
Ruzica Piskac

Max-Planck Institute for Software Systems, Germany

Literature:
 This talk will be based on

 Talking to SMT developers

 Talking to people working in software model checking

 Own experience in using SMT solvers

 Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, Albert Rubio: “Challenges in Satisfiability
Modulo Theories”. RTA 2007: 2-18

What are they and how do they work?

SMT Solvers

 Used as a core engine in many tools in

 Program analysis

 Software engineering

 Program model checking

 Hardware verification, …

 Combine propositional satisfiability search techniques
with specialized theory solvers

 Linear arithmetic

 Bit vectors

 Uninterpreted functions with equality

Lazy approach to SMT

x < 1 (x 1 x 2 x ≤ 3)

atoms are abstracted
as Boolean variables p1 (p1 p2 p3)

A SAT solver returns

P1 = true, p2 = true

A theory solver checks
its satisfiability

x < 1 x 2 UNSAT

We create a formula
corresponding to
this assignment

Lazy approach to SMT

x < 1 (x 1 x 2 x ≤ 3)

x < 1 x 2 UNSAT

x 1 x < 2

Its negation is a
valid formula

The formula is added to the
original formula to prevent its
further derivations

Lazy approach to SMT

x < 1 (x 1 x 2 x ≤ 3) (x 1 x < 2)

p1 (p1 p2 p3) (p1 p2)

p1 = true, p2 = false,
p3 = true

x < 1 x < 2 x ≤ 3 SAT
x = 0

Combining Different Theories
 Based on the Nelson-Oppen combination procedures

 Theories need to be disjoint, i.e. they share only the
equality symbol

 Theories need to be stably infinite, i.e. if a formula is
satisfiable in some model of a theory, then it is also
satisfiable in a model of infinite cardinality

 For complexity purposes, it is desirable that a theory is
convex:

 S ⊨ x1 = y1 … xn = yn then S ⊨ xi = yi for some I

 Non-convex theory: linear integer arithmetic

 1 ≤ x ≤ 2 ⊨ x =1 x =2

Nelson Oppen Combination
Procedure
 Step 1:

 Purification = converting formula into an equisatisfiable
formula which is a conjunction of formulas, each
belonging to a different theory

 Step 2 (loop):

 Deduction and propagation = theory solvers deduce
equalities between shared variables and propagate those
equalities to other conjuncts. Repeat the process

 If any theory solver returns UNSAT, return UNSAT

 Otherwise return SAT

Nelson-Oppen Procedure-Example

x + 2 = y f(read(write(a, x, 3), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

Nelson-Oppen Procedure-Example

x + 2 = y f(read(write(a, x, 3), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), y-2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), u2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), u2)) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

Nelson-Oppen Procedure-Example

f(u3) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3) f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3) f(u4)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3) f(u4)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2) f(u3) f(u4)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2) f(u3) f(u4)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1

f(u3) f(u4)
u2 = x
u4 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3) f(u4)
u2 = x
u4 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1
u3 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3) f(u4)
u2 = x
u4 = u1
u3 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1
u3 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3) f(u4)
u2 = x
u4 = u1
u3 = u1
UNSAT

Shaz’s Example
x = y f(x -y) f(y – x)

Linear Integer Arithmetic EUF

Shaz’s Example
x = y f(x -y) f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x

f(u1) f(u2)

Shaz’s Example
x = y f(x -y) f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1) f(u2)

Shaz’s Example
x = y f(x -y) f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1) f(u2)
u1 = u2

Shaz’s Example
x = y f(x -y) f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1) f(u2)
u1 = u2

UNSAT

Congruence Closure Algorithm
 Used for checking satisfiability of EUF formulas

 Given a set of equalities, the congruence closure
algorithm computes the smallest set of implied
equlities

 Usually based an efficient DAG implementation

 The basic rule for deduction

 x1 = y1, …, xn = yn f(x1, …, xn) = f(y1, …, yn)

… there are no limitations….

