Limitations of SMT Solvers

Ruzica Piskac Max-Planck Institute for Software Systems, Germany

Literature:

- This talk will be based on
 - Talking to SMT developers
 - Talking to people working in software model checking
 - Own experience in using SMT solvers
 - Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, Albert Rubio: "*Challenges in Satisfiability Modulo Theories*". RTA 2007: 2-18

SMT Solvers

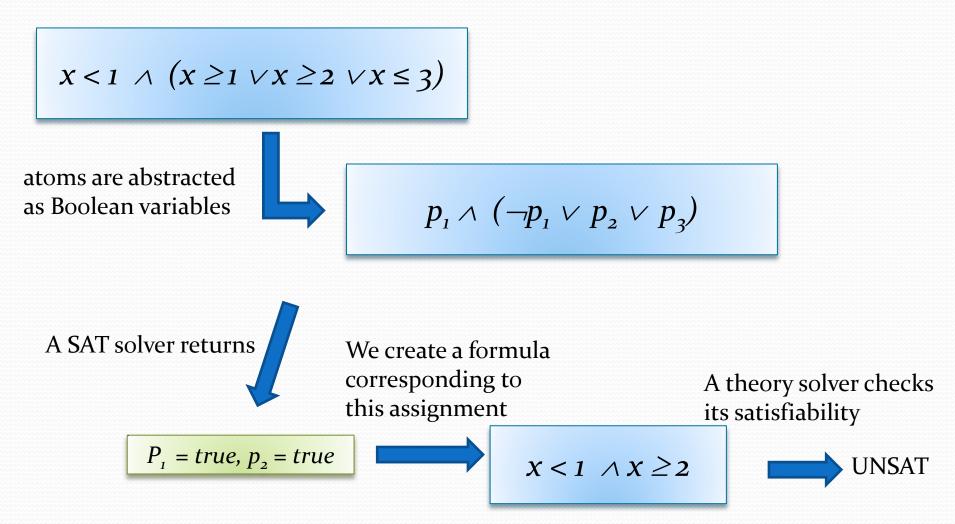
What are they and how do they work?

SMT Solvers

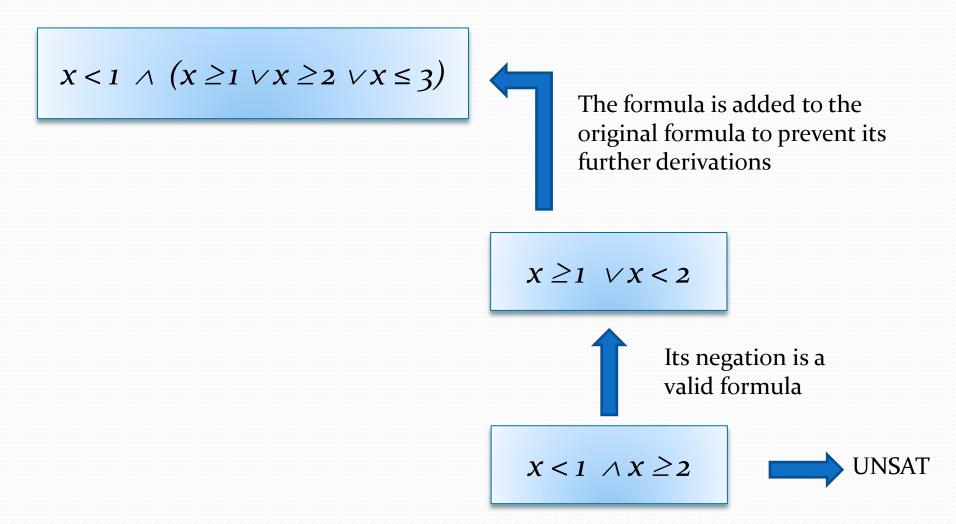
• Used as a core engine in many tools in

- Program analysis
- Software engineering
- Program model checking
- Hardware verification, ...
- Combine propositional satisfiability search techniques with specialized theory solvers
 - Linear arithmetic
 - Bit vectors
 - Uninterpreted functions with equality

