Limitations of SMT Solvers

Piskac

Max-P rmany

Literature:

This talk will be based on

e Talking to SMT developers
e Talking to people working in software model checking
e Own experience in using SMT solvers

e Robert Nieuwenhuis, Albert Oliveras, Enric Rodriguez-
Carbonell, Albert Rubio: “Challenges in Satisfiability
Modulo Theories”. RTA 2007: 2-18

What are they

SMT Solvers

Used as a core engine in many tools in

e Program analysis

e Software engineering

e Program model checking

e Hardware verification, ...
Combine propositional satisfiability search techniques
with specialized theory solvers

e Linear arithmetic

e Bit vectors

e Uninterpreted functions with equality

Lazy approach to SMT

Xx<1 A (X21vx>2vx<3)

atoms are abstracted
as Boolean variables p, N (—p, vV p, VD)
1 1 2 3
A SAT solver returns We create a formula
corresponding to A theory solver checks
this assignment its satisfiability

P, =true, p, = true ‘ X<1 AX 2 ‘ UNSAT

N

Lazy approach to SMT

Xx<1 A (X21vx>2vx<3)

The formula is added to the
original formula to prevent its
further derivations

X1 vX<2

Its negation is a
valid formula

X<l AX=2

‘ UNSAT

/\/

Lazy approach to SMT

X<1 A (x21vx2>22vx<3) A (x21 vx<2)

L pA (=p, v p, v py) A (=p,v—p,)

I

P, truep, Sfalse, | gy | x <SS~ | mmm) | O
p; = true > X=0

_—

Combining Different Theories

Based on the Nelson-Oppen combination procedures

e Theories need to be disjoint, i.e. they share only the
equality symbol
e Theories need to be stably infinite, i.e. if a formula is

satisfiable in some model of a theory, then it is also
satisfiable in a model of infinite cardinality

e For complexity purposes, it is desirable that a theory is
convex:
e SEX,=y,v..vXx,=y, thenS £x,=y, forsome |
» Non-convex theory: linear integer arithmetic

=X =X STV X =D

Nelson Oppen Combination

Procedure
Step 1:

e Purification = converting formula into an equisatisfiable
formula which is a conjunction of formulas, each
belonging to a different theory

Step 2 (loop):

e Deduction and propagation = theory solvers deduce
equalities between shared variables and propagate those
equalities to other conjuncts. Repeat the process

e If any theory solver returns UNSAT, return UNSAT
e Otherwise return SAT

/\/

Nelson-Oppen Procedure-Example

X +2 =y A f(read(write(a, x, 3), y-2)) #f(y - x +1)

Linear Integer Arrays EUF
Arithmetic

/\/

Nelson-Oppen Procedure-Example

x +2 =y A f(read(write(a, x, 3), y-2)) #f(y -x +1)

Linear Integer Arrays EUF
Arithmetic

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3),y-2)) #fly - x +1)

Linear Integer Arrays EUF
Arithmetic

X+2=Yy

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3),y-2)) #fly - x +1)

Linear Integer Arrays EUF
Arithmetic

X+2=Yy

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, u,), y-2)) #fly - x +1)

Linear Integer Arrays EUF
Arithmetic

X+2=Yy
U,=3

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, u,), y-2)) = fly - x +1)

Linear Integer Arrays EUF
Arithmetic

X+2=Yy
U,=3

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, u,), u,)) = fly-x +1)

Linear Integer Arrays EUF
Arithmetic

/\/

Nelson-Oppen Procedure-Example

f(read(write(a, x, u,), u,)) = fly-x +1)

Linear Integer Arrays EUF
Arithmetic

/\/

Nelson-Oppen Procedure-Example

f(u,) = fly -x+1)

Linear Integer | Arrays EUF
Arithmetic

+2=Y u, = read(write(a, x, u,), u,)

/\/

Nelson-Oppen Procedure-Example

f(u,) =y -x+1)

Linear Integer | Arrays EUF
Arithmetic

+2=Y u, = read(write(a, x, u,), u,)

/\/

Nelson-Oppen Procedure-Example

f(u,) = f(u,)

Linear Integer | Arrays EUF
Arithmetic

+2=Y u, = read(write(a, x, u,), u,)

/\/

Nelson-Oppen Procedure-Example

f(u,) = f(u,)

Linear Integer | Arrays EUF
Arithmetic

+2=Y u, = read(write(a, x, u,), u,)

