
Constraints in Verification

Andreas Podelski

University of Freiburg

two kinds of constraints in verification

1.  “upper bound for fixpoint” constraint over sets of states

 ⊥ ⊆ X ∧ F(X) ⊆ X ∧ X ⊆ bound

 verification ⇔ least-fixpoint check ⇔ constraint problem

2. constraint denoting a set of states

 used in abstract fixpoint checking
–  abstraction ⇔ entailment between constraints
–  fixpoint test ⇔ entailment between constraints

constraint, no programming

•  “just declare it!“
– define the set of desired solutions

•  “logic and control“
– algorithmic meaning of logical connectives

constraint as a data structure
in constraint programming, CLP, ccp, ...

•  relation (set of n-tuples, n≥1)
•  formula (n free variables , n≥1)
•  data structure with operations:

–  test satisfiability
–  compute solution
–  test entailment
–  add conjunct (... still satisfiable?)
–  add disjunct (... now entailed?)

compute set of solutions

•  transform into an (equivalent) normal form
– normal form may be: false

or:
•  search for a solution

– may find out that no solution exists

•  finite-model checking:
–  constraint solving = search
–  solution = (“bad“) state
–  correctness = absence of solution

•  program verification:
–  constraint solving = transformation
–  solution = set of (reachable) states
–  correctness = set contains no bad state
–  set ≈ Floyd-Hoare annotation, i.e.,

control flow graph labeled by constraints (“assertions“)

 we cannot verify a program through failure of search

finite-model checking for parallel systems

•  finite-model checking is linear in size of model
but ...
•  input = parallel composition of n components

–  model uses exponential space
–  model checking = search =>

model need not be constructed explicitely =>

 finite-model checking is PSPACE
(in n, the number of components)

verification of parallel programs

•  proof requires Floyd-Hoare annotation,
i.e., control flow graph labeled by constraints (“assertions“)

•  control flow graph uses exponential space
(product of n control flow graphs)

 even just the reachable part generally uses
exponential space

verification of parallel programs
in PSPACE

two steps:
1.  construct

data flow graph with Floyd-Hoare annotation
- denotes set of correct traces
 i.e., a regular linear temporal property P
 represented by (alternating) finite automaton

2.  model checking
control flow graph = finite model M

 M ⊨ P

{ x = 0 }

{ x ≤ N }

exponental-size control flow graph with
Floyd-Hoare annotation uses N assertions

[PreC]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 1
[PreC]

[¬(n1 �= 0 � n1 < n2)]b6 :

n2 � 0

n1 > 0 n1 � n2

true

tmp1 := n2a2 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1

tmp1 � 0 tmp2 = n1

n1 � 0

n2 > 0n2 � n1

true

[¬(n2 �= 0 � n2 < n1)]a6 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1a2 : tmp1 := n2

tmp1 = n2 tmp2 � 0

[PreC]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 2

[PreC]
e2 := true
tmp2 := n1
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :

b2 :
b1 :

b6 :

Trace 3

[PreC]
e1 := true
tmp1 := n2
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :

a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 4

e1 := truea1 :

[¬e1]

true

e1 = true

b5 :

e2 := trueb1 :

[¬e2]

true

e2 = true

a5 :

[PreC]

[PreC]

[PreC]

false false

false false

true

true

true

true

Figure 1. 4 infeasible traces of Bakery Program with their corresponding DFG’s which constitute a proof of mutual exclusion property. PreC ⌘ n1 = 0

^ n2 = 0 ^ e1 = false ^ e2 = false is the initial condition of the program.

which is the result of merging the four graphs illustrated in Figure
1.

Increment Example and Ticket Algorithm
We use a simple example in this section to illustrate the succinct-
ness of data flow graphs in representing sets of program traces.
Consider the following program, consisting of N threads that in-
crement a global variable x and one thread that asserts that x  N
(a property that always holds). x initially has value 0.

x := x + 1�1 :

Thread 1

x := x + 1�N :

Thread N
. . .

Thread 0

�0 : assert(x <= N)

There exists a data flow graph that proves the assertion at `0
safe with a size that is polynomial in N . This graph is illustrated in
Figure 2, and has N2

+ 2 vertices. Other than the initial and final
nodes, all nodes are labeled with x = x + 1 action. In the figure,
we also indicate the distinct program location to which each node
is associated to make the graph more decipherable. Every vertex
in row i (for i < N) has an edge to every vertex in row i + 1

labeled {x  i} (the edge labels in the middle have been omitted
from the figure to increase readability). This graph very succinctly
represents all possible permutations of the statements of the N
threads in a polynomial size structure, proving that none of them is
a feasible trace ending with an assume statement [x>N], and hence
proving the assertion at `0. Note that this graph represents a lot
of traces which are not program traces (e.g. [x = 0]`1`1 . . . `1`0),
but since all that matters is for all infeasible traces of the program
to be represented by the graph, this over-approximation does not
cause any problems and in fact it attributes to a more succinct
representation of traces that matter.