Lazy approach to SMT

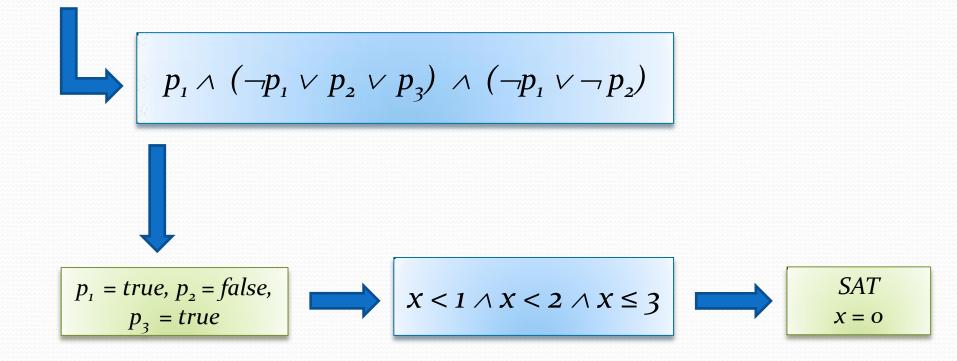


Lazy approach to SMT



Lazy approach to SMT

$$x < 1 \land (x \ge 1 \lor x \ge 2 \lor x \le 3) \land (x \ge 1 \lor x < 2)$$



Combining Different Theories

- Based on the Nelson-Oppen combination procedures
 - Theories need to be disjoint, i.e. they share only the equality symbol
 - Theories need to be stably infinite, i.e. if a formula is satisfiable in some model of a theory, then it is also satisfiable in a model of infinite cardinality
 - For complexity purposes, it is desirable that a theory is convex:
 - $S \models x_i = y_i \lor ... \lor x_n = y_n$ then $S \models x_i = y_i$ for some I
 - Non-convex theory: linear integer arithmetic
 - $1 \le X \le 2 \models X = 1 \lor X = 2$

Nelson Oppen Combination

Procedure

- Step 1:
 - Purification = converting formula into an equisatisfiable formula which is a conjunction of formulas, each belonging to a different theory
- Step 2 (loop):
 - Deduction and propagation = theory solvers deduce equalities between shared variables and propagate those equalities to other conjuncts. Repeat the process
 - If any theory solver returns UNSAT, return UNSAT
 - Otherwise return SAT

 $x + 2 = y \land f(read(write(a, x, 3), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF

 $x + 2 = y \land f(read(write(a, x, 3), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF

 $f(read(write(a, x, 3), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y		

 $f(read(write(a, x, 3), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y		

 $f(read(write(a, x, u_1), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y $u_1 = 3$		

 $f(read(write(a, x, u_1), y-2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y $u_1 = 3$		

 $f(read(write(a, x, u_1), u_2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y		
u ₁ = 3		
$u_2 = y - 2$		

 $f(read(write(a, x, u_1), u_2)) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y		
u ₁ = 3		
u ₂ = y - 2		

$$f(u_3) \neq f(y - x + 1)$$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	
u ₁ = 3		
u ₂ = y - 2		

 $f(u_3) \neq f(y - x + 1)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	
u ₁ = 3	,	
u ₂ = y - 2		

 $f(u_3) \neq f(u_4)$

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	
u ₁ = 3		
u ₂ = y - 2		
$u_4 = y - x + 1$		

 $f(u_3) \neq f(u_4)$

	ear Integer hmetic	Arrays	EUF
X + 2	2 = y	$u_3 = read(write(a, x, u_1), u_2)$	
u ₁ =	3	<i>,</i>	
u ₂ =	y – 2		
u ₄ =	y – x + 1		

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3		- ·
$u_2 = y - 2$		
$u_4 = y - x + 1$		

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3		- ·
u ₂ = y - 2		
$u_4 = y - x + 1$		
$u_2 = x$		
$u_{4} = u_{1}$		

