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Satisfiability modulo theories 

(a  c)  
(b  c) 
(a  b  c) 

c = true  
b = true  
a = true 

(a  c)  
(b  c) 
(a  b  c) 
a  f(x-y) = 1 
b  f(y-x) = 2 
c  x = y 

c = false,  
b = true,  
a = true,  
x = 0,  
y = 1,  
f = [-1  1, 1  2, else  0] 



Communicating theories 

f(x – y) = 1, f(y-x) = 2, x = y 

f(p) = q, f(r) = s, x = y p = x – y, q = 1, r = y – x, s = 2 

x = y 

p = r 

q = s 

UNSAT 



Applications 

• Symbolic execution 
– SAGE  
– PEX 

 
• Static checking of code contracts 

– Spec# 
– Dafny  
– VCC 

 

• Security analysis 
– HAVOC 

 

• Searching program behaviors 
– Poirot 

 



Anatomy of an application 

• The profile of each application determined by 

– Boolean structure 

– theories used 

– theory vs. propositional 

– deep vs. shallow 

– presence/absence of quantifiers 

– … 
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   *  BoogiePL 

                       Z3 

   Boogie VCGen 

C/.NET/Dafny Program 

BoogiePL program 

Verification condition 

Verified Warning 

Annotations 

SMT in program analysis 



class C { 
    int size; 
    int[] data; 
 
    void write(int i, int v) { 

        if (i >= data.Length) { 
            var t = new int[2*i]; 
            copy(data, t); 
            data = t; 
        } 
        data[i] = v; 
    } 
 
    static copy(int[] from, int[] to) { 
        for (int i = 0; i < from.Length; i++) { 
            to[i] = from[i]; 
        } 
    } 
} 

var size: [Ref]int; 
var data: [Ref]Ref; 
var Contents: [Ref][int]int 
function Length(Ref): int; 
 
proc write(this: Ref, i: int, v: int) { 
    var t: Ref; 
    if (i >= Length(data)) { 
        call t := alloc(); 
        assume Length(t) == 2*i; 
        call copy(data[this], t); 
        data[this] := t; 
    } 
    assert 0 <= i && i < Length(data[this]); 
    Contents[data[this]][i] := v; 
} 
 
proc copy(from: Ref, to: Ref) { 
    var i: int; 
    i := 0; 
    while (i < Length(from)) { 
        assert 0 <= i && i < Length(from); 
        assert 0 <= i && i < Length(to); 
        Contents[to][i] := Contents[from][i]; 
        i := i + 1; 
    } 
} 



Modeling the heap 

Contents[data[this]][i] := v 

Contents[Select(data, this)][i] := v 

Contents[Select(data, this)] := Update(Contents[Select(data, this)], i, v) 

Contents := Update(Contents, Select(data, this), Update(Contents[Select(data, this)], i, v)) 

Theory of arrays:  Select, Store 
for all f, i, v :: Select(Update(f, i, v), i) = v 
for all f, i, v, j :: i = j  Select(Update(f, i, v), j) = Select(f, j) 

for all f, g :: f = g  (exists i :: Select(f, i)  Select(g, i))  

var Alloc: [Ref]bool; 
proc alloc() returns (x: int) { 
    assume !Alloc[x]; 
    Alloc[x] := true;   
} 



Program correctness 

• Floyd-Hoare triple 
        {P} S {Q} 

 

P, Q : predicates/property 

S      : a program 

 

 

• From a state satisfying P, if S executes,  
– No assertion in S fails, and  

– Terminating executions end up in a state satisfying Q 

 



Annotations 

• Assertions over program state 
• Can appear in  

– Assert  
– Assume 
– Requires 
– Ensures 
– Loop invariants 

• Program state can be extended with ghost 
variables 
– State of a lock 
– Size of C buffers 



Weakest liberal precondition 

wlp( assert E, Q )    =   E  Q 
wlp( assume E, Q )    =   E  Q   
wlp( S;T,  Q )     =   wlp(S,  wlp(T, Q)) 
wlp( if E then S else T, Q )  =   if E  then wlp(S, Q) else wlp(T, Q) 
wlp( x := E, Q )   =   Q[E/x] 
wlp( havoc x, Q )   =   x. Q 