Another interesting aspect of this example is the discussion on
the number of traces required to construct the graph in Figure 2.
In the best case scenario, N traces are sufficient to construct this
proof. These traces are `1`2 . . . `N `0, `2 . . . `N `1`0, and so on up

to `N `1 . . . `N�1`0. Since a completely rotation occurs through
these traces, all possible orderings required to complete the graph
will appear in some trace. In the worst case scenario (considering
that we always pick a new trace that does is not already represented
by the graph), N2 �N +1 (not a tight bound) traces are sufficient.
The first trace creates the first N + 2 nodes, and each trace after that
is bound to at least add one node to the graph.

The fact that this graph is polynomial in N is significant con-
sidering that tools such as Threader [?], which generates Owicki-
Gries type proofs and rely-guarantee type proofs, and Slab [?],
which uses abstraction-refinement using Craig interpolation with
slicing, both generate exponential size (in N) abstract reachability
trees for this example 1.

The increment program may seem a little pathalogical. It is not.
We chose it since the data flow graph for it is small enough to in-
clude in the paper. A realistic example with the same characteris-
tics is the ticket mutual exclusion algorithm [?] implemented by
the program below.

m
1

:= t
t := t + 1
[m

1

<= s]
// critical section
s := s + 1

�1,1 :
�1,2 :
�1,3 :

�1,4 :

Thread 1
mN := t
t := t + 1
[mN <= s]
// critical section
s := s + 1�N,4 :

�N,3 :
�N,2 :
�N,1 :
Thread N

. . .

The data flow graph proof consists of two structures similar
to the graph in Figure 2, one for t and one for s, along with an
additional structure: for each i, j 2 [1, n], we introduce a vertex
labeled with `i : [mi  s] and with two inputs: mi = j and
s > j (and thus, with post condition false). These vertices are the
roots of the DFG. The number of vertices for this graph is O(N2

).

1 We ran the aforementioned tools with all possible options on this simple
example and in all cases the size of the abstract reachability tree grew
exponentially as we increased N .

3 2012/6/28

•  data flow graph with Floyd-Hoare annotation
denotes set containing all traces of form
below (of length ≤ N)

 x := x+1
 .
 .
 .
 x := x+1

correct: satisfy Hoare triple {x=o} ... {x≤ N}

bakery algorithm

this section are created by the algorithm presented in this paper
using MATHSAT [?] interpolant generator.

Lamport’s Bakery Algorithm
The code below implements Lamport’s Bakery algorithm [?] with
two threads. The two threads A and B use integer variables n1 and
n2 (which are both initially 0) to decide who gets to enter the criti-
cal section. The thread that gets to increment its own variable first,
earns the right to enter the critical section, and the other thread
will be blocked behind the assume statement (lines a6 and b6) un-
til the first thread exists its critical section. We intentionally break
the update statement n1 := n2 + 1 into two statements tmp1 :=

n2 and n1 := tmp1 + 1 to have the possibility of the update
happening non-atomically while treating individual program state-
ments as atomic. Flags e1 and e2 then exist to ensure the atomicity
of n1 := n2 + 1 and n2 := n1 + 1 updates respectively. Initially,
e1 = e2 = false .

e1 := true
tmp := n2
n1 := tmp + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
// critical section
n1 := 0

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

Thread A

a7 :

e2 := true
tmp := n1
n2 := tmp + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
// critical section
n2 := 0

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Thread B

b7 :

The desired property of this algorithm is mutual exclusion (i.e
only one thread can be in the critical section at each time). We
demonstrate how data flow graphs help capture the essence of
a proof for this property. Imagine an interleaving of the actions
of the two threads A and B that would lead to a both threads
being in the critical section at the same time; (partial) trace 1 in
Figure 1 is an example of such an interleaving. This interleaving is
not a feasible execution of the program since it will block before
execution of b2. An alternative way of expressing this infeasibility
is stating that this trace has a postcondition false (with precondition
n1 = n2 = 0). If one could show that all bad traces (those which
do not satisfy the mutual exclusion property) are infeasible (or
equivalently, have false as postcondition), then one would have a
proof for the correctness of the mutual exclusion property for this
program.

We use data flow graphs to represent sets of traces. In Figure
1, The graph next to trace 1 represents a set of traces (including
trace 1) that end at location b6 with a postcondition false. Note that
there is a special assume statement at the beginning of the trace to
account for the initial condition of the program (precondition). Ver-
tices of this graph are labelled with program statements, and edges
are labeled with assertions over program variables. Each node of
the graph with the assertions on its incoming and outgoing edges
forms a Hoare triple (e.g. {n2 � 0}tmp1 := n2{tmp1 � 0} for
the node labeled a2). When there is more than one incoming edge,
the precondition of a node is the conjunction of the assertions over
all incoming edges. There is a distinct initial node containing an as-
sume statement that accounts for the precondition of the program.
The node b6 is considered a final node whose post condition (false
in this case) is the postcondition of the graph (formally, there may
be more than one final nodes in a graph).

