Limitations of SMT Solvers

Ruzica Piskac Max-Planck Institute for Software Systems, Germany

Literature:

- This talk will be based on
	- Talking to SMT developers
	- Talking to people working in software model checking
	- Own experience in using SMT solvers
	- Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-Carbonell, Albert Rubio: "*Challenges in Satisfiability Modulo Theories"*. RTA 2007: 2-18

SMT Solvers

What are they and how do they work?

SMT Solvers

Used as a core engine in many tools in

- Program analysis
- Software engineering
- Program model checking
- Hardware verification, …
- Combine propositional satisfiability search techniques with specialized theory solvers
	- Linear arithmetic
	- Bit vectors
	- Uninterpreted functions with equality

Lazy approach to SMT

$$
x < 1 \land (x \geq 1 \lor x \geq 2 \lor x \leq 3)
$$

atoms are abstracted as Boolean variables *p¹*

$$
p_{1} \wedge (\neg p_{1} \vee p_{2} \vee p_{3})
$$

Lazy approach to SMT

Lazy approach to SMT

$$
x < 1 \land (x \geq 1 \lor x \geq 2 \lor x \leq 3) \land (x \geq 1 \lor x < 2)
$$

$$
p_1 \wedge (\neg p_1 \vee p_2 \vee p_3) \wedge (\neg p_1 \vee \neg p_2)
$$
\n
\n
$$
p_1 = true, p_2 = false, p_3 = true
$$
\n
$$
x < 1 \wedge x < 2 \wedge x \le 3
$$
\n
$$
x = 0
$$

Combining Different Theories

- Based on the Nelson-Oppen combination procedures
	- Theories need to be disjoint, i.e. they share only the equality symbol
	- Theories need to be stably infinite, i.e. if a formula is satisfiable in some model of a theory, then it is also satisfiable in a model of infinite cardinality
	- For complexity purposes, it is desirable that a theory is convex:
		- $S \neq x_i = y_i \vee ... \vee x_n = y_n$ then $S \neq x_i = y_i$ for some *I*
		- Non-convex theory: linear integer arithmetic
		- $1 \leq x \leq 2 = x = 1 \vee x = 2$

Nelson Oppen Combination

Procedure

- Step 1:
	- Purification = converting formula into an equisatisfiable formula which is a conjunction of formulas, each belonging to a different theory
- Step 2 (loop):
	- Deduction and propagation = theory solvers deduce equalities between shared variables and propagate those equalities to other conjuncts. Repeat the process
	- If any theory solver returns UNSAT, return UNSAT
	- Otherwise return SAT

 $x + 2 = y \wedge f(\text{read}(write(a, x, 3), y-2)) \neq f(y - x + 1)$

 $x + 2 = y \wedge f(\text{read}(write(a, x, 3), y-2)) \neq f(y - x + 1)$

 $f(\text{read}(write(a, x, 3), y-2)) \neq f(y - x + 1)$

 $f(\text{read}(write(a, x, 3), y-2)) \neq f(y - x + 1)$

 $f(\text{read}(\text{write}(a, x, u_1), y - 2)) \neq f(y - x + 1)$

 $f(\text{read}(\text{write}(a, x, u_1), y\text{-}2)) \neq f(y - x + 1)$

 $f(\text{read}(\text{write}(a, x, u_1), u_2)) \neq f(y - x + 1)$

 $f(\text{read}(\text{write}(a, x, u_1), u_2)) \neq f(y - x + 1)$

 $f(u_3) \neq f(y - x + 1)$

 $f(u_3) \neq f(y - x + 1)$

 $f(u_3) \neq f(u_4)$

 $f(u_3) \neq f(u_4)$

$$
x = y \ \land \ f(x - y) \neq f(y - x)
$$

$$
x = y \ \land \ f(x - y) \neq f(y - x)
$$

$$
x = y \ \land \ f(x - y) \neq f(y - x)
$$

$$
x = y \ \land \ f(x - y) \neq f(y - x)
$$

$$
x = y \ \land \ f(x - y) \neq f(y - x)
$$

Congruence Closure Algorithm

- Used for checking satisfiability of EUF formulas
- Given a set of equalities, the congruence closure algorithm computes the smallest set of implied equlities
- Usually based an efficient DAG implementation
- The basic rule for deduction

•
$$
x_1 = y_1, ..., x_n = y_n \Rightarrow f(x_1, ..., x_n) = f(y_1, ..., y_n)
$$

Limitations of SMT Solvers

… there are no limitations….