Desugaring loops 

– inv J while B do S end 

• Replace loop with loop-free code: 
 
                 assert J;  
   havoc modified(S);  
   assume J;  
    
 
                 if (B) {  
      S; 

      assert J;  
                                   assume false;  
                                } 

 
 

Check J at entry 

Check J is inductive 



Desugaring procedure calls 

• Each procedure verified separately 
• Procedure calls replaced with their specifications  

procedure Foo(); 
requires  pre; 
ensures  post; 
modifies V;  

call Foo(); 
assert pre; 
havoc V; 
assume post; 

precondition 

postcondition 

set of variables possibly 
modified in Foo 



Inferring annotations 

• Problem statement  
– Given a set of procedures P1, …, Pn 
– A set of C of candidate annotations  for each procedure 
– Returns a subset of the candidate annotations such that 

each procedure satisfies its annotations 

 
• Houdini algorithm 

– Performs a greatest-fixed point starting from all 
annotations 
• Remove annotations that are violated 

– Requires a quadratic  (n * |C|) number of queries to a 
modular verifier 



Limits of modular analysis 

• Supplying invariants and contracts may be 
difficult for developers 

• Other applications may be enabled by whole 
program analysis 

– Answering developer questions: how did my 
program get to this line of code? 

– Crash-dump analysis: reconstruct executions that 
lead to a particular failure 

 

 

 



Reachability modulo theories 
Variables: X 

T1(X,X’) T2(X,X’) 

T3(X,X’) T4(X,X’) 

T5(X,X’) T6(X,X’) 

Ti(X, X’) are transition predicates for transforming 
input state X to output state X’ 
• assume satisfiability for Ti(X, X’) is “efficiently” 

decidable 
 
 
Is there a feasible path from blue to orange node? 
 

 
Parameterized in two dimensions 
• theories: Boolean, arithmetic, arrays, … 
• control flow: loops, procedure calls, threads, … 

T8(X,X’) T7(X,X’) 



Complexity of (sequential) 
reachability-modulo-theories 

• Undecidable in general 

– as soon as unbounded executions are possible 

• Decidable for hierarchical programs 

– PSPACE-hard (with only Boolean variables) 

– NEXPTIME-hard (with uninterpreted functions) 

– in NEXPTIME (if satisfiability-modulo-theories in 
NP) 



Corral: A solver for  
reachability-modulo-theories 

• Solves queries up to a finite recursion depth 

– reduces to hierarchical programs 

• Builds on top of Z3 solver for satisfiability-
modulo-theories 

• Design goals 

– exploit efficient goal-directed search in Z3 

– use abstractions to speed-up search 

– avoid the exponential cost of static inlining 



Corral architecture  
for sequential programs 
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Handling concurrency 
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Sequentialization 



What is sequentialization? 

• Given a concurrent program P,  construct a 
sequential program Q such that Q  P 

 

• Drop each occurrence of async-call 

 

• Convert each occurrence of async-call to call 

 

• Make Q as large as possible 



Parameterized sequentialization 

• Given a concurrent program P, construct a 
family of programs Qi such that  

– Q0  Q1  Q2  …  P 

– iQi = P 

• Even better if interesting behaviors of P 
manifest in Qi for low values of i 
 



Context-bounding 

• Captures a notion of interesting executions in 
concurrent programs 

 

• Under-approximation parameterized by K ≥ 0 

– executions in which each thread gets at most K 
contexts to execute 

– as K  , we get all behaviors 



Context-bounding is sequentializable 

• For any concurrent program P and K ≥ 0, there 
is a sequential program QK that captures all 
executions of P up to context bound K 

 

• Simple source-to-source transformation 

– linear in |P| and K 

– each global variable is copied K times 



Challenges 



Programming SMT solvers 

• Little support for decomposition 

– Floyd-Hoare is the only decomposition rule 

• Little support for abstraction 

– SMT solvers are a black box 

– difficult to influence search 

• How do we calculate program abstractions 
using an SMT solver? 



Mutable dynamically-allocated memory 

• Select-Update theory is expensive 

• Select-Update theory is not expressive enough 

– to represent heap shapes 

– to encode frame conditions 



Quantifiers 

• Appear due to 

– partial axiomatizations 

– frame conditions 

– assertions 

• Undecidable in general 

• A few decidability results  

– based on finite instantiations 

– brittle 


