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Literature: 
 This talk will be based on 

 Talking to SMT developers 

 Talking to people working in software model checking 

 Own experience in using SMT solvers 

 

 Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, Albert Rubio: “Challenges in Satisfiability 
Modulo Theories”. RTA 2007: 2-18 



What are they and how do they work? 



SMT Solvers 

 Used as a core engine in many tools in 

 Program analysis 

 Software engineering 

 Program  model checking 

 Hardware verification, … 

 Combine propositional satisfiability search techniques 
with specialized theory solvers 

 Linear arithmetic  

 Bit vectors  

 Uninterpreted functions with equality 

 

 



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3) 

atoms are abstracted  
as Boolean variables p1  (p1   p2   p3) 

A SAT solver returns 

P1 = true, p2 = true 

A theory solver checks 
its satisfiability 

x < 1  x  2 UNSAT 

We create a formula 
corresponding to 
this assignment  



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3) 

x < 1  x  2 UNSAT 

x  1  x < 2 

Its negation is a 
valid formula 

The formula is added to the 
original formula to prevent its 
further derivations 



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3)   ( x  1  x < 2) 

p1  (p1   p2   p3)   (p1   p2) 

p1 = true, p2 = false, 
p3 = true 

x < 1  x < 2  x ≤ 3 SAT 
x = 0 



Combining Different Theories 
 Based on the Nelson-Oppen combination procedures 

 Theories need to be disjoint, i.e. they share only the 
equality symbol 

 Theories need to be stably infinite, i.e. if a formula is 
satisfiable in some model of a theory, then it is also 
satisfiable in a model of infinite cardinality 

 For complexity purposes, it is desirable that a theory is 
convex:   

 S ⊨ x1 = y1  …  xn = yn  then S ⊨ xi = yi  for some I 

 Non-convex theory: linear integer arithmetic 

 1 ≤ x ≤ 2 ⊨  x =1  x =2 



Nelson Oppen Combination 
Procedure 
 Step 1:  

 Purification = converting formula into an equisatisfiable 
formula which is a conjunction of formulas, each 
belonging to a different theory 

 Step 2 (loop): 

 Deduction and propagation = theory solvers deduce 
equalities between shared variables and propagate those 
equalities to other conjuncts. Repeat the process 

 If any theory solver returns UNSAT, return UNSAT 

 Otherwise return SAT 

 



Nelson-Oppen Procedure-Example 

x + 2 = y   f(read(write(a, x, 3), y-2))  f(y – x + 1)  

Linear Integer 
Arithmetic 

Arrays EUF 
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Nelson-Oppen Procedure-Example 

f(read(write(a, x, u1), y-2))  f(y – x + 1)  

Linear Integer 
Arithmetic 

Arrays EUF 

x + 2 = y 
u1 = 3  
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Nelson-Oppen Procedure-Example 

f(read(write(a, x, u1), u2))  f(y – x + 1)  

Linear Integer 
Arithmetic 

Arrays EUF 

x + 2 = y 
u1 = 3  
u2 = y - 2  
 



Nelson-Oppen Procedure-Example 
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Nelson-Oppen Procedure-Example 

f(u3)  f(y – x + 1)  

Linear Integer 
Arithmetic 

Arrays EUF 

x + 2 = y 
u1 = 3  
u2 = y - 2  
 

u3 = read(write(a, x, u1), u2)  
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Nelson-Oppen Procedure-Example 

f(u3)  f(u4)  

Linear Integer 
Arithmetic 

Arrays EUF 

x + 2 = y 
u1 = 3  
u2 = y – 2 
u4 = y – x + 1 
 

u3 = read(write(a, x, u1), u2)  
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u2 = x 
u4 = u1 
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Nelson-Oppen Procedure-Example 
Linear Integer 
Arithmetic 

Arrays EUF 

x + 2 = y 
u1 = 3  
u2 = y – 2 
u4 = y – x + 1 
u2 = x 
u4 = u1 
u3 = u1 
 
 
 

u3 = read(write(a, x, u1), u2)  
u2 = x 
u4 = u1 
u3 = u1 
 

f(u3)  f(u4)  
u2 = x 
u4 = u1 
u3 = u1 
UNSAT 
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Linear Integer Arithmetic EUF 
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Shaz’s Example 
x = y    f(x -y)  f(y – x)  

Linear Integer Arithmetic EUF 

x = y 
u1 = x – y 
u2 = y – x 
u1 = u2 

f(u1)  f(u2) 
u1 = u2 

UNSAT 



Congruence Closure Algorithm 
 Used for checking satisfiability of EUF formulas 

 Given a set of equalities, the congruence closure 
algorithm computes the smallest set of implied 
equlities 

 Usually based an efficient DAG implementation 

 The basic rule for deduction  

 x1 = y1, …, xn = yn  f(x1, …, xn) = f(y1, …, yn) 



… there are no limitations….  



