
IN
V

E
N

T
IV

E

Vitaly Lagoon

(lagoon@cadence.com)

Constraint-Based Test
Generation

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Cadence

– One of the three major EDA (Electronics Design Automation)

companies

– Established in 1988, over 4000 employees

– Wide variety of technologies and products in

• Hardware design (inc. logic synthesis, power, timing, routing, etc.)

• Hardware simulation

• Formal and simulation-based verification

– Never heard about us? You surely heard about our customers.

• Intel, Cisco, TI, Canon, Phillips, Samsung, Nokia, …

A Word About Cadence

© 2012 Cadence Design Systems, Inc. All rights reserved.

Motivation

Chip complexity grows, and so does

• the likelihood of HW bugs

• the cost of HW bugs

• the need for verification

• investment in verification

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Intel FDIV, 1994, ~$475M

• Intel Sandy Bridge, 2011, ~$1B

The Cost of HW Bugs

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Formal verification

+ Proves properties of a HW design

+ Substantial improvements in performance, capacity and scalability
in the last few years

 Improvements in SAT solvers

 New approaches using abstraction and Solving Modulo Theories (SMT)

Cannot verify (yet?) a full system, only individual units

Verification environment cannot be reused for post-silicone testing

• Simulation-based verification

+ High capacity and scalability

+ Verification environment can be reused for post-silicone testing

+ Easy to use

Experimentally verifies properties of a HW design

• ~80% of bugs in HW logics are still found through simulation

Formal vs. Simulation

© 2012 Cadence Design Systems, Inc. All rights reserved.

Specman™Specman™

Stimuli

Generation

IntelliGen

Data and

Assertion

Checkers

Signal Interface

DUT

(HDL)

Coverage

Monitor

Verification by Simulation

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Cadence‟s major test bench automation tool

• Being used in the biggest and most advanced

verification environments

• Works with all HDL simulators

• Uses e verification language [Hollander,Morley,Noy „01]

http://en.wikipedia.org/wiki/Specman

Specman

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Constraint solver / test generator of Specman

– Generates randomized tests based on constraint models

• Variety of data types:

– signed/unsigned numeric, Boolean, string, arrays, pointers

• Variety of constraints:

– arithmetic, logic, bit-wise, soft constraints, global constraints on

arrays

• Based on an FD-core

– Also integrates a few variations of BDD and SAT

• Includes a visual constraint debugger

IntelliGen

8

© 2012 Cadence Design Systems, Inc. All rights reserved.

Random Test Generation in Specman/e

struct CPU_instruction {

opcode : [LDA, STA, ADD, SUB,

JMP, JGE, JNE, STP](bits:4);

operand : uint(bits:12);

keep opcode == STA => operand > 1023;

};

struct CPU_test {

program : list of CPU_instruction;

sz : uint[10..20];

keep program.size()==sz;

keep program[sz-1].opcode==STP;

keep for each (instr) in program {

index<sz-1 => instr.opcode != STP;

instr.opcode in [JMP, JGE, JNE] =>

instr.operand<sz;

};

};

Specman > print my_test1.program

my_test1.program =

item type opcode operand

0. instruction JMP 6

1. instruction JMP 11

2. instruction ADD 2301

3. instruction JGE 1

4. instruction SUB 312

5. instruction LDA 2603

6. instruction JMP 7

7. instruction JGE 11

8. instruction JNE 4

9. instruction STA 3913

10. instruction JMP 12

11. instruction SUB 1783

12. instruction LDA 2035

13. instruction ADD 1310

14. instruction JNE 15

15. instruction JMP 12

16. instruction LDA 3258

17. instruction STP 3964

In
te

lli
G

e
n

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Powerful and flexible constraint language
– Mixed integer and bitwise models

– Mixed declarative and procedural code in models (function calls)

– Non-scalar data: structures, arrays, strings

– Soft constraints for modeling preferences

– Directives for controlling randomness and distribution

• High scalability
– Huge models (hundreds of thousands variables and constraints)

– Solving the same problem many times (long runs)

• Find many random solutions
– Try to meet distribution requirements

– Be random-stable as much as possible

• Typical problems are not hard
– Extensive search is usually not required

– Backtracks typically indicate bad modeling

IntelliGen.
The Requirements

© 2012 Cadence Design Systems, Inc. All rights reserved.

