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Objectives

• Give representative examples of the use 
of SAT solvers in verification 
algorithms for finite state systems

• Disclaimer 1: not my work

• Disclaimer II: by no means a full review 
of the literature (examples only)
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Plan

• Bounded model-checking

• Unbounded model-checking

• Inductive invariant generation
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Symbolic transition systems

• A Symbolic Transition System (STS) S=(X,I,T) where:

• X is a set of boolean variables

• I ∈ 𝕭(X) defines the initial states

• T ∈ 𝕭(X∪X’) defines the transition relation

• We associate to STS=(X,I,T) an explicit, so 
exponentially larger, transition system TS=(S,S0,E):

• S = { v | v : X → {0,1} }

• S0 = { v ∈ S | v ⊨ I }

• E = { (v,v’) | (v,v’) ⊨ T }
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Typical verification questions

• Safety: are all the executions of my system 
avoiding a set of bad states ?

• Reachability: is there an execution of my 
system that reaches bad states ? dual of safety

• Liveness: are all the executions of my system 
doing eventually/repeatedly something good ?
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Circuit Example

Copyright 2002 Cadence Design Systems. 
Permission is granted to reproduce without 

modification. 

Models 

Transition system described by a set of 
constraints 

a 
b c p 

g 

Each circuit element is a constraint 
note:  a = at  and a' = at+1 

g = a ∧ b 

p = g ∨ c 

c' = p 

Model: 
 
C = { 
        g = a ∧ b, 
        p = g ∨ c, 
        c' = p 
      } 
 
 From McMillan03

Copyright 2002 Cadence Design Systems. 
Permission is granted to reproduce without 

modification. 

Models 

Transition system described by a set of 
constraints 

a 
b c p 

g 

Each circuit element is a constraint 
note:  a = at  and a' = at+1 

g = a ∧ b 

p = g ∨ c 

c' = p 

Model: 
 
C = { 
        g = a ∧ b, 
        p = g ∨ c, 
        c' = p 
      } 
 
 

Can we reach a state of the circuit 
in which c∧¬p holds ?
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Bounded model-checking
[BCC+99]
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Bounded model-checking

• First, let us falsifying safety properties

• Let STS=(X,I,T) and Bad ∈ 𝕭(X)

• Is there a ⟦T⟧-path from ⟦I⟧ to ⟦Bad⟧ ?

• Bound: Is there a ⟦T⟧-path of length at most k 
from ⟦I⟧ to ⟦Bad⟧ ?
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System unfolding

Copyright 2002 Cadence Design Systems. 
Permission is granted to reproduce without 

modification. 

Models 

Transition system described by a set of 
constraints 

a 
b c p 

g 

Each circuit element is a constraint 
note:  a = at  and a' = at+1 

g = a ∧ b 

p = g ∨ c 

c' = p 

Model: 
 
C = { 
        g = a ∧ b, 
        p = g ∨ c, 
        c' = p 
      } 
 
 

Copyright 2002 Cadence Design Systems. 
Permission is granted to reproduce without 

modification. 

Models 

Transition system described by a set of 
constraints 

a 
b c p 

g 

Each circuit element is a constraint 
note:  a = at  and a' = at+1 

g = a ∧ b 

p = g ∨ c 

c' = p 

Model: 
 
C = { 
        g = a ∧ b, 
        p = g ∨ c, 
        c' = p 
      } 
 
 

Copyright 2002 Cadence Design Systems. 
Permission is granted to reproduce without 

modification. 

Unfolding 

•  Unfold the model k times: 
    Uk = C0 ∧ C1 ∧ ... ∧ Ck-1 

a 
b 

c p 

g a 
b 

c p 

g a 
b 

c p 

g 

... I0 Fk 

•  Use SAT solver to check satisfiability of 
      I0  ∧  Uk  ∧  Fk 

•  A satisfying assignment is a counterexample 
of k steps 

k unfolding

Can the circuit reach a state where c is true in at most k steps ?

