The Parikh image of languages and linear constraints

Peter.Habermehl@liafa.univ-paris-diderot.fr¹

¹LIAFA, Université Paris Diderot, Sorbonne Paris Cité, CNRS

CP meets CAV, Turunç

June 28th, 2012

Overview

- Parikh image
- The Parikh image of the language of a finite-state automaton
- Some applications

The Parikh image of a language

- Let $\Sigma = \{a_1, \ldots, a_n\}$. Let $L \subseteq \Sigma^*$ be a language.
- The Parikh image of any w ∈ Σ* is defined as σ(w) = (x₁,...,x_n) such that x_i = w|_{ai} for all i ∈ {1,...,n}.
- The Parikh image $\sigma(L)$ of L is defined as $\{\sigma(w) \mid w \in L\}$.
- Examples:

•
$$\sigma((ab)^*) = \{(x_1, x_2) \mid x_1 = x_2\}$$

- $\sigma(\{a^n b^n \mid n \ge 0\}) = \{(x_1, x_2) \mid x_1 = x_2\}$
- $\sigma(\{a^n b^n c^n \mid n \ge 0\}) = \{(x_1, x_2, x_3) \mid x_1 = x_2 = x_3\}$
- $\sigma((aa)^*) = \{(x_1) \mid x_1 \text{ is divisible by } 2\} = \{\exists k.k \ge 0 \land 2 * k = x_1\}$
- etc.

Parikh's theorem, Presburger arithmetic and semilinear sets

Theorem 1 (Parikh JACM 66)

Every context-free language L has a Parikh image definable by a formula of Presburger arithmetic.

- Presburger arithmetic: first-order logic over integers with addition and equality
- corresponds to quantifier free formulae with linear (x i ≤ d) and modulo constraints (i x ≡_c d)
- corresponds to semilinear sets
 - A subset of \mathbb{N}^n is called *linear* if it can be written as (for some $m \ge 0$)

$$\vec{v_0} + \mathbb{N}\vec{v_1} + \ldots + \mathbb{N}\vec{v_m}$$

 $(\vec{v_0} \text{ is the } base \text{ vector and } \vec{v_i} \text{ the period vectors})$

• A subset of \mathbb{N}^n is called *semilinear* if it is a finite union of linear sets.

The Parikh image of an automaton

- Let $A = (Q, \Sigma, \delta, q_0, F)$ be an automaton
- We will give an existential Presburger formula φ_A defining the Parikh image of L(A) whose size is linear in the size of A [Seidl et al. ICALP 2004]
- Example:

Consistent flow

 A flow of A = (Q, Σ, δ, q₀, {q_f}) is a function F which maps triples (p, a, q) with q ∈ δ(p, a) to natural numbers. We write

$$\mathit{in}_F(q) = \sum_{\substack{p \in Q, a \in \Sigma \\ q \in \delta(p, a)}} F(p, a, q) \hspace{0.2cm} ext{and} \hspace{0.2cm} out_F(p) = \sum_{\substack{p \in Q, a \in \Sigma \\ q \in \delta(p, a)}} F(p, a, q)$$

• A flow F is *consistent* if, for each $p \in Q$, one of the following holds

Connectedness

 $t_1 = 1, t_3 = 5, t_4 = 1, t_6 = 3, t_7 = 3$ is a consistent flow. Therefore consistency is not enough.

- A state p occurs in F if $p \in \{q_0, q_f\}$ or $in_F(p) > 0$
- A flow is *connected* if the directed graph G which has the occurring states as vertices and has edges {(p, q) | F(p, a, q) > 0, for some a ∈ Σ} is connected.

The Parikh image of an automaton

Lemma 2

A vector $(x_1, ..., x_n)$ is in the Parikh image of A iff there is a consistent and connected flow F such that

• for each
$$\mathsf{a}_i \in \Sigma$$
, $\mathsf{x}_i = \sum_{p,q \in \delta(p, \mathsf{a})} F(p, \mathsf{a}, q)$

- We can construct a formula φ'_A with free variables t_(p,a,q) where p, q ∈ Q, a ∈ Σ and q ∈ δ(p, a) which characterizes all consistent and connected flows.
- φ'_A is a conjunction of ψ_A and ϕ_A where ψ_A corresponds to all consistent flows and ϕ_A checks that they are connected.
- ψ_A is easy to give

Example

state 1:
$$1 = t_1 + t_2$$

state 2: $t_1 + t_3 = t_3 + t_4$
state 3: $t_2 + t_7 = t_6 + t_5$
state 4: $t_6 = t_7$
state 5: $t_4 + t_5 = 1$

What about connectedness ?