"System Out of Resources"

- Generated formulas are too large
	- Encoding is often done automatically and it becomes costly to solve
	- This also influences the size of the generated proof (in case of UNSAT) – computation of minimal infeasible subset
- Finding a tailor-made encoding for a specific problem can drastically decrease the size of the formulas
- Empirical results show that the splits should be done at the leaves of the search
- One should also consider eager splitting on the literals that do not appear in the input formula

Lack of Decision Procedures

- Research and development of theory solvers are guided by the needs of users
- Some decidable theories do not have efficient theory solvers
	- Floating point arithmetic (work in progress, a PhD student @NYU)
	- Real algebra (work in progress, a PhD student @RWTH Aachen)
- Is decidability overrated? some SMT solvers provide a limited support for undecidable theories $(Z, +, *)$

Handling of Quantifiers

• Some SMT solvers provide a support for quantifiers

 $\forall x_1, x_2, x_3 : (subtype(x_1, x_2) \land subtype(x_2, x_3) \rightarrow subtype(x_1, x_3))$

- Basic idea:
	- Select a number of ground atoms
	- Instantiate the formula with those ground atoms and check satisfiability of the new formula

$$
\boxed{\neg P(f(a)) \wedge \forall x. P(x)} \qquad a, f(a)
$$

$$
\overline{a, f(a)}
$$

 $\neg P(f(a)) \wedge P(a) \wedge P(f(a))$

If it is unsatisfiable return UNSAT; otherwise ???

Handling of Quantifiers

- For some fragments there are COMPLETE techniques
	- Essentially uninterpreted fragment [Ge, de Moura, CAV'09]:
		- variables can appears only as an argument of uninterpreted function or predicate symbols $(NO: P(f(g(x+y)))!)$
	- Local Theory Extensions [Jacobs, CAV'o9]
		- Local theories: monotone functions, injective functions, guarded boundness condition

 $\forall x. g(x) \rightarrow s(x) \leq f(x) \leq t(x)$

 Using E-matching to instantiate quantifiers [de Moura, Bjorner, CADE'o7]

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_{x} = A_{g}$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_{x} = A_{g}$ $f(V_y) \subseteq A_g$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_v = A_f$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_v = A_f$ Solution: $A_f = \{a\}$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_v = A$ Solution: $A_f = \{a\}$ $V_{v} = \{a\}$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_x = A_g$ $f(V_y) \subseteq A_g$ $V_v = A_f$ Solution: $A_f = \{a\}$ $V_{y} = \{a\}$ $A_{\sigma} = \{f(a)\}\$

$$
f(a) = o \land \forall x. \ \forall y. \ g(x) \leq o \land g(f(y)) + 1 \leq f(y)
$$

 V_x = ground terms for instantiating variable x A_f = ground terms that will appear as arguments of function f

Constraints on sets V_i and F_j : $a \in A_f$ $V_{x} = A_{g}$ $f(V_y) \subseteq A_g$ $V_v = A_f$ Solution: $A_f = \{a\}$ $V_{v} = \{a\}$ $A_g = \{f(a)\}\$ $V_r = \{f(a)\}$

On Combining Non-disjoint Theories

Joint work with Thomas Wies and Viktor Kuncak

Combining Different Theories

Based on the Nelson-Oppen combination procedures

- Theories need to be disjoint, i.e. they share only the equality symbol
- Theories need to be stably infinite, i.e. if a formula is satisfiable in some model of a theory, then it is also satisfiable in a model of infinite cardinality
- For complexity purposes, it is also good if a theory is
	- *S* $\nvdash x_i = y_i$ $\vee \dots \vee x_n = y_n$ then *S* $\nvdash x_i = y_i$ for some *I*
	- Non-convex theory: linear integer arithmetic
	-

