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Literature: 
 This talk will be based on 

 Talking to SMT developers 

 Talking to people working in software model checking 

 Own experience in using SMT solvers 

 

 Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, Albert Rubio: “Challenges in Satisfiability 
Modulo Theories”. RTA 2007: 2-18 



What are they and how do they work? 



SMT Solvers 

 Used as a core engine in many tools in 

 Program analysis 

 Software engineering 

 Program  model checking 

 Hardware verification, … 

 Combine propositional satisfiability search techniques 
with specialized theory solvers 

 Linear arithmetic  

 Bit vectors  

 Uninterpreted functions with equality 

 

 



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3) 

atoms are abstracted  
as Boolean variables p1  (p1   p2   p3) 

A SAT solver returns 

P1 = true, p2 = true 

A theory solver checks 
its satisfiability 

x < 1  x  2 UNSAT 

We create a formula 
corresponding to 
this assignment  



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3) 

x < 1  x  2 UNSAT 

x  1  x < 2 

Its negation is a 
valid formula 

The formula is added to the 
original formula to prevent its 
further derivations 



Lazy approach to SMT 

x < 1   (x  1  x  2  x ≤ 3)   ( x  1  x < 2) 

p1  (p1   p2   p3)   (p1   p2) 

p1 = true, p2 = false, 
p3 = true 

x < 1  x < 2  x ≤ 3 SAT 
x = 0 



Combining Different Theories 
 Based on the Nelson-Oppen combination procedures 

 Theories need to be disjoint, i.e. they share only the 
equality symbol 

 Theories need to be stably infinite, i.e. if a formula is 
satisfiable in some model of a theory, then it is also 
satisfiable in a model of infinite cardinality 

 For complexity purposes, it is desirable that a theory is 
convex:   

 S ⊨ x1 = y1  …  xn = yn  then S ⊨ xi = yi  for some I 

 Non-convex theory: linear integer arithmetic 

 1 ≤ x ≤ 2 ⊨  x =1  x =2 



Nelson Oppen Combination 
Procedure 
 Step 1:  

 Purification = converting formula into an equisatisfiable 
formula which is a conjunction of formulas, each 
belonging to a different theory 

 Step 2 (loop): 

 Deduction and propagation = theory solvers deduce 
equalities between shared variables and propagate those 
equalities to other conjuncts. Repeat the process 

 If any theory solver returns UNSAT, return UNSAT 

 Otherwise return SAT 

 



Nelson-Oppen Procedure-Example 

x + 2 = y   f(read(write(a, x, 3), y-2))  f(y – x + 1)  

Linear Integer 
Arithmetic 

Arrays EUF 
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Nelson-Oppen Procedure-Example 
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Nelson-Oppen Procedure-Example 
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Shaz’s Example 
x = y    f(x -y)  f(y – x)  

Linear Integer Arithmetic EUF 

x = y 
u1 = x – y 
u2 = y – x 
u1 = u2 

f(u1)  f(u2) 
u1 = u2 

UNSAT 



Congruence Closure Algorithm 
 Used for checking satisfiability of EUF formulas 

 Given a set of equalities, the congruence closure 
algorithm computes the smallest set of implied 
equlities 

 Usually based an efficient DAG implementation 

 The basic rule for deduction  

 x1 = y1, …, xn = yn  f(x1, …, xn) = f(y1, …, yn) 



… there are no limitations….  



“System Out of Resources” 
 Generated formulas are too large 

 Encoding is often done automatically and it becomes costly to 
solve 

  This also influences the size of the generated proof (in case of 
UNSAT) – computation of minimal infeasible subset 

 Finding a tailor-made encoding for a specific problem can 
drastically decrease the size of the formulas 

 Empirical results show that the splits should be done at the 
leaves of the search 

 One should also consider eager splitting on the literals that 
do not appear in the input formula 

 



Lack of Decision Procedures 
 Research and development of theory solvers are 

guided by the needs of users 

 Some decidable theories do not have efficient theory 
solvers  

 Floating point arithmetic (work in progress, a PhD 
student @NYU) 

