
IN
V

E
N

T
IV

E

Vitaly Lagoon 

(lagoon@cadence.com)

Constraint-Based Test 
Generation



© 2012 Cadence Design Systems, Inc. All rights reserved.

• Cadence

– One of the three major EDA (Electronics Design Automation) 

companies

– Established in 1988, over 4000 employees

– Wide variety of technologies and products in 

• Hardware design (inc. logic synthesis, power, timing, routing, etc.)

• Hardware simulation

• Formal and simulation-based verification

– Never heard about us? You surely heard about our customers.

• Intel, Cisco, TI, Canon, Phillips, Samsung, Nokia, …

A Word About Cadence
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Motivation

Chip complexity grows, and so does

• the likelihood of HW bugs

• the cost of HW bugs 

• the need for verification

• investment in verification
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• Intel FDIV, 1994, ~$475M

• Intel Sandy Bridge, 2011, ~$1B

The Cost of HW Bugs
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• Formal verification

+ Proves properties of a HW design

+ Substantial improvements in performance, capacity and scalability 
in the last few years

 Improvements in SAT solvers

 New approaches using abstraction and Solving Modulo Theories (SMT)

Cannot verify (yet?) a full system, only individual units

Verification environment cannot be reused for post-silicone testing

• Simulation-based verification

+ High capacity and scalability

+ Verification environment can be reused for post-silicone testing

+ Easy to use

Experimentally verifies properties of a HW design

• ~80% of bugs in HW logics are still found through simulation

Formal vs. Simulation
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• Cadence‟s major test bench automation tool

• Being used in the biggest and most advanced 

verification environments

• Works with all HDL simulators

• Uses e verification language [Hollander,Morley,Noy „01]

http://en.wikipedia.org/wiki/Specman

Specman
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• Constraint solver / test generator of Specman

– Generates randomized tests based on constraint models

• Variety of data types: 

– signed/unsigned numeric, Boolean, string, arrays, pointers

• Variety of constraints: 

– arithmetic, logic, bit-wise, soft constraints, global constraints on 

arrays

• Based on an FD-core

– Also integrates a few variations of BDD and SAT

• Includes a visual constraint debugger

IntelliGen

8
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Random Test Generation in Specman/e

struct CPU_instruction {

opcode : [LDA, STA, ADD, SUB,

JMP, JGE, JNE, STP](bits:4);

operand : uint(bits:12);

keep opcode == STA => operand > 1023;

};

struct CPU_test {

program : list of CPU_instruction;

sz : uint[10..20];

keep program.size()==sz;

keep program[sz-1].opcode==STP;

keep for each (instr) in program {

index<sz-1 => instr.opcode != STP;

instr.opcode in [JMP, JGE, JNE] =>

instr.operand<sz;

};

};

Specman > print my_test1.program

my_test1.program = 

item   type         opcode operand    

---------------------------------------

0.     instruction  JMP         6           

1.     instruction  JMP         11          

2.     instruction  ADD         2301        

3.     instruction  JGE         1           

4.     instruction  SUB         312         

5.     instruction  LDA         2603        

6.     instruction  JMP         7           

7.     instruction  JGE         11          

8.     instruction  JNE         4           

9.     instruction  STA         3913        

10.    instruction  JMP         12          

11.    instruction  SUB         1783        

12.    instruction  LDA         2035        

13.    instruction  ADD         1310        

14.    instruction  JNE         15          

15.    instruction  JMP         12          

16.    instruction  LDA         3258        

17.    instruction  STP         3964 
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• Powerful and flexible constraint language
– Mixed integer and bitwise models

– Mixed declarative and procedural code in models (function calls)

– Non-scalar data: structures, arrays, strings

– Soft constraints for modeling preferences

– Directives for controlling randomness and distribution

• High scalability
– Huge models (hundreds of thousands variables and constraints)

– Solving the same problem many times (long runs)

• Find many random solutions
– Try to meet distribution requirements

– Be random-stable as much as possible

• Typical problems are not hard
– Extensive search is usually not required

– Backtracks typically indicate bad modeling

IntelliGen.
The Requirements
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• There is no “best” solving technology. 

– A combined approach is required in practice

• BDD

+ Bit-level, fast, complete control over the distribution

Capacity problems

• SAT

+ Fast, scalable

Translation to CNF is expensive, limited control of randomness

• Finite-Domain solver

+ Word-level, fast, scalable, extendable

Limited control over distribution

Bad in proving UNSAT

• Local Search / SMT / ILP… ?

IntelliGen.
The Integrated Framework of Solvers
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• Build the BDD once

• Generate solutions as random walks 

from the root to TRUE

+ Good performance when generating 

many solutions

+ Complete control over the distribution

Limited capacity

Very sensitive to the order of variables

Infeasible for some types of constraints

Solving Technologies: BDD

<a3,a2,a1,a0> ≤ <b3,b2,b1,b0>
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• Convert the constraint model to a CNF

• Give it to a state-of-the-art SAT solver

+ High capacity

+ High performance

+ Improvements are free

Randomization is tricky, no guarantee of 
distribution

High bootstrap cost

Loss of high-level context:
– Role and association of bits

– No GAC (loss of propagation) e.g., all-different

– [Bessiere, Katsirelos, Narodytska, Walsh, 09]