Amalgamation of Models: The Disjoint Case

Generated Verification Condition

 $-\text{next0}^*(\text{root0}, n) \wedge x \notin \{\text{data0}(v) \mid \text{next0}^*(\text{root0}, v)\}\wedge$ $next=next[0] \times start[0] \times data=data[0] \rightarrow \bigcup$ $|\{data(v) \cdot next^*(n, v)\}| =$ $|\{data0(v) \cdot next0*(root0, v)\}| + 1$

"The number of stored objects has increased by one."

Expressing this VC requires a rich logic

- transitive closure * (in lists and also in trees)
- unconstraint functions (data, data0)
- cardinality operator on sets | ... |

How do we check satisfiability of such a formula?

Decomposing the Formula

Consider a (simpler) formula $|\{data(x) \text{. next}^{*}(root, x)\}| = k+1$ Introduce fresh variables denoting sets: $A = \{x. \text{ next}^*(\text{root},x)\}\$ $B = \{y : \exists x. \text{ data}(x, y) \land x \in A\}$ $|B|=k+1$ 1) WS1S $2) C²$ 3) BAPA

Good news: conjuncts are in decidable fragments Bad news: conjuncts share more than just equality (they share set variables and set operations) \Rightarrow We cannot apply the Nelson-Oppen procedure

Combining Theories by Reduction

Satisfiability problem expressed in HOL: (all free symbols existentially quantified) **∃next,data,k,root. 3 A,B.** $\mathcal{A} = \{x. \text{ next}^*(\text{root},x)\}\wedge$ $\mathbf{B} = \{y \in \mathbb{R} \mid x \in \mathsf{data}(x, y) \land x \in \mathsf{A}\}$ $|B|=k+1$ 1) WS1S $2) C²$ 3) BAPA

We assume formulas share only:

- **set variables** (sets of uninterpreted elems)
- set operations and relations

Combining Theories by Reduction

- Satisfiability problem expressed in HOL, after moving fragment-specific quantifiers
- A, B . \exists next, root. $A = \{x \text{. next}^*(root, x)\}\|$ \exists data. B = {y. \exists x. data(x,y) \land x \in A} \land \exists **K.** $\big| B \big| = k + 1 \big|$ **F**_{BAPA} **FWS1S** \mathbf{F}_{C_2}

Extend decision procedures for fragments into **projection procedures** that reduce each conjunct to a decidable shared theory applies \exists to all non-set variables

Combining Theories by Reduction

- Satisfiability problem expressed in HOL, after moving fragment-specific quantifiers
- \exists A,B. \exists next,root. $A = \{x. \text{ next}^*(\text{root}, x)\}\|_A$ \exists data. $B = \{y : \exists x \ldotp data(x,y) \land x \in A\}$ \exists **K.** $\big| B \big| = k + 1 \big|$ **F**_{BAPA} **FWS2S** F_{C_2}

Check satisfiability of conjunction of projections \exists A,B. $F_{WSS} \wedge F_{C_2} \wedge F_{BAPA}$

Conjunction of projections satisfiable \rightarrow so is original formula

BAPA-Reducibility

Definition: Logic is **BAPA-reducible** iff there is an algorithm that computes projections of formulas onto set variables, and these projections are BAPA formulas.

Theorem:

1) WS2S, **2)** C² , **3)** BAPA, **4)** BSR, **5)** qf-multisets are all BAPA-reducible.

Thus, their set-sharing combination is decidable.

Amalgamation of Models: The Disjoint Case

Amalgamation of Models: The Set-Sharing Case

WS1S formula for a regular language $F = ((A \land \neg B)(B \land \neg A))^* (\neg B \land \neg A)^*$

Formulas are interpreted over finite words

Symbols in alphabet correspond to $(A \wedge \neg B), (A \wedge \neg B), (\neg A \wedge B), (A \wedge B)$ **10 01 11**

Model of formula F

 A B

WS1S formula for a regular language

$$
F = ((A \wedge \neg B)(B \wedge \neg A))^* (\neg B \wedge \neg A)^*
$$

Model of formula F

 A B } w

A,B denote sets of positions in the word w.