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

+2=Yy u, = read(write(a, x, u,), u,) f(u,) # f(u,)

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

X+2=Y u, = read(write(a, x, u,), u,) f(u,) = f(u,)
u,=3

u,=y-2

U, =y-Xx+1

u, =X

u, =u,

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

X+2=y u, = read(write(a, x, u,), u,) f(u,) # f(u,)
u =3 u, =X u, =X
u=y-2 u, =u, u, =u,

U, =y-X+1

u, =X

u, =u,

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

X+2=y u, = read(write(a, x, u,), u,) f(u,) # f(u,)
u =3 u, =X u, =X
u=y-2 u, =u, u, =u,

U, =y-X+1 u, =u,

u, =X

u, =u,

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

X+2=Y u, = read(write(a, x, u,), u,) f(u,) = f(u,)
u =3 u, =X u, =X
u,=y-2 u, =u, u, =4,
u,=y-X+1 u =1, u, =,

u, =X

u, =u,

u =1,

Nelson-Oppen Procedure-Example

Linear Integer | Arrays EUF
Arithmetic

X+2=Y u, = read(write(a, x, u,), u,) f(u,) = f(u,)
u =3 u, =X u, =X
u,=y-2 u, =u, u, =4,
u,=y-X+1 u =1, u, =,

W, = X UNSAT

u, =u,

u =1,

/\/

Shaz’s Example

x=y A fix-y) = f(y -)

Linear Integer Arithmetic EUF

| Shaz’s Example

x=y A fix-y) = f(y -)

Linear Integer Arithmetic EUF

y f(u,) # f(u,)

X
u=x-Yy
u,=y-X

1
2

| Shaz’s Example

x=y A fix-y) = f(y -)

Linear Integer Arithmetic EUF

y f(u,) # f(u,)

2=
y - X
u

2

£ oo X

1
2
1

| Shaz’s Example

x=y A fix-y) = f(y -)

Linear Integer Arithmetic EUF

y f(u,) # f(u,)

X-Yy u =4,
Y—X
u

2

£ oo X

1
2
1

| Shaz’s Example

x=y A fix-y) = f(y -)

Linear Integer Arithmetic EUF

X=Yy f(u,) = f(u,)
u=X-y u =1u,
L=y=X UNSAT
u=u

2

e

Congruence Closure Algorithm

Used for checking satistiability of EUF formulas

Given a set of equalities, the congruence closure
algorithm computes the smallest set of implied
equlities

Usually based an efficient DAG implementation
The basic rule for deduction

ex vy -v —fix xJ-fy v)

Limitations of SMT
Solvers

... there are no li

“System Out of Resources”

Generated formulas are too large

e Encoding is often done automatically and it becomes costly to
solve

e This also influences the size of the generated proof (in case of
UNSAT) - computation of minimal infeasible subset

Finding a tailor-made encoding for a specific problem can
drastically decrease the size of the formulas

Empirical results show that the splits should be done at the
leaves of the search

One should also consider eager splitting on the literals that
do not appear in the input formula

/ 7

Lack of Decision Procedures

Research and development of theory solvers are
guided by the needs of users

Some decidable theories do not have efficient theory
solvers

e Floating point arithmetic (work in progress, a PhD
student @NYU)

 Real algebra (work in progress, a PhD student @ RWTH
Aachen)

[s decidability overrated? — some SMT solvers provide
a limited support for undecidable theories (Z, +, *)

/ '

Handling of Quantifiers

Some SMT solvers provide a support for quantifiers

1 2

VX, X,, X, : (subtype(x,, x,) A subtype(x,, x,) — subtype(x, x,))

Basic idea:
e Select a number of ground atoms

e Instantiate the formula with those ground atoms and
check satisfiability of the new formula

a, f(a)

—P(f(a)) A Vx.P(x) —P(f(a)) A P(a) A P(f(a))

e If it is unsatisfiable return UNSAT; otherwise ???

/ 7

Handling of Quantifiers

For some fragments there are COMPLETE techniques
 Essentially uninterpreted fragment [Ge, de Moura, CAV’09]:

- variables can appears only as an argument of uninterpreted
function or predicate symbols (NO: P(f(g(x+y)) !)