[PreC]
tmp2 := n1
tmp1 := n2
n1 := tmp1 + 1
n2 := tmp2 + 1
[¬(n1 �= 0 � n1 < n2)]

a2 :
a3 :
b3 :

b2 :

b6 :

The data flow graph corre-
sponding to trace 1 in Figure 1
effectively captures the reason
why trace 1 is infeasible. Other
traces that share the same rea-
son for infeasibility are also
represented by this graph. For
example, the trace on the right is slightly different from trace 1,

but infeasible for the same reason and therefore, also represented
by the same data flow graph. It is not a true trace of the program
since it has many actions missing, but it is infeasible exactly for the
same reason that trace 1 in Figure 1 is, i.e. once n1 is updated first,
the assume statement at b6 will be blocked until thread A exists
its critical section. This brings us to a very important point about
these graphs. In Figure 1, even though there are no graphical order
constraints between a3 and b3 (no edge or path) in the graph for
trace 1, it only represents traces in which a3 is executed before b3.
This is due to the fact that a3 does not preserve the assertion label
of the edge (b3, b6), and therefore it cannot appear after b3. This
is a notable difference between data flow graphs and the partial-
order-based models of program traces. At the same time, there is
parallelism captured by the data flow graph. Even though the graph
is imposing strict orders on actions a3, b3 and b6, there are no
constraints for reordering of a2 and b2, so they can appear in ei-
ther order in traces represented by this graph. Indeed, the ordering
of a2 and b2 has no consequence in the conceptual reason for the
infeasibility of trace 1, and the graph nicely incorporates this fact.

Note the absence of the actions a1, a4, a5, a6, b1, b4, and b5
from this graph. These action do not play a role in the reasoning
about the infeasibility of this particular trace and therefore they
need not be included in the graph. The language of a graph (set
of traces it represents) is defined so that any number can be added
to a trace as long as those actions preserve the assertions of the
relevant edges, and the resulting trace still belongs to the language
of the graph. For example, [PreC]a2a3b2b3b4 is a minimal (in terms
of the number of actions) trace that it is represented by the first
data flow graph in Figure 1, and [PreC]a1a2a3b2b3b4 is a variation
where an action a1 is inserted after [PreC] since it preserves the
assertions of the edges ([PreC], a2) and ([PreC], b2) (n2ge0 and
true respectively.). Then, a1a2b1b2 also belongs to the language of
this graph since a2 preserves both n1 > 0 and the true (the label
of incoming edge to b1). In fact the graph represents an infinite
language of traces (e.g any number of of a1’s can be inserted after
[PreC] and not just one). From the point of view of the proof, we
only care those among these traces that are program traces, but this
over-approximation can lead to a very succinct representation of
the few traces that are relevant to the proof.

(AZADEH SAYS: If there is a loop in the critical section, then we can talk about actions of a loop being

absorbed by the graph.) (AZADEH SAYS: absorbing actions: make an analogy with slicing?)

Figure 1 demonstrates 4 different traces of the above program
and their associated data flow graphs. In trace 2, thread B sets its
variable n2 first, and therefore thread A is the one that will be
blocked from entering the critical section. Trace 2 is represented
by the graph illustrated next to it in Figure 1, which is the mirror of
the first data flow graph. Traces 3 and 4 capture program infeasible
traces violating mutual exclusion where the reason for the infeasi-
bility is due to the interaction of the flag variables e1 and e2. The
data flow graph for trace 3 in Figure 1 represents all traces (includ-
ing trace 3) in which e2 is set to true and then not changed until
assume statement [¬e2]. Note that since there is no interaction
between e1 and any other program variables (in the sense of flow
of data), the data flow graph for trace 3 is completely disjoint from
all other graphs. This is even more interesting when one considers
the fact that despite the disjointness of flow graphs for traces 2 and
3 (as an example), the trace b1b2b3a1a2a3a4a5a6b4b5b6 belongs
to the languages of both flow graphs.

All program traces of the bakery program that violate the mu-
tual exclusion property are represented by (at least) one of the four
graphs illustrated in Figure 1. Since the graphs all have postcondi-
tion false, we further know that all such traces are infeasible traces.
Therefore, the four graphs in Figure ?? serve as a proof that the
mutual exclusion property holds for the Bakery program. Note that
the algorithm presented in this paper constructs one data flow graph

2 2012/6/28

[PreC]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 1
[PreC]

[¬(n1 �= 0 � n1 < n2)]b6 :

n2 � 0

n1 > 0 n1 � n2

true

tmp1 := n2a2 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1

tmp1 � 0 tmp2 = n1

n1 � 0

n2 > 0n2 � n1

true

[¬(n2 �= 0 � n2 < n1)]a6 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1a2 : tmp1 := n2

tmp1 = n2 tmp2 � 0

[PreC]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 2

[PreC]
e2 := true
tmp2 := n1
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :

b2 :
b1 :

b6 :

Trace 3

[PreC]
e1 := true
tmp1 := n2
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :

a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 4

e1 := truea1 :

[¬e1]

true

e1 = true

b5 :

e2 := trueb1 :

[¬e2]

true

e2 = true

a5 :

[PreC]

[PreC]

[PreC]

false false

false false

true

true

true

true

Figure 1. 4 infeasible traces of Bakery Program with their corresponding DFG’s which constitute a proof of mutual exclusion property. PreC ⌘ n1 = 0

^ n2 = 0 ^ e1 = false ^ e2 = false is the initial condition of the program.

which is the result of merging the four graphs illustrated in Figure
1.

