
Ruzica Piskac

Max-Planck Institute for Software Systems, Germany

Literature:
 This talk will be based on

 Talking to SMT developers

 Talking to people working in software model checking

 Own experience in using SMT solvers

 Robert Nieuwenhuis, Albert Oliveras, Enric Rodríguez-
Carbonell, Albert Rubio: “Challenges in Satisfiability
Modulo Theories”. RTA 2007: 2-18

What are they and how do they work?

SMT Solvers

 Used as a core engine in many tools in

 Program analysis

 Software engineering

 Program model checking

 Hardware verification, …

 Combine propositional satisfiability search techniques
with specialized theory solvers

 Linear arithmetic

 Bit vectors

 Uninterpreted functions with equality

Lazy approach to SMT

x < 1  (x  1  x  2  x ≤ 3)

atoms are abstracted
as Boolean variables p1 (p1  p2  p3)

A SAT solver returns

P1 = true, p2 = true

A theory solver checks
its satisfiability

x < 1  x  2 UNSAT

We create a formula
corresponding to
this assignment

Lazy approach to SMT

x < 1  (x  1  x  2  x ≤ 3)

x < 1  x  2 UNSAT

x  1  x < 2

Its negation is a
valid formula

The formula is added to the
original formula to prevent its
further derivations

Lazy approach to SMT

x < 1  (x  1  x  2  x ≤ 3)  (x  1  x < 2)

p1 (p1  p2  p3)  (p1   p2)

p1 = true, p2 = false,
p3 = true

x < 1  x < 2  x ≤ 3 SAT
x = 0

Combining Different Theories
 Based on the Nelson-Oppen combination procedures

 Theories need to be disjoint, i.e. they share only the
equality symbol

 Theories need to be stably infinite, i.e. if a formula is
satisfiable in some model of a theory, then it is also
satisfiable in a model of infinite cardinality

 For complexity purposes, it is desirable that a theory is
convex:

 S ⊨ x1 = y1  …  xn = yn then S ⊨ xi = yi for some I

 Non-convex theory: linear integer arithmetic

 1 ≤ x ≤ 2 ⊨ x =1  x =2

Nelson Oppen Combination
Procedure
 Step 1:

 Purification = converting formula into an equisatisfiable
formula which is a conjunction of formulas, each
belonging to a different theory

 Step 2 (loop):

 Deduction and propagation = theory solvers deduce
equalities between shared variables and propagate those
equalities to other conjuncts. Repeat the process

 If any theory solver returns UNSAT, return UNSAT

 Otherwise return SAT

Nelson-Oppen Procedure-Example

x + 2 = y  f(read(write(a, x, 3), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

Nelson-Oppen Procedure-Example

x + 2 = y  f(read(write(a, x, 3), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y

Nelson-Oppen Procedure-Example

f(read(write(a, x, 3), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), y-2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), u2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

Nelson-Oppen Procedure-Example

f(read(write(a, x, u1), u2))  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

Nelson-Oppen Procedure-Example

f(u3)  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3)  f(y – x + 1)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y - 2

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3)  f(u4)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example

f(u3)  f(u4)

Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1

u3 = read(write(a, x, u1), u2) f(u3)  f(u4)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2) f(u3)  f(u4)

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1

f(u3)  f(u4)
u2 = x
u4 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3)  f(u4)
u2 = x
u4 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1
u3 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3)  f(u4)
u2 = x
u4 = u1
u3 = u1

Nelson-Oppen Procedure-Example
Linear Integer
Arithmetic

Arrays EUF

x + 2 = y
u1 = 3
u2 = y – 2
u4 = y – x + 1
u2 = x
u4 = u1
u3 = u1

u3 = read(write(a, x, u1), u2)
u2 = x
u4 = u1
u3 = u1

f(u3)  f(u4)
u2 = x
u4 = u1
u3 = u1
UNSAT

Shaz’s Example
x = y  f(x -y)  f(y – x)

Linear Integer Arithmetic EUF

Shaz’s Example
x = y  f(x -y)  f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x

f(u1)  f(u2)

Shaz’s Example
x = y  f(x -y)  f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1)  f(u2)

Shaz’s Example
x = y  f(x -y)  f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1)  f(u2)
u1 = u2

Shaz’s Example
x = y  f(x -y)  f(y – x)

Linear Integer Arithmetic EUF

x = y
u1 = x – y
u2 = y – x
u1 = u2

f(u1)  f(u2)
u1 = u2

UNSAT

Congruence Closure Algorithm
 Used for checking satisfiability of EUF formulas

 Given a set of equalities, the congruence closure
algorithm computes the smallest set of implied
equlities

 Usually based an efficient DAG implementation

 The basic rule for deduction

 x1 = y1, …, xn = yn  f(x1, …, xn) = f(y1, …, yn)

… there are no limitations…. 