* Local Theory Extensions [Jacobs, CAV’09]
» Local theories: monotone functions, injective functions,
guarded boundness condition
Vx. g(x) — s(x)= f(x) < t(x)

e Using E-matching to instantiate quantifiers [de Moura,
Bjorner, CADE07]

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Vy. g(x)<0g(fly) +1=<fly)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of
function f

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla)=0AVx. ¥y. g(x) <0 Ag(fly) +1=<f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of
function f

Constraints on sets V; and F;:

ae Ay

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of
function f

Constraints on sets V; and F;:

ae Ay
V,=A,

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=<f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of

function f

Constraints on sets V; and F;:

ae Ay
V,=A,
f(V,) c A,

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=<f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of
function f

Constraints on sets V; and F;:

ae Ay
Vy=A,
f(V,) c A,
VY - Af

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of
function f

Constraints on sets V; and F;: Solution:

d € Af Af= {a}
Vi,
f(V,) c A,
VY — Af

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of

function f
Constraints on sets V; and F;: Solution:
d € Af Af‘= {a}
Vi =A, V, ={a}
f(V,) c A,
VY — Af

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of

function f
Constraints on sets V; and F;: Solution:
d € Af Af= {a}
Vi =A, V, ={a}
f(V,) C A, A= {f@)
VY — Af

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=f(y)

V, = ground terms for instantiating variable x
A, = ground terms that will appear as arguments of

function f
Constraints on sets V; and F;: Solution:
d € Af Af= {a}
V= A, V, ={a}
f(V,) C A, A= {f@)
Mii= Vo

- Quantifiers in Essentially

Uninterpreted fragment - Example

fla) =0 AVx. Wy. g(x) <0 Ag(fly) +1=<f(y)

Instances: l instanltiated

g fla) = 0 A g(fla)) = 0 g(f(@)) +15 fla)
A, = (@)}]

V,=1{f(@)}

SAT

Model:
fla) = o, g(f(a)) =-1,a=1

- Quantifiers in Essentially

Uninterpreted fragment - Example

SAT fla) =0 nvx. Vy. g(x) <0 Ag(fly) +1=fly)

Model:
fla) = o, g(f(a)) =-1,a=1

SAT

Model for the original formula:
la>1,f> Ax. 0,2 > Ax. -1}

On Combining
Non-disjoint Theories

/\/

Combining Different Theories

e Theories need to be disjoint, i.e. they share only the
equality symbol

W‘g@
~——The Disjoint Case

' [

model for F N model for G
? ’

model for F A G

Cardinalities of the

models coincide
model for F A G

/’
Senerated Verification Condition

—next0*(root0,n) A X ¢ {dataO(v) | nextO*(rootO,v)} A
next=nextO[n:=root0] A data=dataO[n:=x] =
|{data(v) . next*(n,v)}| =
|{data0(v) . nextO*(rootO,v)}| + 1

“The number of stored objects has increased by one.”

Expressing this VC requires a rich logic
— transitive closure * (in lists and also in trees)
— unconstraint functions (data, datao)
— cardinality operator on sets | ... |

How do we check satistfiability of such a formula?

/
~ Decomposing the Formula

Consider a (simpler) formula
[{data(x). next*(root,x)}|=k+1
Introduce fresh variables denoting sets:

A = {X. next*(root,x)} A 1) WS1S
B={y.dXx data(x,y)AXxe A}A 2cC
|B|:k+1 3) BAPA

Good news: conjuncts are in decidable fragments

Bad news: conjuncts share more than just equality
(they share set variables and set operations)

— We cannot apply the Nelson-Oppen procedure

Combining Theories by Reduc%ion// -

Satisfiability problem expressed in HOL.:
all free symbols existentially quantified)

ext,data,k.,root. 3 A,B.
A = {X. next*(root,x)} A 1) WS1S
B={y 3x. data(x,y) Axe A}A 2cC

IB|=k+1 3) BAPA

We assume formulas share only:
- set variables (sets of uninterpreted elems)
- set operations and relations

Combining Theories by Redueti%

Satisfiability problem expressed in HOL,
after moving fragment-specific quantifiers

1 A,B. E
1 next,root. A = {X. next*(root,x)} A
1 data. B = {y. 3 x. data(xy)/\xeA}/\
d K. [B]=k+1 Fiapa FCZ

Extend decision procedures for fragments into

projection procedures|that reduce each

onjunct to a decidable shared theory

/

applies 3 to all non-set variables

Combining Theories by Redueti{/ *

Satisfiability problem expressed in HOL,
after moving fragment-specific quantifiers

1 A,B.

3 next,root. A = {X. next*(root,x)}

N\

FWSzS

1 data. B = {y. 3 x. data(x,y) A X eA}

\

1 k. |B|=k+1

FBAPA

FCz

Check satisfiability of conjunction of projections

3 A,B. Fyys,s A Fe, A Fpapa

Conjunction of projections satisfiable = so is original formula

//

/

~ BAPA-Reducibility

Definition: Logic is BAPA-reducible iff there is an
algorithm that computes projections of formulas
onto set variables, and these projections are
BAPA formulas.