Increment Example and Ticket Algorithm
We use a simple example in this section to illustrate the succinct-
ness of data flow graphs in representing sets of program traces.
Consider the following program, consisting of N threads that in-
crement a global variable x and one thread that asserts that x  N
(a property that always holds). x initially has value 0.

x := x + 1�1 :

Thread 1

x := x + 1�N :

Thread N
. . .

Thread 0

�0 : assert(x <= N)

There exists a data flow graph that proves the assertion at `0
safe with a size that is polynomial in N . This graph is illustrated in
Figure 2, and has N2

+ 2 vertices. Other than the initial and final
nodes, all nodes are labeled with x = x + 1 action. In the figure,
we also indicate the distinct program location to which each node
is associated to make the graph more decipherable. Every vertex
in row i (for i < N) has an edge to every vertex in row i + 1

labeled {x  i} (the edge labels in the middle have been omitted
from the figure to increase readability). This graph very succinctly
represents all possible permutations of the statements of the N
threads in a polynomial size structure, proving that none of them is
a feasible trace ending with an assume statement [x>N], and hence
proving the assertion at `0. Note that this graph represents a lot
of traces which are not program traces (e.g. [x = 0]`1`1 . . . `1`0),
but since all that matters is for all infeasible traces of the program
to be represented by the graph, this over-approximation does not
cause any problems and in fact it attributes to a more succinct
representation of traces that matter.

Another interesting aspect of this example is the discussion on
the number of traces required to construct the graph in Figure 2.
In the best case scenario, N traces are sufficient to construct this
proof. These traces are `1`2 . . . `N `0, `2 . . . `N `1`0, and so on up

to `N `1 . . . `N�1`0. Since a completely rotation occurs through
these traces, all possible orderings required to complete the graph
will appear in some trace. In the worst case scenario (considering
that we always pick a new trace that does is not already represented
by the graph), N2 �N +1 (not a tight bound) traces are sufficient.
The first trace creates the first N + 2 nodes, and each trace after that
is bound to at least add one node to the graph.

The fact that this graph is polynomial in N is significant con-
sidering that tools such as Threader [?], which generates Owicki-
Gries type proofs and rely-guarantee type proofs, and Slab [?],
which uses abstraction-refinement using Craig interpolation with
slicing, both generate exponential size (in N) abstract reachability
trees for this example 1.

The increment program may seem a little pathalogical. It is not.
We chose it since the data flow graph for it is small enough to in-
clude in the paper. A realistic example with the same characteris-
tics is the ticket mutual exclusion algorithm [?] implemented by
the program below.

m
1

:= t
t := t + 1
[m

1

<= s]
// critical section
s := s + 1

�1,1 :
�1,2 :
�1,3 :

�1,4 :

Thread 1
mN := t
t := t + 1
[mN <= s]
// critical section
s := s + 1�N,4 :

�N,3 :
�N,2 :
�N,1 :
Thread N

. . .

The data flow graph proof consists of two structures similar
to the graph in Figure 2, one for t and one for s, along with an
additional structure: for each i, j 2 [1, n], we introduce a vertex
labeled with `i : [mi  s] and with two inputs: mi = j and
s > j (and thus, with post condition false). These vertices are the
roots of the DFG. The number of vertices for this graph is O(N2

).

1 We ran the aforementioned tools with all possible options on this simple
example and in all cases the size of the abstract reachability tree grew
exponentially as we increased N .

3 2012/6/28

[PreC]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 1
[PreC]

[¬(n1 �= 0 � n1 < n2)]b6 :

n2 � 0

n1 > 0 n1 � n2

true

tmp1 := n2a2 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1

tmp1 � 0 tmp2 = n1

n1 � 0

n2 > 0n2 � n1

true

[¬(n2 �= 0 � n2 < n1)]a6 :

n1 := tmp1 + 1a3 : n2 := tmp2 + 1b3 :

b2 : tmp2 := n1a2 : tmp1 := n2

tmp1 = n2 tmp2 � 0

[PreC]
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 2

[PreC]
e2 := true
tmp2 := n1
e1 := true
tmp1 := n2
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]

a1 :
a2 :
a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :

b2 :
b1 :

b6 :