I Bad
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Unfolding of T
• Unfolding of T k times:

T(X0,X1)∧T(X1,X2)∧...∧T(Xk-2,Xk-1)

• Use SAT solver to check satisfiability of

I(X0)∧T(X0,X1)∧T(X1,X2)∧...∧T(Xk-2,Xk-1)∧∨i=0..k-1Bad(Xi)

• A satisfying assignment corresponds to a path of length 
at most k from ⟦I⟧ to ⟦Bad⟧, i.e. a counter-example 
to the safety property
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Beyond safety
• Let Good ∈ 𝕭(x)

• Given an infinite path ρ in TS, we note Inf(ρ) the set of states 
that appear infinitely many times along ρ

• An infinite path in TS is good if Inf(ρ)∩⟦Good⟧≠∅

• Liveness: check that every path in TS are good

• Counter-examples are lasso-path such that the cycle does not 
contain any good states

• Bound: find a lasso-path of length at most k that does not cross 
⟦Good⟧ in the lasso part
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Beyond safety

Lasso

Liveness is violated

• Encoding in SAT:

I(X0)
∧T(X0,X1)∧...∧T(Xk-2,Xk-1)

∧ ⋁m=0..k-1 T(Xk-1,Xm)
              ∧j=m..k-1¬Good(Xj)
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Beyond counter-examples

• Proving properties is only possible if k 
is taken sufficiently large

• Diameter: maximum length of the 
shortest path between any two states

• ... is worst-case exponential, furthermore it 
is PSpace-C to compute it

• So, other techniques are needed
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Unbounded 
Model-Checking
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Four examples of 
unbounded SAT based MC

• Symbolic Reachability Analysis based on SAT Solvers [ABE00]

• Unbounded Sat-based model-checking with abstractions 
[CCKSVW02] + McMillan variant

• Interpolation and unbounded SAT-based model-checking 
[McMillan03]

• Discovering inductive invariants in subset constructions
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Symbolic Reachability 
Analysis based on SAT 

Solvers [ABE00]
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Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R 
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states B 
such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure for 
manipulating sets
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Forward exploration

I

Bad

...
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Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R 
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states 
B such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure for 
manipulating sets
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Forward exploration

I

Bad

...
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Symbolic
Forward/Backward Reachability

• Let STS=(X,I,T) and let Bad ∈ 𝕭(X)

• ReachFwd(I) is the least set of states R 
such that R=⟦I⟧∪Post⟦T⟧(R)

• ReachBack(Bad) is the least set of states 
B such that B=⟦Bad⟧∪Pre⟦T⟧(B)

• Symbolic MC: fixpoints+data structure 
for manipulating sets
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BDDs
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BDDs - Canonicity
 and Succinctness

• BDDs are canonical representation for Boolean 
functions

• Make very easy to check fixed-point

• Fact: some Boolean functions have provably large 
BDD representations, e.g. binary multiplication

• Idea: use potentially more compact representations... 
at the expense of canonicity and (maybe) some 
algorithmic efficiency
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Boolean circuits

x z

xzy

z

x z y

reduce
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Boolean circuits

• As BDDs, Boolean circuits represent sets 
of valuations (=states)

• There is no (useful) canonical form

• There are often more compact than BDDs

• Algorithms for constructing new BCs from 
existing ones

• Satisfiability is NP-Complete

use SAT
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Boolean circuits and 
existential quantification

• Expansion rule

• To avoid blow-up:
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Boolean circuits

• As BDDs, Boolean circuits represent sets of 
valuations

• There is no (useful) canonical form

• There are often more compact than BDDs

• Algorithms for constructing new BCs from 
existing ones

• Satisfiability is NP-Complete

use SAT
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Checking satisfiability of 
Boolean circuits with SAT

FIXIT

FIXIT

PROVER

PROVER SATO

PROVER FIXIT

VIS BMC CADENCE SMV

x z

xzy

z

x z y

reduce

i0

i1 i2

i3 i4

Not equivalent but 
satisfiability is maintained
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SMC algorithm using BC and SAT

R0=⟦I⟧ as a BC

Ri+1=Post⟦T⟧(Ri) 
as a BC + ∃ elim.