Theorem:
1) WS2S, 2) C?, 3) BAPA, 4) BSR, 5) gf-multisets
are all BAPA-reducible.

Thus, their set-sharing combination is decidable.

W‘g@
~——The Disjoint Case

' [

model for F N model for G
? ’

model for F A G

Cardinalities of the

models coincide
model for F A G

, e Set-Sharing Case

felale

—

model for F

Cardinalities of all

Venn regions over shared

sets coincide

| — model for G

model for F A G

/
— BAPA-reduction for WS1S

WS1S formula for a regular language

Formulas are interpreted over finite words

Symbols in alphabet correspond to

(—A A _'B)’(Alﬁ\ —|B),(—|A£ B),(A A B)

Model of formula F

A 1 1 1 1 000O0O0OO
B o (o) o (o) 0 000O0OO

/
— BAPA-reduction for WS1S

WS1S formula for a regular language
F=((AAr=B)(B A =A))* (=B A =A)*
Model of formula F
s BEERNGC:2:0: tw
A,B denote sets of positions in the word w.
oo, o', @, » denote Venn regions over A,B

Parikh image gives card.s of Venn regions
Pal’lkh(W) — { oo —> 7, 10 > 4, o0 > 4’ o N O}

//

BAPA-reduction for WS1S

Decision procedure for sat. of WS1S:
- construct finite word automaton A from F

- check emptiness of L(A)

Parikh 1966:

Parikh image of a regular language Is
semilinear and effectively computable from

the finite automaton

Construct BAPA formula from Parikh image of the reg. lang.

“BAPA-reduction for WS1S

WS1S formula for a regular language
F = ((A /_IB)(B VAN _IA))* (_IB /\ _IA)*

Parikh image of the models of F:
Parikh(F) = {(9,p,p,0) | g,p = 0}

BAPA formula for projection of F onto A,B:
IANBCY|=|A°*"B|A|JANB|=0

class Node {Node left,right; Object data; |
class Tree |
private static Node root;
private static int size; /+:
private static specvar nodes . objset; ‘

vardefs "nodes=={x. (root,x) € {(x,y). left x =y Vrightx=y}" }";
private static specvar content :: objset;
vardefs "content=={x. I n. n # null A n € nodes A datan=x} " %/

private void insertAt(Node p, Object e) /+:
requires "tree [left, right] A nodes C Object.alloc / size = card content A

e ¢ content A\ e # null A p € nodes A p # null A left p = null”
modifies nodes,content, left, right , data, size

ensures "size = card content” %/ right size: 4
{ Node tmp = new Node();
tmp.data = e; P right] data
p. left =tmp; left
size = size + 1;
j data

“Reduction of VC for insertAt

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}

WS2S FRAGMENT:
tree[left , right] Aleft p = null A p € nodes A left tmp = null A right tmp = null A
nodes={x. (root,x) € {(xy). left x = y|right x =y} «} A
nodesi={x. (root,x) € {(x.y). (left (p:=tmp)) x =y) | right x =y}

CONSEQUENCE:|nodes1=nodes U {tmp}

C2 FRAGMENT:
data tmp = null A (¥ y. datay # tmp) A tmp ¢ alloc A nodes C alloc A
content={x. 3 n.n ## null A n € nodes A datan = x} A
contenti={x. 3 n.n # null A n € nodesi A (data(tmp:=e)) n = x}
CONSEQUENCE:|nodes1 # nodes U {tmp} V content1 = content U {e}

BAPA FRAGMENT: e € content A card content1 # card content + 1
CONSEQUENCE:|e ¢ content A card content1 # card content + 1

Conjunction of projections unsatisfiable = so is original formula

Conclusions

SMT solvers = tools for efficiently checking
satisfiability of formulas
Although very powertul tools, there are limitations:
e Lack of decision procedures
e Handling of quantifiers

e The requirements for the Nelson-Oppen combination
are too restrictive

Presented a new combination technique for theories
sharing sets by reduction to a common shared theory:

e Resulting theory is useful for automated verification
of complex properties of data structure
implementations

