Constraints in Verification

Andreas Podelski

University of Freiburg



two kinds of constraints in verification

1. “upper bound for fixpoint” constraint over sets of states
1L X A FX)€X A X< bound
verification & least-fixpoint check < constraint problem
2. constraint denoting a set of states

used in abstract fixpoint checking
— abstraction & entailment between constraints
—  fixpoint test & entailment between constraints



constraint, no programming

* “just declare it!"
— define the set of desired solutions

* “logic and control”
— algorithmic meaning of logical connectives



constraint as a data structure
in constraint programming, CLP, ccp, ...

 relation (set of n-tuples, n=1)
« formula (n free variables , n=1)
« data structure with operations:
— test satisfiability
— compute solution
— test entailment
— add conjunct ( ... still satisfiable?)
— add disjunct ( ... now entailed?)



compute set of solutions

* transform into an (equivalent) normal form
— normal form may be: false

or.

 search for a solution
— may find out that no solution exists



» finite-model checking:
— constraint solving = search
— solution = (“bad") state
— correctness = absence of solution

* program verification:
— constraint solving = transformation
— solution = set of (reachable) states
— correctness = set contains no bad state

— set = Floyd-Hoare annotation, i.e.,
control flow graph labeled by constraints (“assertions®)

we cannot verify a program through failure of search



finite-model checking for parallel systems

+ finite-model checking is linear in size of model

but ...

 Input = parallel composition of n components
— model uses exponential space

— model checking = search =>
model need not be constructed explicitely =>

finite-model checking is PSPACE

(in n, the number of components)



verification of parallel programs

 proof requires Floyd-Hoare annotation,
I.e., control flow graph labeled by constraints (“assertions®)

 control flow graph uses exponential space
(product of n control flow graphs)

even just the reachable part generally uses
exponential space



verification of parallel programs
in PSPACE

two steps:

1. construct
data flow graph with Floyd-Hoare annotation
- denotes set of correct traces
l.e., a regular linear temporal property P
represented by (alternating) finite automaton

2. model checking
control flow graph = finite model M

MEP



{x=0}
Thread 1 Thread N

.................................................................................................

.
.

. .

.

Al oxi=x bl iy oxo

.................................................................................................

|
P
+
—

exponental-size control flow graph with
Floyd-Hoare annotation uses N assertions



 data flow graph with Floyd-Hoare annotation
denotes set containing all traces of form
below (of length < N)

X = X+1

X = X+1

correct: satisfy Hoare triple {x=0} ... {x< N}



bakery algorithm

Thread A Thread B

-y el := true by e2 := true

a2 tmp := n2 ba : tmp := nl

. 43 nl := tmp + 1 : §b35 n2 := tmp + 1

A4 el := false i bar e2 := false

as: [-e2] bs : [—el] .
a6 [-(n2 # 0 An2<n1)]: bs: [-(nl # 0 A nl < n2)]
? // critical section // critical section '



-~

PreCEn1L=O/\n2=

Trace 1

[PreC]

el := true
tmpl := n2

nl := tmpl + 1
el := false
[—e2]

e2 := true
tmp2 := nl

n2 := tmp2 + 1
e2 := false
[—el]

[-(n1l # 0 A nl < n2)]§

[+(n2 # 0 A n2 < n1)]

0O N el = falsé AN e2 = false

true
v
[PreC]
n2 > 0 true
<§23 tmpl := n%) (EQ: tmp2 := ni)
ltmplgfo tmp2 = nl
<§3: nl := tmpl + 1:) (}g: n2 := tmp2 + 1:)

nl >0 nl <n2

<§6: [-(nl # 0 A nl < n2)]:>§

v
false



Step 1. Construction of
DFG with Floyd-Hoare annotation

repeat until G is “large enough”

pick trace of program, say: a_1,...,a m

construct Hoare triples
{Pre}a 1{P_1}...{P_m-1} a_m {Post}

create node for each action
label edge between nodes by
“local” conjuncts of assertions

merge resulting DFG with G



verification of parallel programs
in PSPACE

two steps:

1. construct
data flow graph with Floyd-Hoare annotation
- denoteing set of correct traces
l.e., a regular linear temporal property P
represented by finite automaton

