
Using SMT solvers for program analysis

Shaz Qadeer
Research in Software Engineering
Microsoft Research

Satisfiability modulo theories

(a  c)
(b  c)
(a  b  c)

c = true
b = true
a = true

(a  c)
(b  c)
(a  b  c)
a  f(x-y) = 1
b  f(y-x) = 2
c  x = y

c = false,
b = true,
a = true,
x = 0,
y = 1,
f = [-1  1, 1  2, else  0]

Communicating theories

f(x – y) = 1, f(y-x) = 2, x = y

f(p) = q, f(r) = s, x = y p = x – y, q = 1, r = y – x, s = 2

x = y

p = r

q = s

UNSAT

Applications

• Symbolic execution
– SAGE
– PEX

• Static checking of code contracts

– Spec#
– Dafny
– VCC

• Security analysis
– HAVOC

• Searching program behaviors
– Poirot

Anatomy of an application

• The profile of each application determined by

– Boolean structure

– theories used

– theory vs. propositional

– deep vs. shallow

– presence/absence of quantifiers

– …

Applications

• Symbolic execution
– SAGE
– PEX

• Static checking of code contracts

– Spec#
– Dafny
– VCC

• Security analysis
– HAVOC

• Searching program behaviors
– Poirot

 *  BoogiePL

 Z3

 Boogie VCGen

C/.NET/Dafny Program

BoogiePL program

Verification condition

Verified Warning

Annotations

SMT in program analysis

class C {
 int size;
 int[] data;

 void write(int i, int v) {

 if (i >= data.Length) {
 var t = new int[2*i];
 copy(data, t);
 data = t;
 }
 data[i] = v;
 }

 static copy(int[] from, int[] to) {
 for (int i = 0; i < from.Length; i++) {
 to[i] = from[i];
 }
 }
}

var size: [Ref]int;
var data: [Ref]Ref;
var Contents: [Ref][int]int
function Length(Ref): int;

proc write(this: Ref, i: int, v: int) {
 var t: Ref;
 if (i >= Length(data)) {
 call t := alloc();
 assume Length(t) == 2*i;
 call copy(data[this], t);
 data[this] := t;
 }
 assert 0 <= i && i < Length(data[this]);
 Contents[data[this]][i] := v;
}

proc copy(from: Ref, to: Ref) {
 var i: int;
 i := 0;
 while (i < Length(from)) {
 assert 0 <= i && i < Length(from);
 assert 0 <= i && i < Length(to);
 Contents[to][i] := Contents[from][i];
 i := i + 1;
 }
}

Modeling the heap

Contents[data[this]][i] := v

Contents[Select(data, this)][i] := v

Contents[Select(data, this)] := Update(Contents[Select(data, this)], i, v)

Contents := Update(Contents, Select(data, this), Update(Contents[Select(data, this)], i, v))

Theory of arrays: Select, Store
for all f, i, v :: Select(Update(f, i, v), i) = v
for all f, i, v, j :: i = j  Select(Update(f, i, v), j) = Select(f, j)

for all f, g :: f = g  (exists i :: Select(f, i)  Select(g, i))

var Alloc: [Ref]bool;
proc alloc() returns (x: int) {
 assume !Alloc[x];
 Alloc[x] := true;
}

Program correctness

• Floyd-Hoare triple
 {P} S {Q}

P, Q : predicates/property

S : a program

• From a state satisfying P, if S executes,
– No assertion in S fails, and

– Terminating executions end up in a state satisfying Q

Annotations

• Assertions over program state
• Can appear in

– Assert
– Assume
– Requires
– Ensures
– Loop invariants

• Program state can be extended with ghost
variables
– State of a lock
– Size of C buffers

Weakest liberal precondition

wlp(assert E, Q) = E  Q
wlp(assume E, Q) = E  Q
wlp(S;T, Q) = wlp(S, wlp(T, Q))
wlp(if E then S else T, Q) = if E then wlp(S, Q) else wlp(T, Q)
wlp(x := E, Q) = Q[E/x]
wlp(havoc x, Q) = x. Q