 Real algebra (work in progress, a PhD student @RWTH 
Aachen) 

 Is decidability overrated? – some SMT solvers provide 
a limited support for undecidable theories (Z, +, *) 

 



Handling of Quantifiers 
 Some SMT solvers provide a support for quantifiers 

 

 

 Basic idea: 

 Select a number of ground atoms 

 Instantiate the formula with those ground atoms and 
check satisfiability of the new formula 

 

 

 If it is unsatisfiable return UNSAT; otherwise ??? 

x1, x2, x3 : (subtype(x1, x2)  subtype(x2, x3)  subtype(x1, x3)) 

P(f(a))   x. P(x) 
a, f(a) 

P(f(a))  P(a)  P(f(a)) 



Handling of Quantifiers 
 For some fragments there are COMPLETE techniques 

 Essentially uninterpreted fragment [Ge, de Moura, CAV’09]: 

 variables  can appears only as an argument of uninterpreted 
function or predicate symbols  (NO: P(f(g(x+y)) !) 

 Local Theory Extensions [Jacobs, CAV’09] 

 Local theories: monotone functions, injective functions,  
guarded boundness condition 

             x. g(x)  s(x)≤ f(x) ≤ t(x) 

 Using E-matching to instantiate quantifiers [de Moura, 
Bjorner, CADE’o7] 

 

 

 



Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Vx = ground terms for instantiating variable x 
Af = ground terms that will appear as arguments of 
       function f 
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Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Vx = ground terms for instantiating variable x 
Af = ground terms that will appear as arguments of 
       function f 

Constraints on sets Vi and Fj: 
 
a  Af 

Vx = Ag 
f(Vy)  Ag 
Vy = Af  

Solution: 
 
Af = {a} 
Vy = {a} 
Ag = {f(a)} 
Vx = {f(a)} 



Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

Instances: 
 
Af = {a} 
Vy = {a} 
Ag = {f(a)} 
Vx = {f(a)} 

f(a) = 0  g(f(a)) ≤ 0  g(f(a)) + 1 ≤ f(a) 

Instantiated 
formula 

SAT 
 
Model:  
f(a) = 0,  g(f(a)) = -1, a = 1 



SAT 
 
Model:  
f(a) = 0,  g(f(a)) = -1, a = 1 

Quantifiers in Essentially 
Uninterpreted fragment - Example 

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y) 

SAT 
 
Model for the original formula: 
{ a 1, f   x. 0, g   x. -1} 



Joint work with Thomas Wies and Viktor Kuncak 



Combining Different Theories 
 Based on the Nelson-Oppen combination procedures 

 Theories need to be disjoint, i.e. they share only the 
equality symbol 

 Theories need to be stably infinite, i.e. if a formula is 
satisfiable in some model of a theory, then it is also 
satisfiable in a model of infinite cardinality 

 For complexity purposes, it is also good if a theory is 
convex:   

 S ⊨ x1 = y1  …  xn = yn  then S ⊨ xi = yi  for some I 

 Non-convex theory: linear integer arithmetic 

 1 ≤ x ≤ 2 ⊨  x =1  x =2 



Amalgamation of Models: 
The Disjoint Case 

model for F model for G 

model for F  G 

model for F  G 

? 

Cardinalities of the  
models coincide 



Generated Verification Condition 

Expressing this VC requires a rich logic 

– transitive closure * (in lists and also in trees) 

– unconstraint functions (data, data0) 

– cardinality operator on sets | ... | 

How do we check satisfiability of such a formula? 

“The number of stored objects has increased by one.” 

next0*(root0,n)  x  {data0(v) | next0*(root0,v)}  

next=next0[n:=root0] data=data0[n:=x]  

  |{data(v) . next*(n,v)}| =  

       |{data0(v) . next0*(root0,v)}| + 1 



Decomposing the Formula 

Consider a (simpler) formula 

|{data(x). next*(root,x)}|=k+1 

Introduce fresh variables denoting sets: 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

1) WS1S 

2) C2 

3) BAPA 

Good news: conjuncts are in decidable fragments 

Bad news: conjuncts share more than just equality 
(they share set variables and set operations) 

 We cannot apply the Nelson-Oppen procedure 



Combining Theories by Reduction 

Satisfiability problem expressed in HOL: 

 (all free symbols existentially quantified) 

 next,data,k,root.  A,B. 

