Logic, Infinite Computation, Coinduction, Real-time,

Gopal Gupta

Neda Saeedloei, Brian DeVries, Kyle Marple, Feliks Kluzniak, Luke Simon, Ajay Bansal, Ajay Mallya, Richard Min

Applied Logic, Programming-Languages and Systems (ALPS) Lab

The University of Texas at Dallas

Circular Phenomena in Comp. Sci.

- Circularity has dogged Mathematics and Computer Science ever since Set Theory was first developed:
 - The well known Russell's Paradox:
 - R = { x | x is a set that does not contain itself}
 Is R contained in R? Yes and No
 - Liar Paradox: I am a liar
 - Hypergame paradox (Zwicker & Smullyan)
- All these paradoxes involve self-reference through some type of negation
- Russell put the blame squarely on circularity and sought to ban it from scientific discourse:
 - "Whatever involves all of the collection must not be one of the collection" -- Russell 1908

Circularity in Computer Science

- Following Russell's lead, Tarski proposed to ban selfreferential sentences in a language
- Rather, have a hierarchy of languages
- Kripke's challenged this in a1975 paper: argued that circular phenomenon are far more common and circularity can't simply be banned.
- Circularity has been banned from automated theorem proving and logic programming through the occurs check rule:
 - An unbound variable cannot be unified with a term containing that variable (i.e., X = f(X) not allowed)
- What if we allowed such unification to proceed (as LP systems always did for efficiency reasons)?

Circularity in Computer Science

 If occurs check is removed, we'll generate circular (infinite) structures:

$$X = [1,2,3 \mid X]$$
 $X = f(X)$

- Such structures, of course, arise in computing (circular linked lists), but banned in logic/LP.
- Subsequent LP systems did allow for such circular structures (rational terms), but they only exist as data-structures, there is no proof theory to go along with it.
 - One can hold the data-structure in memory within an LP execution, but one can't reason about it.

Circularity in Everyday Life

- Circularity arises in every day life
 - Most natural phenomenon are cyclical
 - Cyclical movement of the earth, moon, etc.
 - Our digestive system works in cycles
 - Social interactions are cyclical:
 - Conversation = (1st speaker, (2nd Speaker, Conversation)
 - Shared conventions are cyclical concepts
- Numerous other examples can be found elsewhere (Barwise & Moss 1996)

Circularity in Computer Science

- Circular phenomenon are quite common in Computer Science:
 - Circular linked lists
 - Graphs (with cycles)
 - Controllers (run forever)
 - Bisimilarity
 - Interactive systems
 - Automata over infinite strings/Kripke structures
 - Perpetual processes
- Logic/LP not equipped to model circularity directly

Coinduction

- Circular structures are infinite structures
 X = [1, 2 | X] is logically speaking X = [1, 2, 1, 2,]
- Proofs about their properties are infinite-sized
- Coinduction is the technique for proving these properties
 - first proposed by Peter Aczel in the 80s
- Systematic presentation of coinduction & its application to computing, math. and set theory: "Vicious Circles" by Moss and Barwise (1996)
- Our focus: inclusion of coinductive reasoning techniques in C/LP (and theorem proving), and its applications to verfication and reasoning

Induction vs Coinduction

- Induction is a mathematical technique for finitely reasoning about an infinite (countable) no. of things.
- Examples of inductive structures:

```
Naturals: 0, 1, 2, ...Lists: [], [X], [X, X], [X, X, X], ...
```

- 3 components of an inductive definition:
 - (1) Initiality, (2) iteration, (3) minimality
 - for example, the set of lists is specified as follows:
 [] an empty list is a list (initiality)(i)
 [H | T] is a list if T is a list and H is an element (iteration) ..(ii) minimal set that satisfies (i) and (ii) (minimality)

Induction vs Coinduction

- Coinduction is a mathematical technique for (finitely) reasoning about infinite things.
 - Mathematical dual of induction
 - If all things were finite, then coinduction would not be needed.
 - Perpetual programs, automata over infinite strings
- 2 components of a coinductive definition:
 - (1) iteration, (2) maximality
 - for example, for a list:
 [H | T] is a list if T is a list and H is an element (iteration).
 Maximal set that satisfies the specification of a list.
 - This coinductive interpretation specifies all infinite sized lists

Example: Natural Numbers

- $\Gamma_N(S) = \{ 0 \} \cup \{ succ(x) \mid x \in S \}$
- Inductive interpretation
 - $-N = \mu \Gamma_N$
 - corresponds to least fix point interpretation
- Coinductive interpretation
 - $-N' = v\Gamma_N = N \cup \{\omega\}$
 - $-\omega = succ(succ(succ(...))) = succ(\omega) = \omega + 1$
 - corresponds to greatest fixed point interpretation.