“System Out of Resources” 
 Generated formulas are too large 

 Encoding is often done automatically and it becomes costly to 
solve 

  This also influences the size of the generated proof (in case of 
UNSAT) – computation of minimal infeasible subset 

 Finding a tailor-made encoding for a specific problem can 
drastically decrease the size of the formulas 

 Empirical results show that the splits should be done at the 
leaves of the search 

 One should also consider eager splitting on the literals that 
do not appear in the input formula 

 



Lack of Decision Procedures 
 Research and development of theory solvers are 

guided by the needs of users 

 Some decidable theories do not have efficient theory 
solvers  

 Floating point arithmetic (work in progress, a PhD 
student @NYU) 

 Real algebra (work in progress, a PhD student @RWTH 
Aachen) 

 Is decidability overrated? – some SMT solvers provide 
a limited support for undecidable theories (Z, +, *) 

 



Handling of Quantifiers 
 Some SMT solvers provide a support for quantifiers 

 

 

 Basic idea: 

 Select a number of ground atoms 

 Instantiate the formula with those ground atoms and 
check satisfiability of the new formula 

 

 

 If it is unsatisfiable return UNSAT; otherwise ??? 

x1, x2, x3 : (subtype(x1, x2)  subtype(x2, x3)  subtype(x1, x3)) 

P(f(a))   x. P(x) 
a, f(a) 

P(f(a))  P(a)  P(f(a)) 



Handling of Quantifiers 
 For some fragments there are COMPLETE techniques 

 Essentially uninterpreted fragment [Ge, de Moura, CAV’09]: 

 variables  can appears only as an argument of uninterpreted 
function or predicate symbols  (NO: P(f(g(x+y)) !) 

 Local Theory Extensions [Jacobs, CAV’09] 

 Local theories: monotone functions, injective functions,  
guarded boundness condition 

             x. g(x)  s(x)≤ f(x) ≤ t(x) 

 Using E-matching to instantiate quantifiers [de Moura, 
Bjorner, CADE’o7] 

 

 

 



Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Vx = ground terms for instantiating variable x 
Af = ground terms that will appear as arguments of 
       function f 
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Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Vx = ground terms for instantiating variable x 
Af = ground terms that will appear as arguments of 
       function f 

Constraints on sets Vi and Fj: 
 
a  Af 

Vx = Ag 
f(Vy)  Ag 
Vy = Af  

Solution: 
 
Af = {a} 
Vy = {a} 
Ag = {f(a)} 
Vx = {f(a)} 



Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Instances: 
 
Af = {a} 
Vy = {a} 
Ag = {f(a)} 
Vx = {f(a)} 

f(a) = 0  g(f(a)) ≤ 0  g(f(a)) + 1 ≤ f(a) 

Instantiated 
formula 

SAT 
 
Model:  
f(a) = 0,  g(f(a)) = -1, a = 1 



SAT 
 
Model:  
f(a) = 0,  g(f(a)) = -1, a = 1 

Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

SAT 
 
Model for the original formula: 
{ a 1, f   x. 0, g   x. -1} 



Joint work with Thomas Wies and Viktor Kuncak 



Combining Different Theories 
 Based on the Nelson-Oppen combination procedures 

 Theories need to be disjoint, i.e. they share only the 
equality symbol 

 Theories need to be stably infinite, i.e. if a formula is 
satisfiable in some model of a theory, then it is also 
satisfiable in a model of infinite cardinality 

 For complexity purposes, it is also good if a theory is 
convex:   

 S ⊨ x1 = y1  …  xn = yn  then S ⊨ xi = yi  for some I 

 Non-convex theory: linear integer arithmetic 

 1 ≤ x ≤ 2 ⊨  x =1  x =2 



Amalgamation of Models: 
The Disjoint Case 

model for F model for G 

model for F  G 

model for F  G 

? 

Cardinalities of the  
models coincide 



Generated Verification Condition 

Expressing this VC requires a rich logic 

– transitive closure * (in lists and also in trees) 

– unconstraint functions (data, data0) 

– cardinality operator on sets | ... | 

How do we check satisfiability of such a formula? 