“System Out of Resources”
 Generated formulas are too large

 Encoding is often done automatically and it becomes costly to
solve

 This also influences the size of the generated proof (in case of
UNSAT) – computation of minimal infeasible subset

 Finding a tailor-made encoding for a specific problem can
drastically decrease the size of the formulas

 Empirical results show that the splits should be done at the
leaves of the search

 One should also consider eager splitting on the literals that
do not appear in the input formula

Lack of Decision Procedures
 Research and development of theory solvers are

guided by the needs of users

 Some decidable theories do not have efficient theory
solvers

 Floating point arithmetic (work in progress, a PhD
student @NYU)

 Real algebra (work in progress, a PhD student @RWTH
Aachen)

 Is decidability overrated? – some SMT solvers provide
a limited support for undecidable theories (Z, +, *)

Handling of Quantifiers
 Some SMT solvers provide a support for quantifiers

 Basic idea:

 Select a number of ground atoms

 Instantiate the formula with those ground atoms and
check satisfiability of the new formula

 If it is unsatisfiable return UNSAT; otherwise ???

x1, x2, x3 : (subtype(x1, x2)  subtype(x2, x3)  subtype(x1, x3))

P(f(a))  x. P(x)
a, f(a)

P(f(a))  P(a)  P(f(a))

Handling of Quantifiers
 For some fragments there are COMPLETE techniques

 Essentially uninterpreted fragment [Ge, de Moura, CAV’09]:

 variables can appears only as an argument of uninterpreted
function or predicate symbols (NO: P(f(g(x+y)) !)

 Local Theory Extensions [Jacobs, CAV’09]

 Local theories: monotone functions, injective functions,
guarded boundness condition

 x. g(x)  s(x)≤ f(x) ≤ t(x)

 Using E-matching to instantiate quantifiers [de Moura,
Bjorner, CADE’o7]

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag
Vy = Af

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag
Vy = Af

Solution:

Af = {a}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}
Ag = {f(a)}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Vx = ground terms for instantiating variable x
Af = ground terms that will appear as arguments of
 function f

Constraints on sets Vi and Fj:

a  Af

Vx = Ag
f(Vy)  Ag
Vy = Af

Solution:

Af = {a}
Vy = {a}
Ag = {f(a)}
Vx = {f(a)}

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

Instances:

Af = {a}
Vy = {a}
Ag = {f(a)}
Vx = {f(a)}

f(a) = 0  g(f(a)) ≤ 0  g(f(a)) + 1 ≤ f(a)

Instantiated
formula

SAT

Model:
f(a) = 0, g(f(a)) = -1, a = 1

SAT

Model:
f(a) = 0, g(f(a)) = -1, a = 1

Quantifiers in Essentially
Uninterpreted fragment - Example

f(a) = 0 x. y. g(x) ≤ 0  g(f(y)) + 1 ≤ f(y)

SAT

Model for the original formula:
{ a 1, f  x. 0, g  x. -1}

Joint work with Thomas Wies and Viktor Kuncak

Combining Different Theories
 Based on the Nelson-Oppen combination procedures

 Theories need to be disjoint, i.e. they share only the
equality symbol

 Theories need to be stably infinite, i.e. if a formula is
satisfiable in some model of a theory, then it is also
satisfiable in a model of infinite cardinality

 For complexity purposes, it is also good if a theory is
convex:

 S ⊨ x1 = y1  …  xn = yn then S ⊨ xi = yi for some I

 Non-convex theory: linear integer arithmetic

 1 ≤ x ≤ 2 ⊨ x =1  x =2

Amalgamation of Models:
The Disjoint Case

model for F model for G

model for F  G

model for F  G

?

Cardinalities of the
models coincide

Generated Verification Condition

Expressing this VC requires a rich logic

– transitive closure * (in lists and also in trees)

– unconstraint functions (data, data0)

– cardinality operator on sets | ... |

How do we check satisfiability of such a formula?