- One could give constraints saying that for each transition taken, there is a path to it composed of transitions taken.
 ⇒ exponential
- The graph G is connected iff we can label each node of G by a natural number such that
 - ▶ The initial state *q*⁰ gets 0
 - Each other node gets a number > 0
 - ► Each node of *G* different from *q*₀ has a neighbour in *G* with a smaller number
- We can give a linear size formula ϕ_A for that
- Finally, φ_A is given as

$$\exists (t_{p,a,q})_{q \in \delta(p,a)} \phi_A \land \psi_A \land \bigwedge_{a_i \in \Sigma} x_i = \sum_{p,q} t_{p,a,q}$$

Computing the Parikh image using semilinear sets I

- Fix an automaton A with alphabet $\Sigma = \{a_1, \dots, a_n\}$
- Each transition with letter a_i of an automaton corresponds to a vector $\vec{v} = (v_1, \dots, v_n)$ where $n = |\Sigma|$ and $v_j = 0$ for $j \neq i$ and $v_i = 1$
- One can define generalized transitions obtained by concatenation, union and the star operator (regular expressions)
- Instead of computing a regular expression equivalent to A (this is a standard algorithm) one can compute a representation of the Parikh image of A by replacing concatenation, union and star by the corresponding operations on sets of Parikh images.
 - ▶ for example concatenation corresponds to addition $(aab(b^* + (aabbb)^*).ab(bbb)^*)$ $((2,1) + \mathbb{N}(0,1) + \mathbb{N}(2,3)) \oplus ((1,1) + \mathbb{N}(0,3)) =$ $(3,2) + \mathbb{N}(0,1) + \mathbb{N}(2,3) + \mathbb{N}(0,3)$

Computing the Parikh image using semilinear sets II

- Fix an automaton A with k states and alphabet $\Sigma = \{a_1, \ldots, a_n\}$.
- Let $||\vec{v}||_{\infty}$ be the sum of all components of \vec{v} .

Lemma 3 (Xie, Ling, Dang, CIAA 03)

The Parikh image of A is a union of linear sets Q_i . Each Q_i is of the form $\vec{v_0} + \mathbb{N}\vec{v_1} + \ldots + \mathbb{N}\vec{v_m}$ where

•
$$||\vec{v_0}||_{\infty} \leq k^2$$

•
$$||ec{v_j}||_\infty \leq k$$
 for $1\leq j\leq m$

•
$$m \leq k^n$$

see also [Kopczynski, Widjaja To, LICS 2010]

Context-free grammars

- or tree-automata
- The construction of a PA formula can be easily generalized [Verma et al., CADE 2005]
- Example:
 - $1: S \rightarrow AB, 2: S \rightarrow BC$
 - $3: A \rightarrow DAAA, 4: B \rightarrow a$
 - $5: D \rightarrow b, 6: C \rightarrow CC, 7: C \rightarrow c$
 - One variable for each production
 - One constraint for each non-terminal
 - $S: t_1 + t_2 = 1, A: t_3 = 3 * t_3 + t_1, B: t_4 = t_1 + t_2$
 - $C: t_6 + t_7 = t_2 + 2 * t_6, D: t_5 = t_3$
 - Plus connectedness
- One can construct from a CFG an automaton with the same Parikh image [Esparza et al. IPL 11]

Applications

- Reversal bounded counter automata
- Constraint automata
- Combining theories with BAPA
 - $\blacktriangleright \mathsf{WS1S} \to \mathsf{automata} \to \mathsf{Parikh} \mathsf{ image}$
- Several works on verification of concurrent systems

• etc.

Reversal bounded counter automata [Ibarra JACM 78]

- An RBCA is an automaton A_R equipped with n counters
 - Counters can be incremented, decremented and tested for 0
- Only runs of the automaton where the number of reversals between increasing and decreasing of the counter is bounded by a fixed constant k are taken into account
- k can be reduced to 1 by adding additional counters

Reachability of an RBCA is decidable

• Reachability of an RBCA A_R is decidable

- Construct finite-state automaton A'_R from A_R by replacing
 - increments of counter i by inci
 - decrements of counter i by deci
 - * A'_R has alphabet $\{inc_1, dec_1, \dots, inc_n, dec_n\}$
 - ★ guess when each counter is 0
- check that

 $\sigma(A'_R) \cap \{(x_1, x_2, \dots, x_{2n-1}, x_{2n}) \mid x_1 = x_2 \land \dots \land x_{2n-1} = x_{2n}\} \text{ is not empty}$

Constraint automata

- There are lots of variations of the basic theme.
- A CA (A, φ) is a finite-state automaton A together with a Presburger formula φ(x₁,...,x_n).
- φ constrains the number of times letters of A appear.
- $w \in L((A, \varphi))$ iff $w \in L(A)$ and $\sigma(w) \models \varphi$
 - ▶ can accept languages like $\{a^n b^n \mid n \ge 0\}$
- If we allow union of CA, then this class of automata is closed under union, intersection, negation, determinisation
- A transition CA is a finite-state automaton A together with a Presburger formula which constraints the number of times transitions are taken in an accepting run.
 - can accept languages like $\{a^n b^n a^m b^m \mid n, m \ge 0\}$
 - correspond to RBCA
- Transition CA are not closed under determinisation and complementation

Conclusion

- Parikh image: fundamental concept for language theory, verification
- An existentially quantified Presburger formula of linear size can be obtained for automata and CFG
- Is satisfiability of these formulae together with additional constraints efficiently solvable in practice ?
- A systematic study of the practical complexity has yet to be done