concrete Cex:
CORE is sufficient to prove it

• Add CORE to C’

Tuesday 26 June 12

Abstraction refinement

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add CORE to C’

OK

KO

Cex

No

Tuesday 26 June 12

Variation [McMillan03]

BMC at depth k
using SAT solver

Use refutation to
define abstraction

MC Abstraction

KOCex?

Cex? No

Yes

OK

False?

k+
+

True?

Yes

Yes
Abstraction is not necessary a

refinement of previous oneC
on

cl
ud

e
w

he
n

k
is

 la
rg

e
en

ou
gh

Tuesday 26 June 12

Interpolation based
unbounded Sat-based

model-checking
[McMillan03]

Tuesday 26 June 12

Interpolant

• An interpolant I for an unsatisfiable
formula A∧B is a formula such that

• A ⟹ I

• I∧B is unsatisfiable

• I only refers to the common variables
of A and B

• Ex: A≡p∧q, B≡¬q∧r, I≡q

Tuesday 26 June 12

Interpolation and SAT-MC

• First, call BMC(ST,p,k)

• Decompose BMC(ST,p,k) into Pref(ST,p,k)∧Suff(ST,p,k), where

• Pref(ST,p,k)≡init+first transition

• Suff(ST,p,k)≡k-1 last transitions+¬p

• if formula is SAT, we have Cex

• Otherwise, compute I for Pref(ST,p,k)∧Suff(ST,p,k

I Post(I) k-2 steps

Pref(ST,p,k) Suff(ST,p,k)

Tuesday 26 June 12

Interpolation and SAT-MC

Fact: the interpolant I overapproximates the set of
initial states and those accessible in one step and that do
not lead to bad states within k steps (quality of the
overapproximation)

I Post(I) k-2 steps

Pref(ST,p,k) Suff(ST,p,k)

Idea: iterate from a new set of initial states : I

Tuesday 26 June 12

Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Tuesday 26 June 12

Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Discover negative instances

Tuesday 26 June 12

Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Potentially spurious counter-example
due to over-approximation

Tuesday 26 June 12

BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Interpolation procedure

Abstract fixpoint computation
through interpolants

Tuesday 26 June 12

BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Interpolation procedure

when k=diameter, the abstract algorithm concludes !
But most often it concludes much earlier !

This is a complete framework !
Tuesday 26 June 12

Discovering inductive
invariants

in subset constructions

Tuesday 26 June 12

Universality of NFA

• Nond. finite automata A=(Q,Σ,q0,δ,F)

• L(A)≠Σ* iff there exists a word w such that
all runs on w end up in Q\F.

• Special case for L(A)⊆?L(B), PSpace-C.

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}

Tuesday 26 June 12

Universality of NFA

• Can be solved through reachability in STS
(subset construction)

• Hard because one Boolean variable per
state of the automaton - BDDs do not scale

• But special class of STS: monotonicity

• There are practical alternative algorithms to
BDDs, based on antichains for example

Tuesday 26 June 12

“Closed” subset construction

…

Ac:

Init: sets containing initial states of A

Final: sets containing no accepting states of A

{1,2,3}

{1,3}

{2,3}{1,2}

{1} {2} {3}

Final

{1}

{1,3}{1,2}

{1,4}

{1,2,3} {1,2,4}

…

Init

Transition relation can be “closed” without changing the language.

Tuesday 26 June 12

Forward analysis

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

...

... ↓F

∩ ≠?∅

Tuesday 26 June 12

Forward analysis

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

...

... ↓F

∩ ≠?∅

Tuesday 26 June 12

Forward analysis with
antichains

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

... ↓F

∩ ≠?∅

⊆-Upward-closed sets are
canonically represented

by their ⊆-minimal elements

Very compact
Orders of magnitude

faster than BDDs

Tuesday 26 June 12

Discover post-fixpoint
using SAT

• A set of sets S⊆2Q is a post-fixpoint of Post⟦A⟧
if:

• {q0} ∈ S

• Post⟦A⟧(S) ⊆ S

• Problem: find S such that S∩F=∅

• Rely on the antichain representation of S

Tuesday 26 June 12

Using SAT to synthesize S

• Fix k the size of the antichain

• X={ (q,i) | q ∈ Q ∧ 1≤i≤k }

• any v : X → {0,1} represent an
antichain

{ q | v(q,i)=1 }

Tuesday 26 June 12

Boolean encoding

• S is a post-fixpoint of Post⟦A⟧ and S does
not intersect with ↓F

1

•

∧i=k
i=1

∧
σ∈Σ

∨j=k
j=1

∧
(q,i)∈X(q, i) →

∧
(q,j)|q∈δ(q,σ)(q, j)

• (q0, 1)

•

∧i=k
i=1

∨
q∈F ¬(q, i)

Tuesday 26 June 12

Boolean encoding

• S is a post-fixpoint of Post⟦A⟧ and S does
not intersect with ↓F

1

•

∧i=k
i=1

∧
σ∈Σ

∨j=k
j=1

∧
(q,i)∈X(q, i) →

∧
(q,j)|q∈δ(q,σ)(q, j)

• (q0, 1)

•

∧i=k
i=1

∨
q∈F ¬(q, i)

Similar to template based inductive invariant

generation using SMT solvers

Tuesday 26 June 12

Conclusion
• There are several uses of SAT solvers beyond

Bounded MC

• SAT can be used to help SMC

• UNSAT Core are important and rich objects,
useful for abstraction refinements

• Interpolation pushes the idea further (no more
BDDs)

• Direct construction of inductive invariants can
be useful too

Tuesday 26 June 12