Mathematical Foundations

 Duality provides a source of new mathematical tools that reflect the sophistication of tried and true techniques.

Definition	Proof	Mapping
Least fixed point	Induction	Recursion
Greatest fixed point	Coinduction	Corecursion

Co-recursion: recursive def'n without a base case

Applications of Coinduction

- model checking
- bisimilarity proofs
- lazy evaluation in FP
- reasoning with infinite structures
- perpetual processes
- cyclic structures
- operational semantics of "coinductive logic programming"
- Type inference systems for lazy functional languages

Inductive C/LP

- (Constraint) Logic Programming
 - is actually inductive C/LP.
 - has inductive definition.
 - useful for writing programs for reasoning about finite things:
 - data structures
 - properties

Infinite Objects and Properties

- Traditional logic programming is unable to reason about infinite objects and/or properties.
- (The glass is only half-full)
- Example: perpetual binary streams
 - traditional logic programming cannot handle

```
bit(0).
bit(1).
bitstream([H|T]):-bit(H), bitstream(T).
|?-X = [0, 1, 1, 0 | X], bitstream(X).
```

Goal: Combine traditional LP with coinductive LP

Overview of Coinductive LP

- Coinductive Logic Program is

 a definite program with maximal co-Herbrand model declarative semantics.
- Declarative Semantics: across the board dual of traditional LP:
 - greatest fixed-points
 - terms: co-Herbrand universe U^{co}(P)
 - atoms: co-Herbrand base B^{co}(P)
 - program semantics: maximal co-Herbrand model M^{co}(P).

Operational Semantics: co-SLD Resolution

- nondeterministic state transition system
- states are pairs of
 - a finite list of syntactic atoms [resolvent] (as in Prolog)
 - a set of syntactic term equations of the form x = f(x) or x = t
 - For a program p :- p. => the query |?- p. will succeed.
 - p([1|T]):-p(T). => |?-p(X) to succeed with X= [1|X].
- transition rules
 - definite clause rule
 - "coinductive hypothesis rule"
 - if a coinductive goal G is called, and G unifies with a call made earlier then G succeeds.

Correctness

- Theorem (soundness). If atom A has a successful co-SLD derivation in program P, then E(A) is true in program P, where E is the resulting variable bindings for the derivation.
- Theorem (completeness). If A ∈ M^{co}(P) has a rational proof, then A has a successful co-SLD derivation in program P.
 - Completeness only for rational/regular proofs

Implementation

- Search strategy: hypothesis-first, leftmost, depth-first
- Meta-Interpreter implementation.

- A complete meta-interpreter available
- Implementation on top of YAP, SWI Prolog available
- Implementation within Logtalk + library of examples

Example: Number Stream

```
:- coinductive stream/1.
stream([H|T]):-num(H), stream(T).
num(0).
num(s(N)):-num(N).
|?-stream([0, s(0), s(s(0)) | T]).
        1. MEMO: stream([0, s(0), s(s(0))|T])
        2. MEMO: stream([s(0), s(s(0))|T])
        3. MEMO: stream([s(s(0))|T])
                  stream(T)
Answers:
T = [0, s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)), s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)) | T] \dots
T = [0, s(0), s(s(0)) | X] (where X is any rational list of numbers.)
```

Example: Append

```
:- coinductive append/3.
append([], X, X).
append( [ H | T ], Y, [ H | Z ] ) :- append( T, Y, Z ).
    |?-Y = [4, 5, 6 | Y], append([1, 2, 3], Y, Z).
      Answer: Z = [1, 2, 3 | Y], Y = [4, 5, 6 | Y]
    |?-X = [1, 2, 3 | X], Y = [3, 4 | Y], append(X, Y, Z).
      Answer: Z = [1, 2, 3 | Z].
    |?-Z = [1, 2 | Z], append(X, Y, Z).
      Answer: X = [], Y = [1, 2 | Z]; X = [1, 2 | X], Y = \_
               X = [1], Y = [2|Z];
               X = [1, 2], Y = Z; .... ad infinitum
```