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3	$u_2 = x$	$u_2 = x$
u ₂ = y - 2	$u_4 = u_1$	$u_4 = u_1$
$u_4 = y - x + 1$		
u ₂ = x		
$u_{4} = u_{1}$		

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3	$u_2 = x$	$u_2 = x$
u ₂ = y - 2	$u_4 = u_1$	$u_4 = u_1$
$u_4 = y - x + 1$	$u_3 = u_1$	
$u_2 = x$		
$u_{4} = u_{1}$		

Linear Integer Arithmetic	Arrays	EUF
$\mathbf{X} + 2 = \mathbf{y}$	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3	$u_2 = x$	$u_2 = x$
u ₂ = y - 2	$u_4 = u_1$	$u_4 = u_1$
$u_4 = y - x + 1$	$u_{3} = u_{1}$	$u_3 = u_1$
$u_2 = x$		
$u_{4} = u_{1}$		
$u_{3} = u_{1}$		

Linear Integer Arithmetic	Arrays	EUF
x + 2 = y	$u_3 = read(write(a, x, u_1), u_2)$	$f(u_3) \neq f(u_4)$
u ₁ = 3	$u_2 = x$	$u_2 = x$
u ₂ = y - 2	$u_{4} = u_{1}$	$u_{4} = u_{1}$
$u_4 = y - x + 1$	$u_3 = u_1$	$u_3 = u_1$
$u_2 = x$		UNSAT
$u_{4} = u_{1}$		
$u_{3} = u_{1}$		

$$\mathbf{x} = \mathbf{y} \land \mathbf{f}(\mathbf{x} - \mathbf{y}) \neq \mathbf{f}(\mathbf{y} - \mathbf{x})$$

Linear Integer Arithmetic	EUF

$$\mathbf{x} = \mathbf{y} \land \mathbf{f}(\mathbf{x} - \mathbf{y}) \neq \mathbf{f}(\mathbf{y} - \mathbf{x})$$

Linear Integer Arithmetic	EUF
x = y $u_1 = x - y$ $u_2 = y - x$	$f(u_1) \neq f(u_2)$

$$\mathbf{x} = \mathbf{y} \land \mathbf{f}(\mathbf{x} - \mathbf{y}) \neq \mathbf{f}(\mathbf{y} - \mathbf{x})$$

Linear Integer Arithmetic	EUF
x = y $u_1 = x - y$ $u_2 = y - x$ $u_1 = u_2$	$f(u_1) \neq f(u_2)$

$$\mathbf{x} = \mathbf{y} \land \mathbf{f}(\mathbf{x} - \mathbf{y}) \neq \mathbf{f}(\mathbf{y} - \mathbf{x})$$

Linear Integer Arithmetic	EUF
x = y $u_1 = x - y$ $u_2 = y - x$ $u_1 = u_2$	$f(u_1) \neq f(u_2)$ $u_1 = u_2$

$$\mathbf{x} = \mathbf{y} \land \mathbf{f}(\mathbf{x} - \mathbf{y}) \neq \mathbf{f}(\mathbf{y} - \mathbf{x})$$

Linear Integer Arithmetic	EUF
x = y $u_1 = x - y$ $u_2 = y - x$ $u_1 = u_2$	$f(u_1) \neq f(u_2)$ $u_1 = u_2$ UNSAT

Congruence Closure Algorithm

- Used for checking satisfiability of EUF formulas
- Given a set of equalities, the congruence closure algorithm computes the smallest set of implied equlities
- Usually based an efficient DAG implementation
- The basic rule for deduction

•
$$x_1 = y_1, ..., x_n = y_n \Longrightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)$$

Limitations of SMT Solvers

... there are no limitations.... 🙂

"System Out of Resources"

- Generated formulas are too large
 - Encoding is often done automatically and it becomes costly to solve
 - This also influences the size of the generated proof (in case of UNSAT) computation of minimal infeasible subset
- Finding a tailor-made encoding for a specific problem can drastically decrease the size of the formulas
- Empirical results show that the splits should be done at the leaves of the search
- One should also consider eager splitting on the literals that do not appear in the input formula