“The number of stored objects has increased by one.” 

next0*(root0,n)  x  {data0(v) | next0*(root0,v)}  

next=next0[n:=root0] data=data0[n:=x]  

  |{data(v) . next*(n,v)}| =  

       |{data0(v) . next0*(root0,v)}| + 1 



Decomposing the Formula 

Consider a (simpler) formula 

|{data(x). next*(root,x)}|=k+1 

Introduce fresh variables denoting sets: 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

1) WS1S 

2) C2 

3) BAPA 

Good news: conjuncts are in decidable fragments 

Bad news: conjuncts share more than just equality 
(they share set variables and set operations) 

 We cannot apply the Nelson-Oppen procedure 



Combining Theories by Reduction 

Satisfiability problem expressed in HOL: 

 (all free symbols existentially quantified) 

 next,data,k,root.  A,B. 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

We assume formulas share only: 

- set variables (sets of uninterpreted elems) 

- set operations and relations 

1) WS1S 

2) C2 

3) BAPA 



Extend decision procedures for fragments into  
projection procedures that reduce each 
conjunct to a decidable shared theory 

Satisfiability problem expressed in HOL, 

 after moving fragment-specific quantifiers 

 A,B.  

 next,root. A = {x. next*(root,x)}   

 data. B = {y.  x. data(x,y)  x  A}   

 k. |B|=k+1 

Combining Theories by Reduction 

FWS1S 

FC2 

FBAPA 

applies  to all non-set variables 



Satisfiability problem expressed in HOL, 

 after moving fragment-specific quantifiers 

 A,B. 

 next,root. A = {x. next*(root,x)}   

 data. B = {y.  x. data(x,y)  x  A}   

 k. |B|=k+1 
 

Check satisfiability of conjunction of projections 

Combining Theories by Reduction 

FWS2S 

FC2 

FBAPA 

   A,B. FWS2S  FC2  FBAPA 

Conjunction of projections satisfiable  so is original formula 



BAPA-Reducibility 

Definition: Logic is BAPA-reducible iff there is an 

algorithm that computes projections of formulas 

onto set variables, and these projections are 

BAPA formulas. 

 

Theorem:  

1) WS2S, 2) C2, 3) BAPA, 4) BSR, 5) qf-multisets 

are all BAPA-reducible. 

 

Thus, their set-sharing combination is decidable. 



Amalgamation of Models: 
The Disjoint Case 

model for F model for G 

model for F  G 

model for F  G 

? 

Cardinalities of the  
models coincide 



Amalgamation of Models:  
The Set-Sharing Case 

model for F model for G 

model for F  G 

Cardinalities of all  
Venn regions over shared 
sets coincide 



BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)* 
 

Formulas are interpreted over finite words 
 

Symbols in alphabet correspond to 

      (A  B),(A  B),(A  B),(A  B) 
 

Model of formula F 
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BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)*  

Model of formula F 

 

A,B denote sets of positions in the word w. 

   ,   ,   ,     denote Venn regions over A,B 
 

Parikh image gives card.s of Venn regions 

Parikh(w) = {     7,     4,     4,     0} 
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BAPA-reduction for WS1S 

Decision procedure for sat. of WS1S:  

- construct finite word automaton A from F 

- check emptiness of L(A) 
 

Parikh 1966: 

Parikh image of a regular language is 

semilinear and effectively computable from 

the finite automaton 

Construct BAPA formula from Parikh image of the reg. lang. 



BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)* 

 

Parikh image of the models of F: 

Parikh(F) = {(q,p,p,0) | q,p  0} 

 

BAPA formula for projection of F onto A,B: 

|A  Bc| = |Ac  B|  |A  B| = 0 

00 10 01 11 



4 

Fragment of Insertion into Tree 

right left 

right left data 

data data 

p 

tmp 

left 

e 
data 

size: 



Reduction of VC for insertAt 

Conjunction of projections unsatisfiable  so is original formula 



Conclusions 
 SMT solvers = tools for efficiently checking 

satisfiability of formulas 

 Although very powerful tools, there are limitations: 
 Lack of decision procedures 

 Handling of quantifiers 

 The requirements for the Nelson-Oppen combination 
are too restrictive 

 Presented a new combination technique for theories 
sharing sets by reduction to a common shared theory: 

 Resulting theory is useful for automated verification 
of complex properties of data structure 
implementations 