Check Ri+1⟹Ri

using SAT

Check unsat Ri+1∧Bad
using SAT

Yes

No

Unsat?

Yes
OK

Unsat?
No

KO
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Unbounded SAT-based 
model-checking with 

abstractions [CCKSVW02]
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Abstractions

• Symbolic model-checking sensitive to the 
number of Boolean variables 
(symbolic state explosion problem)

• But (coarse) abstractions are often sufficient 
to prove correctness

• Try to lower the number of variables 
using abstraction
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☛ Predicates on program/circuit 
state space

☛ States satisfying same predicates are 
equivalent

☛ Merged into one abstract state

State-space partitioning
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State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)
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Existential Lifting 

State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)
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Existential Lifting 

State-space partitioning

Abstract transition relation

Tα(A1,A2)

iff

∃s1∈A1‧∃s2∈A2‧T(s1,s2)
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State-space partitioning
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State-space partitioning
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Analyze the abstract graph 

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 
Safe ⇒ System Safe

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 
Safe ⇒ System Safe

No false positives

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 
Safe ⇒ System Safe

No false positives

Problem

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 
Safe ⇒ System Safe

No false positives

Problem
Spurious counterexamples

State-space partitioning
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Analyze the abstract graph 

Overapproximation: 
Safe ⇒ System Safe

No false positives

Problem
Spurious counterexamples

State-space partitioning
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Counterex.-Guided Refinement 
[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]

Solution
Use spurious

counterexamples
to refine abstraction !
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1. Add predicates to distinguish
    states across cut
2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Imprecision due to merge
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1. Add predicates to distinguish
    states across cut
2. Build refined abstraction

Solution
Use spurious counterexamples
to refine abstraction

Imprecision due to merge

Counterex.-Guided Refinement 
[Kurshan et al93] [Clarke et al 00][Ball-Rajamani 01]
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Iterative Abstraction-Refinement

1. Add predicates to distinguish
    states across cut
2. Build refined abstraction
	
 -eliminates counterexample

3. Repeat search
	
 Till real counterexample
	
 or system proved safe

Solution
Use spurious counterexamples
to refine abstraction
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Abstraction refinement

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add constr. to C’

OK

KO

Cex

No
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Abstraction refinement 

use SAT

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add constr. to C’

OK

KO

Cex

No

use BDDs
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Abstract Cex - Safety

• Abstract variables Y=Support(C’,I,F)

• Abstract system is model-checked using 
BDD-based symbolic MC with variables in 
Y only and |Y| ≪ |X|

• Abstract counter-example is a truth 
assignment to { xt | x ∈ Y ∧ 0≤t≤k } 
where k is the number of steps in the 
counter-example
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Concretization of Cex

• The abstract Cex Aα satisfies:

I(Y0)∧T0..k-1(Y0,...,Yk-1)∧∨i=0..k-1Bad(Yi)

• Search for a concrete A consistent with Aα:

Aα(Y)∧I(X0)∧T0..k-1(X0,...,Xk-1) ∧∨i=0..k-1Bad(Xi)

=BMC but guided by the abstract Cex

• If unsat Cex cannot be made concrete and it is 
thus spurious
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Refinement

• Refinement:  add constraints to C’

• Goal: rule out the Cex in the next abstract 
model

• There are many technics for that

• One based on SAT machinery: use 
resolution based refutation of the 
unsat formula underlying the concretization 
of the abstract counter-example
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Resolution based 
refinement

• Aα(Y)∧I(X0)∧T0..k-1(X0,...,Xk-1)∧∨i=0..k-1Bad(Xi)
is unsatisfiable

• SAT solver returns unsatisfiable and produce 
an UNSAT core CORE

• Aα cannot be extended to a concrete Cex: 
CORE is sufficient to prove it

• Add CORE to C’
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Abstraction refinement

Choose initial C’⊆C

M.C. Abstr(C’)

Cex valid in C ?