A = {x. next*(root,x)}   

B = {y.  x. data(x,y)  x  A}   

|B|=k+1 

We assume formulas share only: 

- set variables (sets of uninterpreted elems) 

- set operations and relations 

1) WS1S 

2) C2 

3) BAPA 



Extend decision procedures for fragments into  
projection procedures that reduce each 
conjunct to a decidable shared theory 

Satisfiability problem expressed in HOL, 

 after moving fragment-specific quantifiers 

 A,B.  

 next,root. A = {x. next*(root,x)}   

 data. B = {y.  x. data(x,y)  x  A}   

 k. |B|=k+1 

Combining Theories by Reduction 

FWS1S 

FC2 

FBAPA 

applies  to all non-set variables 



Satisfiability problem expressed in HOL, 

 after moving fragment-specific quantifiers 

 A,B. 

 next,root. A = {x. next*(root,x)}   

 data. B = {y.  x. data(x,y)  x  A}   

 k. |B|=k+1 
 

Check satisfiability of conjunction of projections 

Combining Theories by Reduction 

FWS2S 

FC2 

FBAPA 

   A,B. FWS2S  FC2  FBAPA 

Conjunction of projections satisfiable  so is original formula 



BAPA-Reducibility 

Definition: Logic is BAPA-reducible iff there is an 

algorithm that computes projections of formulas 

onto set variables, and these projections are 

BAPA formulas. 

 

Theorem:  

1) WS2S, 2) C2, 3) BAPA, 4) BSR, 5) qf-multisets 

are all BAPA-reducible. 

 

Thus, their set-sharing combination is decidable. 



Amalgamation of Models: 
The Disjoint Case 

model for F model for G 

model for F  G 

model for F  G 

? 

Cardinalities of the  
models coincide 



Amalgamation of Models:  
The Set-Sharing Case 

model for F model for G 

model for F  G 

Cardinalities of all  
Venn regions over shared 
sets coincide 



BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)* 
 

Formulas are interpreted over finite words 
 

Symbols in alphabet correspond to 

      (A  B),(A  B),(A  B),(A  B) 
 

Model of formula F 
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BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)*  

Model of formula F 

 

A,B denote sets of positions in the word w. 

   ,   ,   ,     denote Venn regions over A,B 
 

Parikh image gives card.s of Venn regions 

Parikh(w) = {     7,     4,     4,     0} 

00 10 01 11 
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0 

0 
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0 
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0 
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0 
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0 
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0 
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A 
B 

} w 

00 10 01 11 



BAPA-reduction for WS1S 

Decision procedure for sat. of WS1S:  

- construct finite word automaton A from F 

- check emptiness of L(A) 
 

Parikh 1966: 

Parikh image of a regular language is 

semilinear and effectively computable from 

the finite automaton 

Construct BAPA formula from Parikh image of the reg. lang. 



BAPA-reduction for WS1S 

WS1S formula for a regular language 

     F = ((A B)(B  A))* (B  A)* 

 

Parikh image of the models of F: 

Parikh(F) = {(q,p,p,0) | q,p  0} 

 

BAPA formula for projection of F onto A,B: 

|A  Bc| = |Ac  B|  |A  B| = 0 

00 10 01 11 



4 

Fragment of Insertion into Tree 

right left 

right left data 

data data 

p 

tmp 

left 

e 
data 

size: 



Reduction of VC for insertAt 

Conjunction of projections unsatisfiable  so is original formula 



Conclusions 
 SMT solvers = tools for efficiently checking 

satisfiability of formulas 

 Although very powerful tools, there are limitations: 
 Lack of decision procedures 

 Handling of quantifiers 

 The requirements for the Nelson-Oppen combination 
are too restrictive 

 Presented a new combination technique for theories 
sharing sets by reduction to a common shared theory: 

 Resulting theory is useful for automated verification 
of complex properties of data structure 
implementations 