Trace 3

[PreC]
e1 := true
tmp1 := n2
e2 := true
tmp2 := n1
n2 := tmp2 + 1
e2 := false
[¬e1]
[¬(n1 �= 0 � n1 < n2)]
n1 := tmp1 + 1
e1 := false
[¬e2]
[¬(n2 �= 0 � n2 < n1)]

a1 :
a2 :

a3 :
a4 :
a5 :
a6 :

b5 :
b4 :
b3 :
b2 :
b1 :

b6 :

Trace 4

e1 := truea1 :

[¬e1]

true

e1 = true

b5 :

e2 := trueb1 :

[¬e2]

true

e2 = true

a5 :

[PreC]

[PreC]

[PreC]

false false

false false

true

true

true

true

Figure 1. 4 infeasible traces of Bakery Program with their corresponding DFG’s which constitute a proof of mutual exclusion property. The initial node is
labeled with the assume statement for the precondition PreC ⌘ n1 = 0 ^ n2 = 0 ^ e1 = false ^ e2 = false .

which is the result of merging the four graphs illustrated in Figure
1.

Increment Example and Ticket Algorithm
We use a simple example in this section to illustrate the succinct-
ness of data flow graphs in representing sets of program traces.
Consider the following program, consisting of N threads that in-
crement a global variable x and one thread that asserts that x  N
(a property that always holds). x initially has value 0.

x := x + 1�1 :

Thread 1

x := x + 1�N :

Thread N
. . .

Thread 0

�0 : assert(x <= N)

There exists a data flow graph that proves the assertion at `0
safe with a size that is polynomial in N . This graph is illustrated in
Figure 2, and has N2

+ 2 vertices. Other than the initial and final
nodes, all nodes are labeled with x = x + 1 action. In the figure,
we also indicate the distinct program location to which each node
is associated to make the graph more decipherable. Every vertex
in row i (for i < N) has an edge to every vertex in row i + 1

labeled {x  i} (the edge labels in the middle have been omitted
from the figure to increase readability). This graph very succinctly
represents all possible permutations of the statements of the N
threads in a polynomial size structure, proving that none of them is
a feasible trace ending with an assume statement [x>N], and hence
proving the assertion at `0. Note that this graph represents a lot
of traces which are not program traces (e.g. [x = 0]`1`1 . . . `1`0),
but since all that matters is for all infeasible traces of the program
to be represented by the graph, this over-approximation does not
cause any problems and in fact it attributes to a more succinct
representation of traces that matter.

Another interesting aspect of this example is the discussion on
the number of traces required to construct the graph in Figure 2.
In the best case scenario, N traces are sufficient to construct this
proof. These traces are `1`2 . . . `N `0, `2 . . . `N `1`0, and so on up

to `N `1 . . . `N�1`0. Since a completely rotation occurs through
these traces, all possible orderings required to complete the graph
will appear in some trace. In the worst case scenario (considering
that we always pick a new trace that does is not already represented
by the graph), N2 �N +1 (not a tight bound) traces are sufficient.
The first trace creates the first N + 2 nodes, and each trace after that
is bound to at least add one node to the graph.

The fact that this graph is polynomial in N is significant con-
sidering that tools such as Threader [?], which generates Owicki-
Gries type proofs and rely-guarantee type proofs, and Slab [?],
which uses abstraction-refinement using Craig interpolation with
slicing, both generate exponential size (in N) abstract reachability
trees for this example 1.

The increment program may seem a little pathalogical. It is not.
We chose it since the data flow graph for it is small enough to in-
clude in the paper. A realistic example with the same characteris-
tics is the ticket mutual exclusion algorithm [?] implemented by
the program below.

m
1

:= t
t := t + 1
[m

1

<= s]
// critical section
s := s + 1

�1,1 :
�1,2 :
�1,3 :

�1,4 :

Thread 1
mN := t
t := t + 1
[mN <= s]
// critical section
s := s + 1�N,4 :

�N,3 :
�N,2 :
�N,1 :
Thread N

. . .

The data flow graph proof consists of two structures similar
to the graph in Figure 2, one for t and one for s, along with an
additional structure: for each i, j 2 [1, n], we introduce a vertex
labeled with `i : [mi  s] and with two inputs: mi = j and
s > j (and thus, with post condition false). These vertices are the
roots of the DFG. The number of vertices for this graph is O(N2

).

1 We ran the aforementioned tools with all possible options on this simple
example and in all cases the size of the abstract reachability tree grew
exponentially as we increased N .