00, \mathbf{u} , \mathbf{u} , \mathbf{u} denote Venn regions over A,B

Parikh image gives card.s of Venn regions $\text{Parikh}(w) = \{ \text{oo} \mapsto 7, \text{oo} \mapsto 4, \text{oo} \mapsto 4, \text{oo} \mapsto 0 \}$

Decision procedure for sat. of WS1S:

- construct finite word automaton A from F
- check emptiness of L(A)

Parikh 1966:

Parikh image of a regular language is semilinear and effectively computable from the finite automaton

Construct BAPA formula from Parikh image of the reg. lang.

WS1S formula for a regular language $F = ((A \land \neg B)(B \land \neg A))^* (-B \land \neg A)^*$

Parikh image of the models of F: $Parikh(F) = \{(q,p,p,0) | q,p \ge 0\}$ **00 10 01 11**

BAPA formula for projection of F onto A,B: $|A \cap B^c| = |A^c \cap B| \wedge |A \cap B| = 0$

Fragment of Insertion into Tree

```
class Node {Node left, right; Object data;}
class Tree \{private static Node root;
      private static int size; /*:
       private static specvar nodes :: objset;
      vardefs "nodes=={x. (root,x) \in {(x,y). left x = y \lor right x = y}* }";
       private static specvar content :: objset;
      vardefs "content=={x. \exists n. n \neq null \land n \in nodes \land data n = x} " */
       private void insertAt (Node p, Object e) /*:
          requires "tree [ left, right ] \land nodes \subseteq Object.alloc \land size = card content \lande \notin content \wedge e \not= null \wedge p \in nodes \wedge p \not= null \wedge left p = null"
          modifies nodes, content, left, right, data, size
          ensures "size = card content" */size:left \nearrow right
                                                                                                                                     4
             Node tmp = new Node();left right right I data
                                                                               p_{\bullet}tmp.data = e;p. left = tmp;
                                                                               left
             size = size + 1;data \blacksquare 
                                                                             tmp
                                                                     data
                                                                            e
```
Reduction of VC for insertAt

SHARED SETS: nodes, nodes1, content, content1, {e}, {tmp}

WS2S FRAGMENT:

tree [left , right] \land left p = null \land p \in nodes \land left tmp = null \land right tmp = null \land $nodes = \{x. (root,x) \in \{(x,y). \text{ left } x = y \text{ right } x = y\}^* \}$ \wedge $nodes1 = \{x. (root,x) \in \{(x,y). (left (p:=tmp)) x = y) \mid right x = y\}$ CONSEQUENCE: $nodes1 = nodes \cup \{tmp\}$

C₂ FRAGMENT:

data tmp = null \land (\forall y. data y \neq tmp) \land tmp \notin alloc \land nodes \subseteq alloc \land content={x. \exists n. n \neq null \land n \in nodes \land data n = x} \land content1={x. \exists n. n \neq null \land n \in nodes1 \land (data(tmp:=e)) n = x} CONSEQUENCE: nodes $1 \neq$ nodes \cup {tmp} \vee content1 = content \cup {e}

BAPA FRAGMENT: $e \notin$ content \wedge card content1 \neq card content + 1 CONSEQUENCE: $e \notin$ content \wedge card content 1 \neq card content + 1

Conjunction of projections unsatisfiable \rightarrow so is original formula

Conclusions

- SMT solvers = tools for efficiently checking satisfiability of formulas
- Although very powerful tools, there are limitations:
	- Lack of decision procedures
	- Handling of quantifiers
	- The requirements for the Nelson-Oppen combination are too restrictive
- Presented a new combination technique for theories sharing sets by reduction to a common shared theory:
	- Resulting theory is useful for automated verification of complex properties of data structure implementations