Lack of Decision Procedures

- Research and development of theory solvers are guided by the needs of users
- Some decidable theories do not have efficient theory solvers
 - Floating point arithmetic (work in progress, a PhD student @NYU)
 - Real algebra (work in progress, a PhD student @RWTH Aachen)
- Is decidability overrated? some SMT solvers provide a limited support for undecidable theories (Z, +, *)

Handling of Quantifiers

Some SMT solvers provide a support for quantifiers

 $\forall x_1, x_2, x_3: (subtype(x_1, x_2) \land subtype(x_2, x_3) \rightarrow subtype(x_1, x_3))$

- Basic idea:
 - Select a number of ground atoms
 - Instantiate the formula with those ground atoms and check satisfiability of the new formula

$$\neg P(f(a)) \land \forall x. P(x)$$

 $\neg P(f(a)) \land P(a) \land P(f(a))$

• If it is unsatisfiable return UNSAT; otherwise ???

Handling of Quantifiers

- For some fragments there are COMPLETE techniques
 - Essentially uninterpreted fragment [Ge, de Moura, CAV'09]:
 - variables can appears only as an argument of uninterpreted function or predicate symbols (NO: P(f(g(x+y)) !)
 - Local Theory Extensions [Jacobs, CAV'09]
 - Local theories: monotone functions, injective functions, guarded boundness condition

 $\forall x. g(x) \rightarrow s(x) \le f(x) \le t(x)$

 Using E-matching to instantiate quantifiers [de Moura, Bjorner, CADE'07]

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : a $\in A_f$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_y = A_f$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $\mathbf{a} \in \mathbf{A}_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_y = A_f$ Solution: $A_f = \{a\}$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_y = A_f$

Solution:

$$A_f = \{a\}$$

 $V_y = \{a\}$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_y = A_f$ Solution: $A_f = \{a\}$ $V_y = \{a\}$ $A_g = \{f(a)\}$

$$f(a) = o \land \forall x. \forall y. g(x) \le o \land g(f(y)) + 1 \le f(y)$$

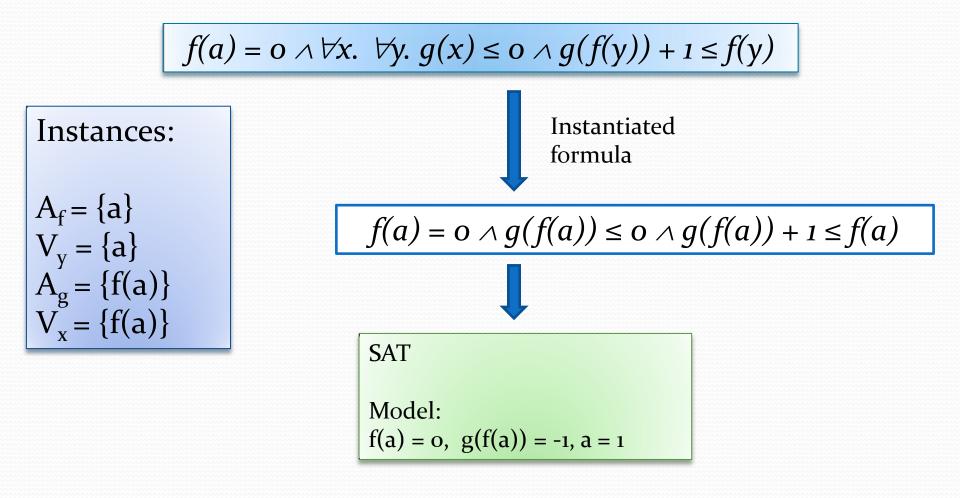
V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