3 2012/6/28

Step 1. Construction of
DFG with Floyd-Hoare annotation

repeat until G is “large enough“

 pick trace of program, say: a_1, ..., a_m

 construct Hoare triples
 {Pre} a_1 {P_1} ... {P_m-1} a_m {Post}

 create node for each action
 label edge between nodes by
 “local“ conjuncts of assertions

 merge resulting DFG with G

verification of parallel programs
in PSPACE

two steps:
1.  construct

data flow graph with Floyd-Hoare annotation
- denoteing set of correct traces
 i.e., a regular linear temporal property P
 represented by finite automaton

2.  model checking
control flow graph = finite model M

 M ⊨ P

construct automaton that accepts traces
a_1 ... a_n
sucht that

{Pre} a_1 ... a_n {Post}

•  state for each assertion P_1, ... , P_m
•  transition from state P_k to P_j for letter a_i

if
 {P_k} a_i {P_j}

 end of excursion

back to theme of this talk

constraints in verification

two notions of constraint solving,
search and transformation

•  finite-model checking:
–  constraint solving = search
–  solution = (“bad“) state
–  correctness = absence of solution

•  program verification:
–  constraint solving = transformation
–  solution = set of (reachable) states
–  correctness = set contains no bad state
–  set ≈ Floyd-Hoare annotation, i.e.,

control flow graph labeled by constraints (“assertions“)

compute set of solutions

•  transform into an (equivalent) normal form
– normal form may be: false

or:
•  search for a solution

– may find out that no solution exists

constraints over sets of strings

 X = a.b.X + a.b

(a.b)*a.b is smallest solution for X

automata = constraints
over sets of strings

 q1(x) ← x=a.y, q2(y)

≈ transition of automaton
from state q1 to state q2, reading letter a

 automata are constraints in normal form

pushdown systems are constraints
over sets of strings

pop: q1(a.y) ← q2(y)
push: q1(x) ← q2(a.x)

model checking pushdown system =
transforming constraint into normal form

tree automata are constraints
over sets of trees

•  q(x) ← x = f(x1, x2), q1(x1), q2(x2)
 equivalent notation:

q(f(x1, x2)) ← q1(x1), q2(x2)

•  set constraints
– q ⊇ f(q1, q2)
– q(x) ← q1(f(x, _)

 set-based analysis:
transform set constraint into normal form

Constraint-based Model Checking

•  CLP program = constraint over set of states
•  model checking = constraint solving via CLP engine

•  manipulation of sets of states (over, say, integers)
 = operations on constraints (over integers)
 i.e., on data structure of CLP engine

Verification Algorithm

input:
•  program
•  correctness property

–  non-reachability, termination

output:
•  yes, no, don’t know
•  no output (verification algorithm does not terminate)
•  necessary or sufficient pre-condition (P.,Rybalchenko,Wies-CAV’08)

•  quantitative information (“how far from correct is the program?”)

Program Correctness

•  Non-reachability
–  validity of invariant
–  safeness: “assert” does not fail
–  partial correctness {..} P {..}
–  safety properties

•  Termination
–  validity of “intermittent assertions”
–  total correctness
–  liveness properties

Least-Fixpoint Checking
•  program semantics ⇔ least fixpoint of operator F
•  correctness property ⇔ bound
•  check:

 least fixpoint of F ⊆ bound ?

•  solve constraint in variable X over sets of states:
• 

 ⊥ ⊆ X ∧ F(X) ⊆ X ∧ X ⊆ bound

from now on: “upper bound on fixpoint” constraint

Non-Reachability = Least-Fixpoint Checking
•  set of reachable states = lfp(post)

–  least fixpoint of post operator
–  lattice of sets of states
–  order “ ⊆” = set inclusion
–  bottom = set of initial states

•  non-reachability of bad states ⇔ lfp(post) ⊆ {good states}

•  “upper bound on fixpoint” constraint:

 lfp(post) ⊆ X ∧ X ⊆ {good states}

 constraint solving via iteration of abstract fixpoint checking

Fixpoint Checking ⇔ Constraint Solving
•  “upper bound on fixpoint” constraint:

 lfp(post) ⊆ X ∧ X ⊆ {good states}

•  constraint solving via iteration of abstract fixpoint checking

•  “lower bound on fixpoint” constraint:

 X ⊆ lfp(post) ∧ not(X ⊆ {good states})

•  constraint solving via bounded model checking

Verification
•  construct X such that lfp(post) ⊆ X
•  check X ⊆ {good states}
•  semi-test: definite Yes answers, don’t know No answers

•  solve “upper bound for fixpoint” constraint by co-semi-algorithm
•  construct sequence X1 > X2 > ...> Xn iterating semi-test

–  lfp(post) ⊆ Xi

–  Xi ⊆ {good states} ?
–  Xn ⊆ {good states} (Xn being the first with this property)

Next in this Talk: Co-Semi-Test
•  construct X ⊆ lfp(post)
•  check X ⊆ {good states}
•  co-semi-test: definite No answers, don’t know Yes answers

•  solve “lower bound for fixpoint” constraint by co-semi-algorithm
•  construct sequence X1 ⊆ X2 ⊆ ... ⊆ Xn iterating co-semi-test

–  Xi ⊆ lfp(post)

–  Xi ⊆ {good states})
–  not(Xn ⊆ {good states}) (Xn being the first with this

property)

Co-Semi-Test: Bounded Model Checking
•  X ⊆ lfp(post) ∧ not(X ⊆ {good states})

constraint in set variable X

•  X := postk({initial states}) ... ⊆ lfp(post)
 = {states reachable in 0, 1, ..., k steps})

•  s ∈ postk({initial states}) ∧ s ∈ {bad states}
constraint in state variable s
state = valuation of program variables x, y, z