Add CORE to C’

OK

KO

Cex

No
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Variation [McMillan03]

BMC at depth k
using SAT solver

Use refutation to 
define abstraction

MC Abstraction

KOCex?

Cex? No

Yes

OK

False?

k+
+

True?

Yes

Yes
Abstraction is not necessary a 

refinement of previous oneC
on

cl
ud

e 
w

he
n 

k 
is

 la
rg

e 
en

ou
gh
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Interpolation based 
unbounded Sat-based

model-checking 
[McMillan03]
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Interpolant

• An interpolant I for an unsatisfiable 
formula A∧B is a formula such that

• A ⟹ I

• I∧B is unsatisfiable

• I only refers to the common variables 
of A and B

• Ex: A≡p∧q, B≡¬q∧r, I≡q
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Interpolation and SAT-MC

• First, call BMC(ST,p,k)

• Decompose BMC(ST,p,k) into Pref(ST,p,k)∧Suff(ST,p,k), where

• Pref(ST,p,k)≡init+first transition

• Suff(ST,p,k)≡k-1 last transitions+¬p

• if formula is SAT, we have Cex

• Otherwise, compute I for Pref(ST,p,k)∧Suff(ST,p,k

I Post(I) k-2 steps

Pref(ST,p,k) Suff(ST,p,k)
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Interpolation and SAT-MC

Fact: the interpolant I overapproximates the set of 
initial states and those accessible in one step and that do 
not lead to bad states within k steps (quality of the 
overapproximation)

I Post(I) k-2 steps

Pref(ST,p,k) Suff(ST,p,k)

Idea: iterate from a new set of initial states : I
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Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in
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Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
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4. R = I
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11. R′ = I is an over-approximation of states reachable from R in one step.
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13. R = R ∨ R′

14. end while
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16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Discover negative instances
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Interpolation procedure
BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Potentially spurious counter-example 
due to over-approximation
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BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
1. initialize k

2. while true do
3. if BMC(M, p, k) is SAT then return counterexample
4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
8. if C is SAT then break (goto line 15)
9. /* C is UNSAT */
10. compute interpolant I of Pref (M ′, p, k) ∧ Suff (M ′, p, k)
11. R′ = I is an over-approximation of states reachable from R in one step.
12. if R ⇒ R′ then return verified
13. R = R ∨ R′

14. end while
15. increase k

16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Interpolation procedure

Abstract fixpoint computation 
through interpolants
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BMC problem is satisfiable, the counterexample may be spurious since R′ is
an over-approximation of the reachable set of states. In this case, the value of
k is increased, and the procedure is continued. The algorithm will eventually
terminate when k becomes larger than the diameter of the model.

procedure interpolation (M, p)
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2. while true do
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4. R = I

5. while true do
6. M ′ = (S, R, T, L)
7. let C = Pref (M ′, p, k) ∧ Suff (M ′, p, k)
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13. R = R ∨ R′

14. end while
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16. end while
end

Fig. 4. Interpolation procedure

2.9 Quantification-based Model Checking

There are many approaches [25] to doing quantifier elimination which is a key
step in reachability analysis. The purely SAT-based quantifier elimination pro-
cedure introduced in [20] works by enumeration of all the satisfying assignments.
The SAT solver is modified to generate all the satisfying assignments by adding
blocking clauses to the problem each time an assignment is found. The SAT
solving process is continued until no new solutions are found. A blocking clause,
which refers only to the state variables, represents the negation of a state cube.
This quantification procedure yields a purely SAT-based method for computing
the preimage in backward symbolic model checking.