2. model checking
control flow graph = finite model M

MEP



construct automaton that accepts traces
al..an
sucht that
{Pre}a 1 ...a _n {Post}

 state for each assertion P_1, ... ,P_m
 transition from state P_k to P_j for letter a_i
if
{P_k} a_i {P_j}



end of excursion

back to theme of this talk

constraints in verification

two notions of constraint solving,
search and transformation



» finite-model checking:
— constraint solving = search
— solution = (“bad") state
— correctness = absence of solution

* program verification:
— constraint solving = transformation
— solution = set of (reachable) states
— correctness = set contains no bad state

— set = Floyd-Hoare annotation, i.e.,
control flow graph labeled by constraints (“assertions”)



compute set of solutions

* transform into an (equivalent) normal form
— normal form may be: false

or.

 search for a solution
— may find out that no solution exists



constraints over sets of strings

X=a.b.X+ab

(a.b)*a.b is smallest solution for X



automata = constraints
over sets of strings

q1(x) < x=a.y, q2(y)

= transition of automaton
from state q1 to state g2, reading letter a

automata are constraints in normal form



pushdown systems are constraints
over sets of strings

pop: qgl(a.y) < q2(y)
push: g1(x) < g2(a.x)

model checking pushdown system =
transforming constraint into normal form



tree automata are constraints
over sets of trees

e g(X) — x=1(x1,x2), g1(x1), g2(x2)

equivalent notation:

q( f(x1, x2) ) < q1(x1), q2(x2)

* set constraints
-q=21(qg1,q92)
—q(x) < g1(f(x, _)

set-based analysis:
transform set constraint into normal form



Constraint-based Model Checking

« CLP program = constraint over set of states
« model checking = constraint solving via CLP engine

« manipulation of sets of states (over, say, integers)
= operations on constraints (over integers)
l.e., on data structure of CLP engine



Verification Algorithm

Input:
* program
* correctness property
— non-reachability, termination

output:

e yes, no, don't know

* no output (verification algorithm does not terminate)

« necessary or sufficient pre-condition (P.,Rybalchenko,Wies-CAV’08)

« quantitative information (“how far from correct is the program?”)



Program Correctness

* Non-reachability
— validity of invariant
— safeness: “assert” does not fail
— partial correctness {..} P {..}
— safety properties

 Termination
— validity of “intermittent assertions”
— total correctness
— liveness properties



Least-Fixpoint Checking

program semantics < least fixpoint of operator F
correctness property < bound

check:
least fixpoint of F € bound ?

solve constraint in variable X over sets of states:

LEX A FX)SX A X E bound

from now on: “upper bound on fixpoint” constraint



Non-Reachability = Least-Fixpoint Checking

» set of reachable states = Ifp(post)
— least fixpoint of post operator
— lattice of sets of states
— order “ €” = set inclusion
— bottom = set of initial states

* non-reachability of bad states < Ifp(post) € {good states}

* “upper bound on fixpoint” constraint:

Ifp(post) & X A X < {good states}

constraint solving via iteration of abstract fixpoint checking



Fixpoint Checking < Constraint Solving

“‘upper bound on fixpoint” constraint:

Ifp(post) © X A X <€ {good states}

constraint solving via iteration of abstract fixpoint checking

“lower bound on fixpoint” constraint:

X € Ifp(post) A not(X < {good states})

constraint solving via bounded model checking



Verification

construct X such that Ifp(post) & X
check X < {good states}
semi-test: definite Yes answers, don’t know No answers

solve “upper bound for fixpoint” constraint by co-semi-algorithm
construct sequence X, > X, > ...> X_ iterating semi-test

— Ifp(post) € X

— X, € {good states} ?

— X, € {good states} (X, being the first with this property)



Next in this Talk: Co-Semi-Test

construct X < Ifp(post)
check X < {good states}
co-semi-test: definite No answers, don’t know Yes answers

solve “lower bound for fixpoint” constraint by co-semi-algorithm

construct sequence X; € X, € ... € X, iterating co-semi-test
— X, € Ifp(post)
— X, € {good states})

— not( X, € {good states}) (X,, being the first with this
property)



Co-Semi-Test: Bounded Model Checking

X < Ifp(post) A not(X < {good states})
constraint in set variable X

X := post({initial states}) ... € Ifp(post)