“System Out of Resources”
 Generated formulas are too large

 Encoding is often done automatically and it becomes costly to
solve

 This also influences the size of the generated proof (in case of
UNSAT) – computation of minimal infeasible subset

 Finding a tailor-made encoding for a specific problem can
drastically decrease the size of the formulas

 Empirical results show that the splits should be done at the
leaves of the search

 One should also consider eager splitting on the literals that
do not appear in the input formula

Lack of Decision Procedures
 Research and development of theory solvers are

guided by the needs of users

 Some decidable theories do not have efficient theory
solvers

 Floating point arithmetic (work in progress, a PhD
student @NYU)

 Real algebra (work in progress, a PhD student @RWTH
Aachen)

 Is decidability overrated? – some SMT solvers provide
a limited support for undecidable theories (Z, +, *)

Handling of Quantifiers
 Some SMT solvers provide a support for quantifiers

 Basic idea:

 Select a number of ground atoms

 Instantiate the formula with those ground atoms and
check satisfiability of the new formula

 If it is unsatisfiable return UNSAT; otherwise ???

x1, x2, x3 : (subtype(x1, x2) subtype(x2, x3) subtype(x1, x3))

P(f(a)) x. P(x)
a, f(a)

P(f(a)) P(a) P(f(a))

Handling of Quantifiers
 For some fragments there are COMPLETE techniques

 Essentially uninterpreted fragment [Ge, de Moura, CAV’09]:

 variables can appears only as an argument of uninterpreted
function or predicate symbols (NO: P(f(g(x+y)) !)

 Local Theory Extensions [Jacobs, CAV’09]

 Local theories: monotone functions, injective functions,
guarded boundness condition

 x. g(x) s(x)≤ f(x) ≤ t(x)

 Using E-matching to instantiate quantifiers [de Moura,
Bjorner, CADE’o7]

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag
Vy = Af

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag
Vy = Af

Solution:

Af = {a}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}
Ag = {f(a)}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a Af

Vx = Ag
f(Vy) Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}
Ag = {f(a)}
Vx = {f(a)}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

Instances:

Af = {a}
Vy = {a}
Ag = {f(a)}
Vx = {f(a)}

f(a) = 0 g(f(a)) ≤ 0 g(f(a)) + 1 ≤ f(a)

Instantiated
formula

SAT

Model:
f(a) = 0, g(f(a)) = -1, a = 1

SAT

Model:
f(a) = 0, g(f(a)) = -1, a = 1

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0 g(f(y)) + 1 ≤ f(y)

SAT

Model for the original formula:
{ a 1, f x. 0, g x. -1}

Joint work with Thomas Wies and Viktor Kuncak

Combining Different Theories
 Based on the Nelson-Oppen combination procedures

 Theories need to be disjoint, i.e. they share only the
equality symbol

 Theories need to be stably infinite, i.e. if a formula is
satisfiable in some model of a theory, then it is also
satisfiable in a model of infinite cardinality

 For complexity purposes, it is also good if a theory is
convex:

 S ⊨ x1 = y1 … xn = yn then S ⊨ xi = yi for some I

 Non-convex theory: linear integer arithmetic

 1 ≤ x ≤ 2 ⊨ x =1 x =2

Amalgamation of Models:
The Disjoint Case

model for F model for G

model for F G

model for F G

?

Cardinalities of the
models coincide

Generated Verification Condition

Expressing this VC requires a rich logic

– transitive closure * (in lists and also in trees)

– unconstraint functions (data, data0)

– cardinality operator on sets | ... |

How do we check satisfiability of such a formula?