A recent quantification-based method [10] uses a circuit representation of
the blocking constraints and use a hybrid solver that works directly on this
representation. This enables circuit cofactoring with respect to the input assign-
ments to simplify the circuit graph in each enumeration step. This results in
more solutions in each enumeration step and thus far fewer enumerations steps.
It is reported in [10] that this method outperforms the technique described in

Interpolation procedure

when k=diameter, the abstract algorithm concludes !
But most often it concludes much earlier !

This is a complete framework !
Tuesday 26 June 12



Discovering inductive 
invariants

in subset constructions
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Universality of NFA

• Nond. finite automata A=(Q,Σ,q0,δ,F) 

• L(A)≠Σ* iff there exists a word w such that 
all runs on w end up in Q\F.

• Special case for L(A)⊆?L(B), PSpace-C.

Universality - Example

A

1

2

3

4

5

6

7

8

0,1

0,1

0

1

0,1

0,1

0

1

0,1

0,1
0

1

0

0,10

x0 = T =
{

{6,7}
}
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Universality of NFA

• Can be solved through reachability in STS 
(subset construction)

• Hard because one Boolean variable per 
state of the automaton - BDDs do not scale

• But special class of STS: monotonicity

• There are practical alternative algorithms to 
BDDs, based on antichains for example 
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“Closed” subset construction

…

Ac:

Init: sets containing initial states of A

Final: sets containing no accepting states of A 

{1,2,3}

{1,3}

{2,3}{1,2}

{1}   {2} {3}

Final 

{1}

{1,3}{1,2}

{1,4}

{1,2,3} {1,2,4}

…

Init

Transition relation can be “closed” without changing the language.
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Forward analysis

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

...

... ↓F

∩ ≠?∅
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Forward analysis

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

...

... ↓F

∩ ≠?∅
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Forward analysis with
antichains

↑{q0} U1=U0∪Post(U0)

Ui+1=Ui∪Post(Ui)

...

U*=U*∪Post(U*)

...

... ↓F

∩ ≠?∅

⊆-Upward-closed sets are
canonically represented 

by their ⊆-minimal elements

Very compact
Orders of magnitude

faster than BDDs
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Discover post-fixpoint
using SAT

• A set of sets S⊆2Q is a post-fixpoint of Post⟦A⟧ 
if:

• {q0} ∈ S

• Post⟦A⟧(S) ⊆ S

• Problem: find S such that S∩F=∅

• Rely on the antichain representation of S
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Using SAT to synthesize S

• Fix k the size of the antichain

• X={ (q,i) | q ∈ Q ∧ 1≤i≤k }

• any v : X → {0,1} represent an 
antichain

{ q | v(q,i)=1 }
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Boolean encoding

• S is a post-fixpoint of Post⟦A⟧ and S does 
not intersect with ↓F

1

•

∧i=k
i=1

∧
σ∈Σ

∨j=k
j=1

∧
(q,i)∈X(q, i) →

∧
(q,j)|q∈δ(q,σ)(q, j)

• (q0, 1)

•

∧i=k
i=1

∨
q∈F ¬(q, i)
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Boolean encoding

• S is a post-fixpoint of Post⟦A⟧ and S does 
not intersect with ↓F

1

•

∧i=k
i=1

∧
σ∈Σ

∨j=k
j=1

∧
(q,i)∈X(q, i) →

∧
(q,j)|q∈δ(q,σ)(q, j)

• (q0, 1)

•

∧i=k
i=1

∨
q∈F ¬(q, i)

Similar to template based inductive invariant 

generation using SMT solvers
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Conclusion
• There are several uses of SAT solvers beyond 

Bounded MC

• SAT can be used to help SMC

• UNSAT Core are important and rich objects, 
useful for abstraction refinements

• Interpolation pushes the idea further (no more 
BDDs)

• Direct construction of inductive invariants can 
be useful too

Tuesday 26 June 12