Desugaring loops

– inv J while B do S end

• Replace loop with loop-free code:

 assert J;
 havoc modified(S);
 assume J;

 if (B) {
 S;

 assert J;
 assume false;
 }

Check J at entry

Check J is inductive

Desugaring procedure calls

• Each procedure verified separately
• Procedure calls replaced with their specifications

procedure Foo();
requires pre;
ensures post;
modifies V;

call Foo();
assert pre;
havoc V;
assume post;

precondition

postcondition

set of variables possibly
modified in Foo

Inferring annotations

• Problem statement
– Given a set of procedures P1, …, Pn
– A set of C of candidate annotations for each procedure
– Returns a subset of the candidate annotations such that

each procedure satisfies its annotations

• Houdini algorithm

– Performs a greatest-fixed point starting from all
annotations
• Remove annotations that are violated

– Requires a quadratic (n * |C|) number of queries to a
modular verifier

Limits of modular analysis

• Supplying invariants and contracts may be
difficult for developers

• Other applications may be enabled by whole
program analysis

– Answering developer questions: how did my
program get to this line of code?

– Crash-dump analysis: reconstruct executions that
lead to a particular failure

Reachability modulo theories
Variables: X

T1(X,X’) T2(X,X’)

T3(X,X’) T4(X,X’)

T5(X,X’) T6(X,X’)

Ti(X, X’) are transition predicates for transforming
input state X to output state X’
• assume satisfiability for Ti(X, X’) is “efficiently”

decidable

Is there a feasible path from blue to orange node?

Parameterized in two dimensions
• theories: Boolean, arithmetic, arrays, …
• control flow: loops, procedure calls, threads, …

T8(X,X’) T7(X,X’)

Complexity of (sequential)
reachability-modulo-theories

• Undecidable in general

– as soon as unbounded executions are possible

• Decidable for hierarchical programs

– PSPACE-hard (with only Boolean variables)

– NEXPTIME-hard (with uninterpreted functions)

– in NEXPTIME (if satisfiability-modulo-theories in
NP)

Corral: A solver for
reachability-modulo-theories

• Solves queries up to a finite recursion depth

– reduces to hierarchical programs

• Builds on top of Z3 solver for satisfiability-
modulo-theories

• Design goals

– exploit efficient goal-directed search in Z3

– use abstractions to speed-up search

– avoid the exponential cost of static inlining

Corral architecture
for sequential programs

Input
Program

Abstract
Program

Variable
Abstraction

Stratified
Inlining Z3

True
counter-
example

?

Unreachable

Reachable
Hierarchical
Refinement

Yes No

Z3

Corral architecture
for sequential programs

Input
Program

Abstract
Program

Variable
Abstraction

Stratified
Inlining Z3

True
counter-
example

?

Unreachable

Reachable
Hierarchical
Refinement

Yes No

Z3

Corral architecture
for sequential programs

Input
Program

Abstract
Program

Variable
Abstraction

Stratified
Inlining Z3

True
counter-
example

?

Unreachable

Reachable
Hierarchical
Refinement

Yes No

Z3

Handling concurrency

Input
Program

Abstract
Program

Variable
Abstraction

Stratified
Inlining Z3

True
counter-
example

?

Unreachable

Reachable
Hierarchical
Refinement

Yes No

Z3

Sequentialization

What is sequentialization?

• Given a concurrent program P, construct a
sequential program Q such that Q  P

• Drop each occurrence of async-call

• Convert each occurrence of async-call to call

• Make Q as large as possible

Parameterized sequentialization

• Given a concurrent program P, construct a
family of programs Qi such that

– Q0  Q1  Q2  …  P

– iQi = P

• Even better if interesting behaviors of P
manifest in Qi for low values of i

Context-bounding

• Captures a notion of interesting executions in
concurrent programs

• Under-approximation parameterized by K ≥ 0

– executions in which each thread gets at most K
contexts to execute

– as K  , we get all behaviors

Context-bounding is sequentializable

• For any concurrent program P and K ≥ 0, there
is a sequential program QK that captures all
executions of P up to context bound K

• Simple source-to-source transformation

– linear in |P| and K

– each global variable is copied K times

Challenges

Programming SMT solvers

• Little support for decomposition

– Floyd-Hoare is the only decomposition rule

• Little support for abstraction

– SMT solvers are a black box

– difficult to influence search

• How do we calculate program abstractions
using an SMT solver?

Mutable dynamically-allocated memory

• Select-Update theory is expensive

• Select-Update theory is not expressive enough

– to represent heap shapes

– to encode frame conditions

Quantifiers

• Appear due to

– partial axiomatizations

– frame conditions

– assertions

• Undecidable in general

• A few decidability results

– based on finite instantiations

– brittle