“The number of stored objects has increased by one.”

next0*(root0,n) x {data0(v) | next0*(root0,v)}

next=next0[n:=root0] data=data0[n:=x]

 |{data(v) . next*(n,v)}| =

 |{data0(v) . next0*(root0,v)}| + 1

Decomposing the Formula

Consider a (simpler) formula

|{data(x). next*(root,x)}|=k+1

Introduce fresh variables denoting sets:

A = {x. next*(root,x)}

B = {y. x. data(x,y) x A}

|B|=k+1

1) WS1S

2) C2

3) BAPA

Good news: conjuncts are in decidable fragments

Bad news: conjuncts share more than just equality
(they share set variables and set operations)

 We cannot apply the Nelson-Oppen procedure

Combining Theories by Reduction

Satisfiability problem expressed in HOL:

 (all free symbols existentially quantified)

 next,data,k,root. A,B.

A = {x. next*(root,x)}

B = {y. x. data(x,y) x A}

|B|=k+1

We assume formulas share only:

- set variables (sets of uninterpreted elems)

- set operations and relations

1) WS1S

2) C2

3) BAPA

Extend decision procedures for fragments into
projection procedures that reduce each
conjunct to a decidable shared theory

Satisfiability problem expressed in HOL,

 after moving fragment-specific quantifiers

 A,B.

 next,root. A = {x. next*(root,x)}

 data. B = {y. x. data(x,y) x A}

 k. |B|=k+1

Combining Theories by Reduction

FWS1S

FC2

FBAPA

applies to all non-set variables

Satisfiability problem expressed in HOL,

 after moving fragment-specific quantifiers

 A,B.

 next,root. A = {x. next*(root,x)}

 data. B = {y. x. data(x,y) x A}

 k. |B|=k+1

Check satisfiability of conjunction of projections

Combining Theories by Reduction

FWS2S

FC2

FBAPA

 A,B. FWS2S FC2 FBAPA

Conjunction of projections satisfiable so is original formula

BAPA-Reducibility

Definition: Logic is BAPA-reducible iff there is an

algorithm that computes projections of formulas

onto set variables, and these projections are

BAPA formulas.

Theorem:

1) WS2S, 2) C2, 3) BAPA, 4) BSR, 5) qf-multisets

are all BAPA-reducible.

Thus, their set-sharing combination is decidable.

Amalgamation of Models:
The Disjoint Case

model for F model for G

model for F G

model for F G

?

Cardinalities of the
models coincide

Amalgamation of Models:
The Set-Sharing Case

model for F model for G

model for F G

Cardinalities of all
Venn regions over shared
sets coincide

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B A))* (B A)*

Formulas are interpreted over finite words

Symbols in alphabet correspond to

 (A B),(A B),(A B),(A B)

Model of formula F

00 10 01 11

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
B

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B A))* (B A)*

Model of formula F

A,B denote sets of positions in the word w.

 , , , denote Venn regions over A,B

Parikh image gives card.s of Venn regions

Parikh(w) = { 7, 4, 4, 0}

00 10 01 11

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
B

} w

00 10 01 11

BAPA-reduction for WS1S

Decision procedure for sat. of WS1S:

- construct finite word automaton A from F

- check emptiness of L(A)

Parikh 1966:

Parikh image of a regular language is

semilinear and effectively computable from

the finite automaton

Construct BAPA formula from Parikh image of the reg. lang.

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B A))* (B A)*

Parikh image of the models of F:

Parikh(F) = {(q,p,p,0) | q,p 0}

BAPA formula for projection of F onto A,B:

|A Bc| = |Ac B| |A B| = 0

00 10 01 11

4

Fragment of Insertion into Tree

right left

right left data

data data

p

tmp

left

e
data

size:

Reduction of VC for insertAt

Conjunction of projections unsatisfiable so is original formula

Conclusions
 SMT solvers = tools for efficiently checking

satisfiability of formulas

 Although very powerful tools, there are limitations:
 Lack of decision procedures

 Handling of quantifiers

 The requirements for the Nelson-Oppen combination
are too restrictive

 Presented a new combination technique for theories
sharing sets by reduction to a common shared theory:

 Resulting theory is useful for automated verification
of complex properties of data structure
implementations