Solving Technologies: SAT
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• Maintain domains of variables as sets of intervals
– x : [1..100],  y : [1,3,5..8];  z : [1..100,1000..2000];

• Use propagators to enforce domain consistency

• Combine search and propagation

• Randomize the choice of variables and values

+ Cheap on simple problems

+ Scales very well to large problems

+ Word-level processing
– Easy to extend: new constraints, global constraints, randomization policies

– Easy to explain e.g., in constraint debugger

Limited control over randomness and distribution

Bad in proving UNSAT

Solving Technologies: FD Solver
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SolveSolve(V,C) : [TRUE, FALSE]

if all variables in V are assigned  then return TRUE

choose an unassigned variable x in V 

repeat

choose a value k from the domain of x‏

if PropagatePropagate(V·[x/k], C) &&  SSolveolve(V, C)  then

return TRUE

else

undo the last reduction

remove k from  the domain of x

until range of x is empty

return FALSE

IntelliGen’s FD Solver
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Propagation

x<y
x: [1..100]

y: [1..100]

x: [1..99]

y: [2..100]

x<y
x: [1..10,100]

y: [15..100]

x: [1..10]

y: [15..100]

x: [10,100]

y: [1..10]
FAILUREx<y

• Fails if domains are inconsistent

• Prunes the model by removing trivially satisfied constraints

• Removes inapplicable values from domains
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• A more interesting example

x:[1..100], y:[1..100], x<y && x*x<300 && x+y>40 x:[1..17], y:[24..100], x+y>40

• IntelliGen includes propagation algorithms for

– Relations == != < > <= >=

– Boolean logic and or not => ?:

– Arithmetic + – * / %

– Bitwise operations << >> | & ~

– Arrays (global) constr. my_list.all_different() 

– Pointers, strings, etc. (p==p1 or p==p2 or p==NULL)

More On Propagation 
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The Hybrid Domain Representation 

• Problem: intervals are inadequate for 

representing bitwise information

– The interval representation the domain of x is 
[0..2,4..6,8..10,12..14…] 

– interval representation has a billion fragments!!!

– … and bitmask representation can‟t help!

• Solution: 

– Use a hybrid domain representation combining 

intervals and BDDs

– Do lazy updates between the two

x: uint;

keep x[1:0] != 0b11;
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• Assume a binary constraint c(x,y) represented by a BDD

• Assume two domains d(x) and d(y) of x and y

• The updated domains d‟(x) and d‟(y) are computed as

• The propagation fails if we get FALSE in any conjunction

• The propagator becomes redundant if 

• Straightforward extension to any number of variables

BDD Propagation [Lagoon and Stuckey, CP’04]
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• Heuristic choice of variable/value

– Take into account domain size, role, connectivity, etc.

• Smart graph-based backtrack mechanisms

– Save only the relevant domains before each assignment

– Save on backtracking through independent sub-graphs

• Restarts

• Local and global backtrack limits

– Get out of unproductive corners of the hyperspace quickly

– Stop and signal an error rather than take forever in search

Many Refinements of the Search Mechanism
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• The types of “constraint bugs”

1. It can‟t find me a solution

2. It finds a solution with unexpected values 

3. It never finds a solution with expected values

4. It takes way too long/forever to find a solution

• The main principles of constraint debugging

– Visualization

• See the information you need in a clear and accessible way

– Navigation

• Get to the information you need

– Minimization

• See only the relevant information

Gen Debugger 
[Alexandron, Lagoon, Naveh and Rich, HVC’09]
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Visualization

Menu Bar

Process 
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• Re-use the standard concepts of procedural debugging
– Generation breakpoints / trace-points

• Stop at any solving step, or at a specific partition, data type, object,  
field, variable, etc.

– Step-by-step debugging

• Step through atomic operations of the FD solver: propagation, 
assignment, backtrack

• Walk into or walk over the generation of nested objects

• Continue to the end of the context or to the next breakpoint

• GUI
– See the hierarchy of objects, the time line of the generation, the 

relevant variables, and constraints, the source code

– Access all constraints of a variable, all variables of a constraint, 
all past steps for a variable

GenDebugger: Navigation
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• It is essential to minimize explanations:

– In debugger, explaining propagations

– In error messages explaining infeasibility

• Conservative minimization

– Mark only the constraints that caused 
domain changes or failure

+ Does not cost anything

+ Sufficient in most cases

Explanations may have redundancy

• Aggressive minimization

– Try to remove constraints one by one

+ Produces a minimal set

Significant performance overhead

GenDebugger: Minimization

struct my_data {

x : uint;

y : uint;

z : uint;

keep x[4:0] == 0b11111;

keep x<y;

keep y<z;

keep x+y<20;

keep x+z<20;

};
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• Verification is important

• Testing/simulation is (still) the main workhorse of 
verification

• CP is the backbone of today‟s test generation

• The requirements differ from the “classic” CP
– Problems are often easy (not much search)

– Problems are often HUGE (hundreds of thousands elements)

– Many random solutions required

– Need to support many data types, including non-scalar

• There is no “best” constraint solving technology
– Need to combine FD, BDD, SAT, etc. in a unified framework

– Make different technologies benefit from each other

• Constraint debugging and debuggers are necessary

– But mostly overlooked by the research community

Conclusion
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Questions
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