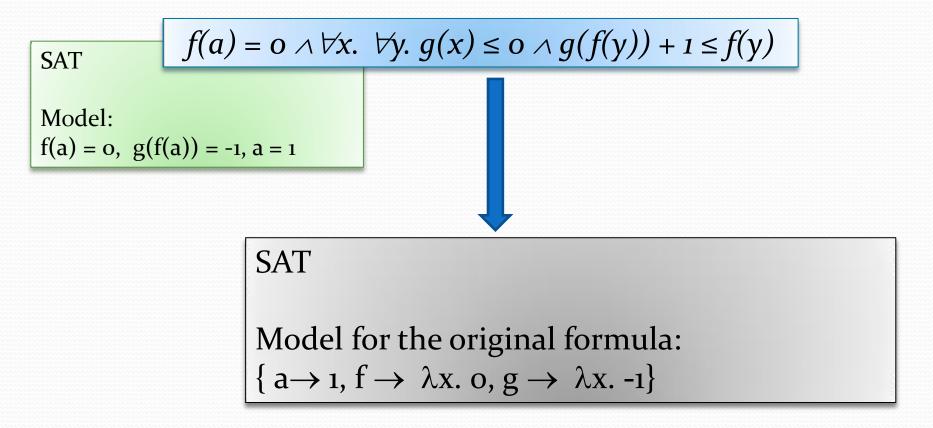
Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_y = A_f$

Solution:

$$A_f = \{a\}$$

 $V_y = \{a\}$
 $A_g = \{f(a)\}$
 $V_x = \{f(a)\}$





On Combining Non-disjoint Theories

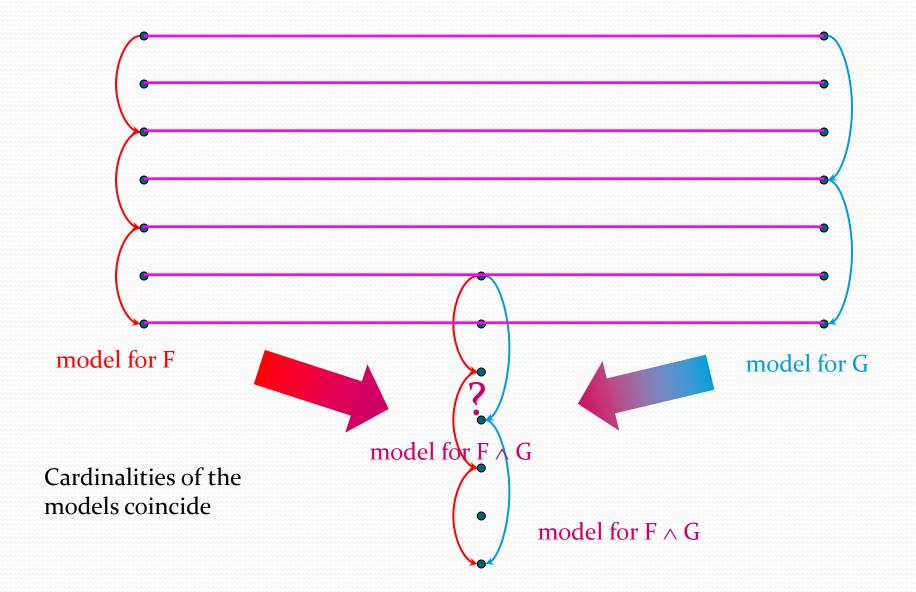
Joint work with Thomas Wies and Viktor Kuncak

Combining Different Theories

Based on the Nelson-Oppen combination procedures

- Theories need to be disjoint, i.e. they share only the equality symbol
- Theories need to be stably infinite, i.e. if a formula is satisfiable in some model of a theory, then it is also satisfiable in a model of infinite cardinality
- For complexity purposes, it is also good if a theory is convex:
 - $S \models x_i = y_i \lor \dots \lor x_n = y_n$ then $S \models x_i = y_i$ for some I
 - Non-convex theory: linear integer arithmetic
 - $1 \le X \le 2 \models X = 1 \lor X = 2$

Amalgamation of Models: The Disjoint Case



Generated Verification Condition

 $\neg \text{next0*(root0,n)} \land x \notin \{\text{data0(v)} \mid \text{next0*(root0,v)}\} \land \text{next=next0[n:=root0]} \land \text{data=data0[n:=x]} \rightarrow |\{\text{data(v)} \cdot \text{next*(n,v)}\}| = |\{\text{data0(v)} \cdot \text{next0*(root0,v)}\}| + 1|\}$

"The number of stored objects has increased by one."