• There is no “best” solving technology.

– A combined approach is required in practice

• BDD

+ Bit-level, fast, complete control over the distribution

Capacity problems

• SAT

+ Fast, scalable

Translation to CNF is expensive, limited control of randomness

• Finite-Domain solver

+ Word-level, fast, scalable, extendable

Limited control over distribution

Bad in proving UNSAT

• Local Search / SMT / ILP… ?

IntelliGen.
The Integrated Framework of Solvers

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Build the BDD once

• Generate solutions as random walks

from the root to TRUE

+ Good performance when generating

many solutions

+ Complete control over the distribution

Limited capacity

Very sensitive to the order of variables

Infeasible for some types of constraints

Solving Technologies: BDD

<a3,a2,a1,a0> ≤ <b3,b2,b1,b0>

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Convert the constraint model to a CNF

• Give it to a state-of-the-art SAT solver

+ High capacity

+ High performance

+ Improvements are free

Randomization is tricky, no guarantee of
distribution

High bootstrap cost

Loss of high-level context:
– Role and association of bits

– No GAC (loss of propagation) e.g., all-different

– [Bessiere, Katsirelos, Narodytska, Walsh, 09]

Solving Technologies: SAT

)(

)(

)(

)(

)(

)(

)(

)(

)(

)(

000

011

011

111

122

122

222

23

23

33

bar

rbr

rar

bar

rbr

rar

bar

rb

ra

ba





















<a3,a2,a1,a0> ≤ <b3,b2,b1,b0>

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Maintain domains of variables as sets of intervals
– x : [1..100], y : [1,3,5..8]; z : [1..100,1000..2000];

• Use propagators to enforce domain consistency

• Combine search and propagation

• Randomize the choice of variables and values

+ Cheap on simple problems

+ Scales very well to large problems

+ Word-level processing
– Easy to extend: new constraints, global constraints, randomization policies

– Easy to explain e.g., in constraint debugger

Limited control over randomness and distribution

Bad in proving UNSAT

Solving Technologies: FD Solver

© 2012 Cadence Design Systems, Inc. All rights reserved.

SolveSolve(V,C) : [TRUE, FALSE]

if all variables in V are assigned then return TRUE

choose an unassigned variable x in V

repeat

choose a value k from the domain of x‏

if PropagatePropagate(V·[x/k], C) && SSolveolve(V, C) then

return TRUE

else

undo the last reduction

remove k from the domain of x

until range of x is empty

return FALSE

IntelliGen’s FD Solver

© 2012 Cadence Design Systems, Inc. All rights reserved.

Propagation

x<y
x: [1..100]

y: [1..100]

x: [1..99]

y: [2..100]

x<y
x: [1..10,100]

y: [15..100]

x: [1..10]

y: [15..100]

x: [10,100]

y: [1..10]
FAILUREx<y

• Fails if domains are inconsistent

• Prunes the model by removing trivially satisfied constraints

• Removes inapplicable values from domains

© 2012 Cadence Design Systems, Inc. All rights reserved.

• A more interesting example

x:[1..100], y:[1..100], x<y && x*x<300 && x+y>40 x:[1..17], y:[24..100], x+y>40

• IntelliGen includes propagation algorithms for

– Relations == != < > <= >=

– Boolean logic and or not => ?:

– Arithmetic + – * / %

– Bitwise operations << >> | & ~

– Arrays (global) constr. my_list.all_different()

– Pointers, strings, etc. (p==p1 or p==p2 or p==NULL)

More On Propagation

© 2012 Cadence Design Systems, Inc. All rights reserved.