= {states reachable in 0, 1, ..., k steps})

s € postk({initial states}) A s € {bad states}

constraint in state variable s
state = valuation of program variables x, y, z

post“(init) A bad

constraint in (renamings of) program variables x, y, z



Constraint = Set of States

state = valuation of program variables x, y, z

constraint denotes set of its solutions
constraint in variables x, y, z denotes {states}

constraints init, good, bad
denaoting: {initial states}, {good states}, {bad states}

post = operator over sets of states
= operator over constraints



Transition Constraint = Set of Transitions

pair of states = valuation of variables x, y, z, X', Vy’, Z’

transition = (pre-state, post-state)

program statement transition relation

transition constraint
x>0 A X'=x+1

if x>0 then x;:=x+1

post(x>10) = dX. x>10 A x>0 A x'=x+1
=Xx>11



Falsification = Constraint Solving with Search

« postX(init) = “big” disjunction of constraints

 if constraint (in program variables):
postk(init) A bad
is satisfiable
then constraint (in set variable):
X < Ifp(post) A not(X < {good states})
is satisfiable
(since X = postk(init) is a solution)
... and we have a definite No answer

That’s the best what constraint solving with search can do for programs
(as opposed to: for finite models)



Done for this Talk: Co-Semi-Test

construct X < Ifp(post)
check X < {good states}
co-semi-test: definite No answers, don’t know Yes answers

solve “lower bound for fixpoint” constraint by co-semi-algorithm
construct sequence X; € X, € ... € X, iterating co-semi-test

— X C lIfp(post) .. simply set X, = postk(init)
— not( X; € {good states}) ?
— not( X, € {good states}) (X, being the first with this

property)



Verification = Constraint Solving via Search

construct X such that Ifp(post) & X
check X < {good states}

semi-test: definite Yes answers, don’'t know No answers

solve “upper bound for fixpoint” constraint by search
construct sequence X,> X, > ...> X, iterating semi-test
— X > Ifp(post)
— X, € {good states} ?
— X, € {good states} (X, being the first with this property)



Abstract Fixpoint Check = Constraint Solving

« “upper bound on least fixpoint” constraint in set variable X:

Ifp(X) € X A X < {good states}

« semi-test: try any fixpoint X of post:
post(X) € X A ({initial states} < X
and check X < {good states}

« “upper bound on least fixpoint” constraint in set variable X becomes:

post(X) € X A ({initial states} € X A X < {good states}

methods to solve above constraint
1. abstraction to simpler constraint problem

2. abstract fixpoint checking



Abstraction to Set Constraint Problem
to solve “Upper Bound on Fixpoint” Constraint
post(X) S X A {initial states} © X A X < {good states}

n = number of program variables = X ranges over sets of n-tuples
set constraint: X ranges over Cartesian products (of n sets)
set-based analysis for programs over lists, stacks and trees

= solving set constraints (Reynolds, Jones, Gallagher, ...)
= abstract fixpoint iteration (Cousot’92)



Abstraction to Linear Constraint Problem

to solve “Upper Bound on Fixpoint” Constraint
post(X) S X A {initial states} © X A X < {good states}

solution for X = set of states

set denoted by linear constraint over program variables
with coefficients as parameters

“Upper Bound on Fixpoint” Constraint translates to
linear constraint over coefficients

Bradley, Colon, Manna, Sipma, Sankaranarayanan, Tiwari,
Rybalchenko, ...

does not work well with features of realistic programs, until now
does not scale well, until now



Fixpoint Iteration
to solve “Upper Bound on Fixpoint” Constraint

post(X) S X A {initial states} © X A X < {good states}
« construct solution for Xin post(X) & X A {initial states} < X

* generate sequence of constraints init, c,, C,, C3, ..., C
— init cc,Cc, Ccy C... Cc,

n

— post(c,) Cc, C, is fixpoint

two issues with naive fixpoint iteration:
- if c,, = post(c;) then in general no convergence

- fixpoint test “post(c,) C c,” = entailment test : too expensive



Abstraction
iIn model checking vs. abstract interpretation

« abstraction to finite-state system (“partitioning”)
works only for finite-state systems

« finite-state abstraction does not preserve termination
of program with executions of unbounded length

 instead: abstract the functional in the fixpoint iteration
=> abstract least fixpoint checking