•  postk(init) ∧ bad
constraint in (renamings of) program variables x, y, z

Constraint = Set of States
•  state = valuation of program variables x, y, z

•  constraint denotes set of its solutions
•  constraint in variables x, y, z denotes {states}
•  constraints init, good, bad

denoting: {initial states}, {good states}, {bad states}

•  post = operator over sets of states
 = operator over constraints

Transition Constraint = Set of Transitions
•  pair of states = valuation of variables x, y, z, x’, y’, z’

•  transition = (pre-state, post-state)

•  program statement = transition relation
 = transition constraint

if x>0 then x:=x+1 = x>0 ∧ x’=x+1

•  post(x>10) = ∃x. x>10 ∧ x>0 ∧ x’=x+1
 = x’>11

Falsification = Constraint Solving with Search

•  postk(init) = “big” disjunction of constraints

•  if constraint (in program variables):
 postk(init) ∧ bad

 is satisfiable
then constraint (in set variable):
 X ⊆ lfp(post) ∧ not(X ⊆ {good states})
is satisfiable
(since X = postk(init) is a solution)

 ... and we have a definite No answer

That’s the best what constraint solving with search can do for programs
(as opposed to: for finite models)

Done for this Talk: Co-Semi-Test
•  construct X ⊆ lfp(post)
•  check X ⊆ {good states}
•  co-semi-test: definite No answers, don’t know Yes answers

•  solve “lower bound for fixpoint” constraint by co-semi-algorithm
•  construct sequence X1 ⊆ X2 ⊆ ... ⊆ Xn iterating co-semi-test

–  Xi ⊆ lfp(post) ... simply set Xi = postk(init)
–  not(Xi ⊆ {good states}) ?
–  not(Xn ⊆ {good states}) (Xn being the first with this

property)

Verification = Constraint Solving via Search

•  construct X such that lfp(post) ⊆ X
•  check X ⊆ {good states}

•  semi-test: definite Yes answers, don’t know No answers

•  solve “upper bound for fixpoint” constraint by search
•  construct sequence X1 > X2 > ...> Xn iterating semi-test

–  Xi > lfp(post)
–  Xi ⊆ {good states} ?
–  Xn ⊆ {good states} (Xn being the first with this property)

Abstract Fixpoint Check ⇒ Constraint Solving

•  “upper bound on least fixpoint” constraint in set variable X:

 lfp(X) ⊆ X ∧ X ⊆ {good states}

•  semi-test: try any fixpoint X of post:
 post(X) ⊆ X ∧ {initial states} ⊆ X

and check X ⊆ {good states}

•  “upper bound on least fixpoint” constraint in set variable X becomes:

 post(X) ⊆ X ∧ {initial states} ⊆ X ∧ X ⊆ {good states}

methods to solve above constraint
 1. abstraction to simpler constraint problem
2. abstract fixpoint checking

Abstraction to Set Constraint Problem
to solve “Upper Bound on Fixpoint” Constraint

post(X) ⊆ X ∧ {initial states} ⊆ X ∧ X ⊆ {good states}

•  n = number of program variables ⇒ X ranges over sets of n-tuples

•  set constraint: X ranges over Cartesian products (of n sets)

•  set-based analysis for programs over lists, stacks and trees
= solving set constraints (Reynolds, Jones, Gallagher, ...)

 = abstract fixpoint iteration (Cousot’92)

Abstraction to Linear Constraint Problem
to solve “Upper Bound on Fixpoint” Constraint

post(X) ⊆ X ∧ {initial states} ⊆ X ∧ X ⊆ {good states}

•  solution for X = set of states
•  set denoted by linear constraint over program variables

with coefficients as parameters
•  “Upper Bound on Fixpoint” Constraint translates to

linear constraint over coefficients

•  Bradley, Colon, Manna, Sipma, Sankaranarayanan, Tiwari,
Rybalchenko, ...

•  does not work well with features of realistic programs, until now
•  does not scale well, until now

Fixpoint Iteration
to solve “Upper Bound on Fixpoint” Constraint

post(X) ⊆ X ∧ {initial states} ⊆ X ∧ X ⊆ {good states}

•  construct solution for X in post(X) ⊆ X ∧ {initial states} ⊆ X

•  generate sequence of constraints init, c1, c2, c3, ..., cn
–  init ⊆ c1 ⊆ c2 ⊆ c3 ⊆ ... ⊆ cn

–  post(cn) ⊆ cn cn is fixpoint

two issues with naive fixpoint iteration:
•  if ci+1 = post(ci) then in general no convergence

•  fixpoint test “post(cn) ⊆ cn” = entailment test : too expensive

Abstraction
in model checking vs. abstract interpretation

•  abstraction to finite-state system (“partitioning”)
works only for finite-state systems

•  finite-state abstraction does not preserve termination
of program with executions of unbounded length

•  instead: abstract the functional in the fixpoint iteration
 => abstract least fixpoint checking

Abstract Fixpoint Iteration

•  “accelerated” sequence of constraints init, c1, c2, c3, ..., cn

–  init ⊆ c1 ⊆ c2 ⊆ c3 ⊆ ... ⊆ cn

–  post(cn) ⊆ cn

•  after each application of post operator, extrapolation “ ➭ ” of result
–  init , post(init) ➭ c1 , post(c1) ➭ c2 , post(c2) ➭ c3 , ...