Expressing this VC requires a rich logic

- transitive closure * (in lists and also in trees)
- unconstraint functions (data, datao)
- cardinality operator on sets | ... |

How do we check satisfiability of such a formula?

Decomposing the Formula

Consider a (simpler) formula $|\{data(x). next^*(root,x)\}|=k+1$ Introduce fresh variables denoting sets: $A = \{x. next^*(root,x)\} \land 1\}$ $B = \{y. \exists x. data(x,y) \land x \in A\} \land 2)$ |B|=k+1|B|=k+1

Good news: conjuncts are in decidable fragments
Bad news: conjuncts share more than just equality (they share set variables and set operations)
⇒ We cannot apply the Nelson-Oppen procedure

Combining Theories by Reduction

Satisfiability problem expressed in HOL: (all free symbols existentially quantified) $\exists next, data, k, root. \exists A, B.$ $A = \{x. next^*(root, x)\} \land \qquad 1$ WSIS $B = \{y. \exists x. data(x, y) \land x \in A\} \land \qquad 2$ C² |B|=k+1 3 BAPA

We assume formulas share only:

- set variables (sets of uninterpreted elems)
- set operations and relations

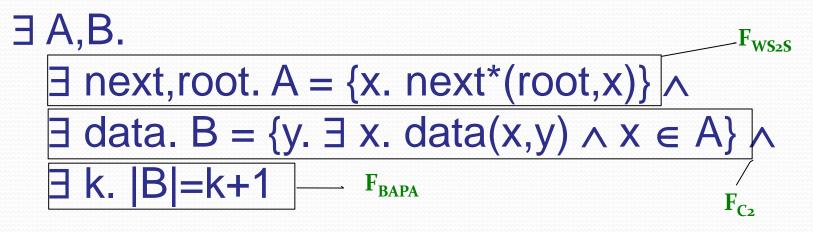
Combining Theories by Reduction

- Satisfiability problem expressed in HOL, after moving fragment-specific quantifiers
- $\exists A,B.$ $\exists next,root. A = \{x. next^{*}(root,x)\} \land$ $\exists data. B = \{y. \exists x. data(x,y) \land x \in A\} \land$ $\exists k. |B|=k+1 \longrightarrow F_{BAPA}$ $F_{C_{2}}$

Extend decision procedures for fragments into **projection procedures** that reduce each conjunct to a decidable shared theory applies \exists to all non-set variables

Combining Theories by Reduction

Satisfiability problem expressed in HOL, after moving fragment-specific quantifiers