Abstract Fixpoint lteration

“accelerated” sequence of constraints init, c,, c,, C, ..., C,
— init cc,Cc, Ccy C... Cc,
— post(c,) Cc,

after each application of post operator, extrapolation “ % ” of result
— init, post(init) > c,, post(c;)© c,, post(c,) > c;, ...

fixpoint test (“post(c,) Cc,’) in new ordering between constraints
e.g.,
— local entailment: each disjunct entailed by one of disjuncts

— ordering in free lattice, i.e., ordering between sets of bitvectors
(bitvector presents conjunction of n possibly negated base constraints)

formalized in abstract interpretation (Cousot,Cousot’77)



Abstraction

« widening
— syntactic criteria to obtain “some” weaker constraint
— fixpoint test uses entailment ordering between constraints: ¢ = C’

* Dbest abstraction in abstract domain
— abstract domain = given (finite) set of constraints
— ¢ © conjunction of all ¢’ in abstract domain that are entailed by c

— thus, to extrapolate ¢, we need to go through all ¢’ in abstract domain
and test entailment ¢ = ¢’

— fixpoint test cheap:
c1 smaller than c2 if every conjunct of c2 occurs in c1
ordering not too restrictive if taken between “best abstractions”

« constraint solving effort: pay now or pay later!
either in extrapolation or in fixpoint test



State-Predicate Abstraction

« abstract domain = finite set
— ... of disjunctions of conjunctions of predicates

— conjunction of predicates = abstract state
— predicate = base constraint

« Cartesian abstraction
— post(conjunction) = smallest conjunction above disjunction

— = A { predicate | conjunction = wp(predicate) }
— avoids exponential explosion
— uses wp (weakest precondition) instead of post



Termination = Least-Fixpoint Checking

 transitive closure of transition relation = Ifp(0)
— operator “0” = composition of two relations
— lattice of sets of pairs of states
— order “ €” = set inclusion

— bottom = transition relation

. termination
=

Ifp(0) & finite union of well-founded relations



Termination
=

Ifp(0) & finite union of well-founded relations

assume: exists infinite computation s, s, ...
each (s;, s;) where i<j belongs to Ifp(0)

... hence to one of the relations in finite union
one of the relations contains infinitely many pairs

even: infinitely many consecutive pairs (Ramsey)

contradiction: all relations in union are well-founded



Well-foundedness of Transition Constraints

transition constraint (no disjunction!)
= conjunction of guard and action
x>0 A X'=x+1

simple while loops
while(x>0)}{ x := x+1 }

decidable/efficient termination check (Tiwari,P., Rybalchenko)
Farkas’ Lemma + linear arithmetic constraint solving



From Trace Semantics to Relational Remantics

state of recursive program
= valuation of program variables + stack value

trace defined by states with stack
no good abstraction for stack as data structure
no good abstract fixpoint construction

circumvent issue;
switch from trace semantics to relational semantics

procedure summary:
relation between entry and exit states (Sharir,Pnueli’81)

refined procedure summary:
relation between reachable entry and exit states (Reps/Horwitz/Sagiv’'95)



Summary = Least Fixpoint

transitive closure of transition relation including:
— call (pass actual to local variables)
— return (new value of globals, old value of locals)
restrict transitive closure relation to domain of reachable entry states

summary = Ifp(o)

[Pyl

— operator “0” = composition with transition relation + seeding
add pair of identical entry state when it appears in new pair
(_,s)esummary, s entry state = (s,s)e summary

— lattice of relations

— _ =identity relation on initial states

non-reachability of bad states
=

Ifp(0) < {initial states} x {good states}



Verification of Recursive Programs
= Solving Set Constraints

« fixpoint equation for post = set constraint
— post operator on sets of stack states
— stack state = unary tree
— push = application of function symbol
— pop = application of projection

« set constraint solving = computing summaries
— canonical rewrite systems (Buchi)
— interprocedural analysis (Knoop, Steffen, Reps, Horwitz, Sagiv)
— pushdown systems (Bouaijjani, Esparza, Maler, ...)
— cryptographic protocols (Dolev/Yao)
— empirical evaluation (Kodumal, Aiken)



Conclusion

1. “upper bound for fixpoint” constraint over sets of states

1L X A FX)€X A X< bound

verification & least-fixpoint check & constraint problem

2. constraints over integers etc. denote sets of states
used in abstract fixpoint checking

— abstraction < entailment between constraints
—  fixpoint test & entailment between constraints