“The number of stored objects has increased by one.”

next0*(root0,n)  x  {data0(v) | next0*(root0,v)} 

next=next0[n:=root0] data=data0[n:=x] 

 |{data(v) . next*(n,v)}| =

 |{data0(v) . next0*(root0,v)}| + 1

Decomposing the Formula

Consider a (simpler) formula

|{data(x). next*(root,x)}|=k+1

Introduce fresh variables denoting sets:

A = {x. next*(root,x)} 

B = {y.  x. data(x,y)  x  A} 

|B|=k+1

1) WS1S

2) C2

3) BAPA

Good news: conjuncts are in decidable fragments

Bad news: conjuncts share more than just equality
(they share set variables and set operations)

 We cannot apply the Nelson-Oppen procedure

Combining Theories by Reduction

Satisfiability problem expressed in HOL:

 (all free symbols existentially quantified)

 next,data,k,root.  A,B.

A = {x. next*(root,x)} 

B = {y.  x. data(x,y)  x  A} 

|B|=k+1

We assume formulas share only:

- set variables (sets of uninterpreted elems)

- set operations and relations

1) WS1S

2) C2

3) BAPA

Extend decision procedures for fragments into
projection procedures that reduce each
conjunct to a decidable shared theory

Satisfiability problem expressed in HOL,

 after moving fragment-specific quantifiers

 A,B.

 next,root. A = {x. next*(root,x)} 

 data. B = {y.  x. data(x,y)  x  A} 

 k. |B|=k+1

Combining Theories by Reduction

FWS1S

FC2

FBAPA

applies  to all non-set variables

Satisfiability problem expressed in HOL,

 after moving fragment-specific quantifiers

 A,B.

 next,root. A = {x. next*(root,x)} 

 data. B = {y.  x. data(x,y)  x  A} 

 k. |B|=k+1

Check satisfiability of conjunction of projections

Combining Theories by Reduction

FWS2S

FC2

FBAPA

  A,B. FWS2S  FC2  FBAPA

Conjunction of projections satisfiable  so is original formula

BAPA-Reducibility

Definition: Logic is BAPA-reducible iff there is an

algorithm that computes projections of formulas

onto set variables, and these projections are

BAPA formulas.

Theorem:

1) WS2S, 2) C2, 3) BAPA, 4) BSR, 5) qf-multisets

are all BAPA-reducible.

Thus, their set-sharing combination is decidable.

Amalgamation of Models:
The Disjoint Case

model for F model for G

model for F  G

model for F  G

?

Cardinalities of the
models coincide

Amalgamation of Models:
The Set-Sharing Case

model for F model for G

model for F  G

Cardinalities of all
Venn regions over shared
sets coincide

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B  A))* (B  A)*

Formulas are interpreted over finite words

Symbols in alphabet correspond to

 (A  B),(A  B),(A  B),(A  B)

Model of formula F

00 10 01 11

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
B

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B  A))* (B  A)*

Model of formula F

A,B denote sets of positions in the word w.

 , , , denote Venn regions over A,B

Parikh image gives card.s of Venn regions

Parikh(w) = {  7,  4,  4,  0}

00 10 01 11

1
0

0
1

1
0

0
1

1
0

0
1

1
0

0
1

0
0

0
0

0
0

0
0

0
0

0
0

0
0

A
B

} w

00 10 01 11

BAPA-reduction for WS1S

Decision procedure for sat. of WS1S:

- construct finite word automaton A from F

- check emptiness of L(A)

Parikh 1966:

Parikh image of a regular language is

semilinear and effectively computable from

the finite automaton

Construct BAPA formula from Parikh image of the reg. lang.

BAPA-reduction for WS1S

WS1S formula for a regular language

 F = ((A B)(B  A))* (B  A)*

Parikh image of the models of F:

Parikh(F) = {(q,p,p,0) | q,p  0}

BAPA formula for projection of F onto A,B:

|A  Bc| = |Ac  B|  |A  B| = 0

00 10 01 11

4

Fragment of Insertion into Tree

right left

right left data

data data

p

tmp

left

e
data

size:

Reduction of VC for insertAt

Conjunction of projections unsatisfiable  so is original formula

Conclusions
 SMT solvers = tools for efficiently checking

satisfiability of formulas

 Although very powerful tools, there are limitations:
 Lack of decision procedures

 Handling of quantifiers

 The requirements for the Nelson-Oppen combination
are too restrictive

 Presented a new combination technique for theories
sharing sets by reduction to a common shared theory:

 Resulting theory is useful for automated verification
of complex properties of data structure
implementations