Check satisfiability of conjunction of projections

$$\exists$$
 A,B. $F_{WS_2S} \land F_{C_2} \land F_{BAPA}$

Conjunction of projections satisfiable \rightarrow so is original formula

BAPA-Reducibility

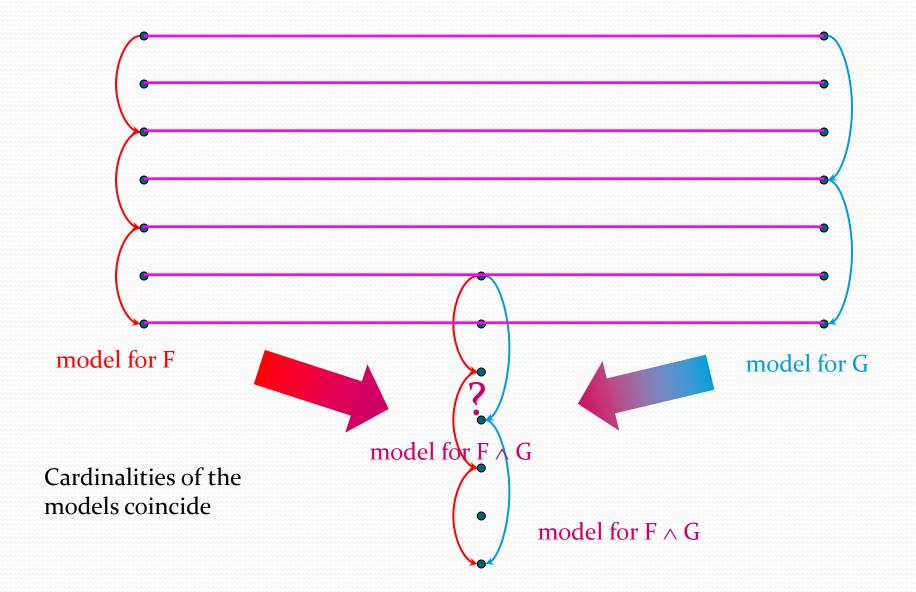
Definition: Logic is **BAPA-reducible** iff there is an algorithm that computes projections of formulas onto set variables, and these projections are BAPA formulas.

Theorem:

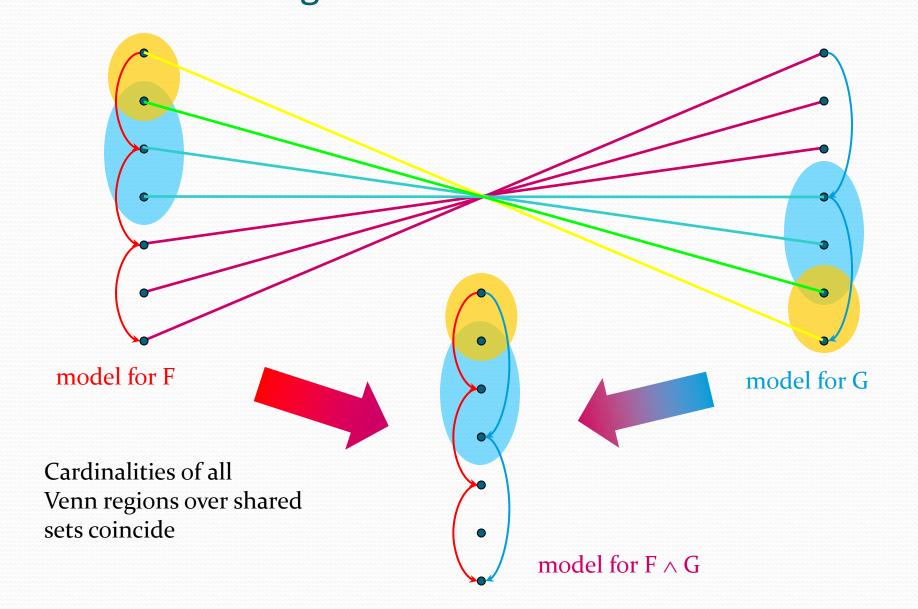
1) WS2S, 2) C², 3) BAPA, 4) BSR, 5) qf-multisets are all BAPA-reducible.

Thus, their set-sharing combination is decidable.

Amalgamation of Models: The Disjoint Case



Amalgamation of Models: The Set-Sharing Case



WS1S formula for a regular language

$$\mathsf{F} = ((\mathsf{A} \land \neg \mathsf{B})(\mathsf{B} \land \neg \mathsf{A}))^* (\neg \mathsf{B} \land \neg \mathsf{A})^*$$

Formulas are interpreted over finite words

Symbols in alphabet correspond to $(\neg A \land \neg B), (A \land \neg B), (\neg A \land B), (A \land B)$

Model of formula F

WS1S formula for a regular language

$$\mathsf{F} = ((\mathsf{A} \land \neg \mathsf{B})(\mathsf{B} \land \neg \mathsf{A}))^* (\neg \mathsf{B} \land \neg \mathsf{A})^*$$

Model of formula F

A,B denote sets of positions in the word w.