•  fixpoint test (“post(cn) ⊆ cn”) in new ordering between constraints
e.g.,
–  local entailment: each disjunct entailed by one of disjuncts
–  ordering in free lattice, i.e., ordering between sets of bitvectors

(bitvector presents conjunction of n possibly negated base constraints)

•  formalized in abstract interpretation (Cousot,Cousot’77)

Abstraction
•  widening

–  syntactic criteria to obtain “some” weaker constraint
–  fixpoint test uses entailment ordering between constraints: c ⇒ c’

•  best abstraction in abstract domain
–  abstract domain = given (finite) set of constraints
–  c ➭ conjunction of all c’ in abstract domain that are entailed by c
–  thus, to extrapolate c, we need to go through all c’ in abstract domain

and test entailment c ⇒ c’
–  fixpoint test cheap:

c1 smaller than c2 if every conjunct of c2 occurs in c1
ordering not too restrictive if taken between “best abstractions”

•  constraint solving effort: pay now or pay later!
either in extrapolation or in fixpoint test

State-Predicate Abstraction

•  abstract domain = finite set
–  ... of disjunctions of conjunctions of predicates
–  conjunction of predicates = abstract state
–  predicate = base constraint

•  Cartesian abstraction
–  post(conjunction) = smallest conjunction above disjunction
–  ... = ∧ { predicate | conjunction ⇒ wp(predicate) }
–  avoids exponential explosion
–  uses wp (weakest precondition) instead of post

Termination = Least-Fixpoint Checking

•  transitive closure of transition relation = lfp(o)
–  operator “o” = composition of two relations
–  lattice of sets of pairs of states
–  order “ ⊆” = set inclusion
–  bottom = transition relation

•  termination
 ⇔
 lfp(o) ⊆ finite union of well-founded relations

Termination
⇔

lfp(o) ⊆ finite union of well-founded relations

•  assume: exists infinite computation s1, s2, ...
•  each (si, sj) where i<j belongs to lfp(o)
•  ... hence to one of the relations in finite union
•  one of the relations contains infinitely many pairs
•  even: infinitely many consecutive pairs (Ramsey)

•  contradiction: all relations in union are well-founded

Well-foundedness of Transition Constraints

•  transition constraint (no disjunction!)
 = conjunction of guard and action
 x>0 ∧ x’=x+1
•  simple while loops

 while(x>0){ x := x+1 }

•  decidable/efficient termination check (Tiwari,P., Rybalchenko)
Farkas’ Lemma + linear arithmetic constraint solving

From Trace Semantics to Relational Remantics

•  state of recursive program
= valuation of program variables + stack value

•  trace defined by states with stack
•  no good abstraction for stack as data structure
•  no good abstract fixpoint construction

•  circumvent issue:
switch from trace semantics to relational semantics

•  procedure summary:
relation between entry and exit states (Sharir,Pnueli’81)

•  refined procedure summary:
•  relation between reachable entry and exit states (Reps/Horwitz/Sagiv’95)

Summary = Least Fixpoint
•  transitive closure of transition relation including:

–  call (pass actual to local variables)
–  return (new value of globals, old value of locals)

•  restrict transitive closure relation to domain of reachable entry states

•  summary = lfp(o)
–  operator “o” = composition with transition relation + seeding

add pair of identical entry state when it appears in new pair
(_ , s) ∈ summary, s entry state ⇒ (s, s) ∈ summary

–  lattice of relations

–  ⊥ = identity relation on initial states

•  non-reachability of bad states
 ⇔
 lfp(o) ⊆ {initial states} × {good states}

Verification of Recursive Programs
= Solving Set Constraints

•  fixpoint equation for post = set constraint
–  post operator on sets of stack states
–  stack state = unary tree
–  push = application of function symbol
–  pop = application of projection

•  set constraint solving ≈ computing summaries
–  canonical rewrite systems (Buchi)
–  interprocedural analysis (Knoop, Steffen, Reps, Horwitz, Sagiv)
–  pushdown systems (Bouajjani, Esparza, Maler, ...)
–  cryptographic protocols (Dolev/Yao)
–  empirical evaluation (Kodumal, Aiken)

Conclusion

1. “upper bound for fixpoint” constraint over sets of states

 ⊥ ⊆ X ∧ F(X) ⊆ X ∧ X ⊆ bound

 verification ⇔ least-fixpoint check ⇔ constraint problem

2. constraints over integers etc. denote sets of states
used in abstract fixpoint checking

–  abstraction ⇔ entailment between constraints
–  fixpoint test ⇔ entailment between constraints