The Hybrid Domain Representation

• Problem: intervals are inadequate for

representing bitwise information

– The interval representation the domain of x is
[0..2,4..6,8..10,12..14…]

– interval representation has a billion fragments!!!

– … and bitmask representation can‟t help!

• Solution:

– Use a hybrid domain representation combining

intervals and BDDs

– Do lazy updates between the two

x: uint;

keep x[1:0] != 0b11;

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Assume a binary constraint c(x,y) represented by a BDD

• Assume two domains d(x) and d(y) of x and y

• The updated domains d‟(x) and d‟(y) are computed as

• The propagation fails if we get FALSE in any conjunction

• The propagator becomes redundant if

• Straightforward extension to any number of variables

BDD Propagation [Lagoon and Stuckey, CP’04]

 
x

ydyxcxdxd)(),()()(' 

 
y

xdyxcydyd)(),()()(' 

),()()(yxcydxd 

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Heuristic choice of variable/value

– Take into account domain size, role, connectivity, etc.

• Smart graph-based backtrack mechanisms

– Save only the relevant domains before each assignment

– Save on backtracking through independent sub-graphs

• Restarts

• Local and global backtrack limits

– Get out of unproductive corners of the hyperspace quickly

– Stop and signal an error rather than take forever in search

Many Refinements of the Search Mechanism

© 2012 Cadence Design Systems, Inc. All rights reserved.

• The types of “constraint bugs”

1. It can‟t find me a solution

2. It finds a solution with unexpected values

3. It never finds a solution with expected values

4. It takes way too long/forever to find a solution

• The main principles of constraint debugging

– Visualization

• See the information you need in a clear and accessible way

– Navigation

• Get to the information you need

– Minimization

• See only the relevant information

Gen Debugger
[Alexandron, Lagoon, Naveh and Rich, HVC’09]

© 2012 Cadence Design Systems, Inc. All rights reserved.

Visualization

Menu Bar

Process
Tree

Variables
Pane

Constraints
Pane

Generated
Tree

Details Pane

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Re-use the standard concepts of procedural debugging
– Generation breakpoints / trace-points

• Stop at any solving step, or at a specific partition, data type, object,
field, variable, etc.

– Step-by-step debugging

• Step through atomic operations of the FD solver: propagation,
assignment, backtrack

• Walk into or walk over the generation of nested objects

• Continue to the end of the context or to the next breakpoint

• GUI
– See the hierarchy of objects, the time line of the generation, the

relevant variables, and constraints, the source code

– Access all constraints of a variable, all variables of a constraint,
all past steps for a variable

GenDebugger: Navigation

© 2012 Cadence Design Systems, Inc. All rights reserved.

• It is essential to minimize explanations:

– In debugger, explaining propagations

– In error messages explaining infeasibility

• Conservative minimization

– Mark only the constraints that caused
domain changes or failure

+ Does not cost anything

+ Sufficient in most cases

Explanations may have redundancy

• Aggressive minimization

– Try to remove constraints one by one

+ Produces a minimal set

Significant performance overhead

GenDebugger: Minimization

struct my_data {

x : uint;

y : uint;

z : uint;

keep x[4:0] == 0b11111;

keep x<y;

keep y<z;

keep x+y<20;

keep x+z<20;

};

© 2012 Cadence Design Systems, Inc. All rights reserved.

• Verification is important

• Testing/simulation is (still) the main workhorse of
verification

• CP is the backbone of today‟s test generation

• The requirements differ from the “classic” CP
– Problems are often easy (not much search)

– Problems are often HUGE (hundreds of thousands elements)

– Many random solutions required

– Need to support many data types, including non-scalar

• There is no “best” constraint solving technology
– Need to combine FD, BDD, SAT, etc. in a unified framework

– Make different technologies benefit from each other

• Constraint debugging and debuggers are necessary

– But mostly overlooked by the research community

Conclusion

© 2012 Cadence Design Systems, Inc. All rights reserved.

Questions

© 2012 Cadence Design Systems, Inc. All rights reserved.