🚥, 💶, 💶 denote Venn regions over A, B

Parikh image gives card.s of Venn regions Parikh(w) = { $\mathbf{10} \mapsto 7$, $\mathbf{10} \mapsto 4$, $\mathbf{01} \mapsto 4$, $\mathbf{11} \mapsto 0$ }

Decision procedure for sat. of WS1S:

- construct finite word automaton A from F
- check emptiness of L(A)

Parikh 1966:

Parikh image of a regular language is semilinear and effectively computable from the finite automaton

Construct BAPA formula from Parikh image of the reg. lang.

WS1S formula for a regular language $F = ((A \land \neg B)(B \land \neg A))^* (\neg B \land \neg A)^*$

Parikh image of the models of F: Parikh(F) = {(q,p,p,0) | q,p \ge 0}

BAPA formula for projection of F onto A,B: $|A \cap B^c| = |A^c \cap B| \land |A \cap B| = 0$

Fragment of Insertion into Tree

```
class Node {Node left, right; Object data;}
class Tree {
    private static Node root;
    private static int size; /*:
    private static specvar nodes :: objset;
    vardefs "nodes=={x. (root,x) \in {(x,y). left x = y \lor right x = y}* }";
    private static specvar content :: objset;
    vardefs "content=={x. \exists n. n \neq null \land n \in nodes \land data n = x} " */
    private void insertAt (Node p, Object e) /*:
      requires "tree [left, right] \land nodes \subseteq Object.alloc \land size = card content \land
                  e \notin content \land e \neq null \land p \in nodes \land p \neq null \land left p = null"
      modifies nodes, content, left, right, data, size
                                                                                 size:
      ensures "size = card content" */
                                                                         right
                                                               left
                                                                                         4
        Node tmp = new Node();
                                                                    right data
                                                           left 
                                                     p.
        tmp.data = e;
        p. left = tmp;
                                                     left
         size = size + 1;
                                                        data.
                                                                     data
                                                   tmp
                                              data.
                                                  e
```

Reduction of VC for insertAt

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}

WS2S FRAGMENT:

 $\begin{array}{l} \mbox{tree[left,right]} \land \mbox{left } p = \mbox{null} \land p \in \mbox{nodes} \land \mbox{left tmp} = \mbox{null} \land \mbox{right tmp} = \mbox{null} \land \mbox{nodes} = \mbox{null} \land \mbox{left } x = y | \mbox{right } x = y \} \land \mbox{null} \land \mbox{left } x = y | \mbox{right } x = y \} \land \mbox{null} \land \mbox{left } x = y | \mbox{right } x = y \} \\ \mbox{null} \land \mbox{left } x = y | \mbox{right } x = y | \mbox{right } x = y \} \\ \mbox{CONSEQUENCE:} \box{null} \mbox{null} \cap \mbox{left } (x,y). (\mbox{left } (p:=tmp)) \ x = y) \ | \ \mbox{right } x = y \} \end{array}$

C2 FRAGMENT:

data tmp = null \land (\forall y. data y \neq tmp) \land tmp \notin alloc \land nodes \subseteq alloc \land content={x. \exists n. n \neq null \land n \in nodes \land data n = x} \land content1={x. \exists n. n \neq null \land n \in nodes1 \land (data(tmp:=e)) n = x} CONSEQUENCE: nodes1 \neq nodes \cup {tmp} \lor content1 = content \cup {e}

BAPA FRAGMENT: $e \notin content \land card content 1 \neq card content + 1$ CONSEQUENCE: $e \notin content \land card content 1 \neq card content + 1$

Conjunction of projections unsatisfiable \rightarrow so is original formula

Conclusions

- SMT solvers = tools for efficiently checking satisfiability of formulas
- Although very powerful tools, there are limitations:
 - Lack of decision procedures
 - Handling of quantifiers
 - The requirements for the Nelson-Oppen combination are too restrictive
- Presented a new combination technique for theories sharing sets by reduction to a common shared theory:
 - Resulting theory is useful for automated verification of complex properties of data structure implementations