Example: Comember

```
member(H, [H|T]).
member(H, [X | T]) :- member(H, T).
   ?- L = [1,2 | L], member(3, L). succeeds.
                                               Instead:
:- coinductive comember/2. %drop/3 is inductive
comember(X, L) := drop(X, L, R), comember(X, R).
drop(H, [H|T], T).
drop(H, [X | T], T1) :- drop(H, T, T1).
?- X=[ 1, 2, 3 | X ], comember(2,X).
                                         ?-X = [1,2 \mid X], comember(3, X).
   Answer: yes.
                                               Answer: no
?- X=[ 1, 2, 3, 1, 2, 3], comember(2, X).
  Answer: no.
?-X=[1, 2, 3 | X], comember(Y, X).
  Answer: Y = 1:
           Y = 2:
           Y = 3:
```

Co-Logic Programming

- combines both halves of logic programming:
 - traditional logic programming
 - coinductive logic programming
- syntactically identical to traditional logic programming, except predicates are labeled:
 - Inductive, or
 - coinductive
- and stratification restriction enforced where:
 - inductive and coinductive predicates cannot be mutually recursive. e.g.,

p:-q.

q:-p.

Program rejected, if p coinductive & q inductive

Application of Co-LP

- Co-LP allows one to compute both LFP & GFP
- Computable functions can be specified more elegantly
 - Interepreters for Modal Logics can be elegantly specified:
 - Model Checking: LTL interpreter elegantly specified
 - Timed ω-automata: elegantly modeled and properties verified
 - Modeling/Verification of Cyber Physical Systems/Hybrid automata
 - Goal-directed execution of Answer Set Programs
 - Goal-directed SAT solvers (Davis-Putnam like procedure)
 - Planning under real-time constraints
 - Operational semantics of the π -calculus (incl. timed π -calculus)
 - infinite replication operator modeled with co-induction

Co-LP allows systems to be modeled naturally & elegantly

Application: Model Checking

- automated verification of hardware and software systems
- ω-automata
 - accept infinite strings
 - accepting state must be traversed infinitely often
- requires computation of Ifp and gfp
- co-logic programming provides an elegant framework for model checking
- traditional LP works for safety property (that is based on lfp) in an elegant manner, but not for liveness.

Safety versus Liveness

Safety

- "nothing bad will happen"
- naturally described inductively
- straightforward encoding in traditional LP

liveness

- "something good will eventually happen"
- dual of safety
- naturally described coinductively
- straightforward encoding in coinductive LP

Finite Automata

```
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([], St):- final(St).

trans(s0, a, s1). trans(s1, b, s2). trans(s2, c, s3).
trans(s3, d, s0). trans(s2, 3, s0). final(s2).

?- automata(X,s0).
X=[a, b];
X=[a, b, e, a, b];
X=[a, b, e, a, b, e, a, b];
```

Infinite Automata

automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1). trans(s1,b,s2). trans(s2,c,s3).

trans(s3,d,s0). trans(s2,3,s0). final(s2).

?- automata(X,s0).

X=[a, b, c, d | X];

 $X=[a, b, e \mid X];$

Verifying Liveness Properties

- Verifying safety properties in LP is relatively easy: safety modeled by reachability
- Accomplished via tabled logic programming
- Verifying liveness is much harder: a counterexample to liveness is an infinite trace
- Verifying liveness is transformed into a safety check via use of negations in model checking and tabled LP
 - Considerable overhead incurred
- Co-LP solves the problem more elegantly:
 - Infinite traces that serve as counter-examples are produced as answers

Verifying Liveness Properties

- Consider Safety:
 - Question: Is an unsafe state, Su, reachable?
 - If answer is yes, the path to Su is the counter-ex.
- Consider Liveness, then dually
 - Question: Is a state, D, that should be dead, live?
 - If answer is yes, the infinite path containing D is the counter example
 - Co-LP will produce this infinite path as the answer
- Checking for liveness is in a manner similar to safety

Nested Finite and Infinite Automata


```
:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,
                                state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):-error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work.
          enter. repeat. exit. error.
work: - work.
|?- state(s0,X), absent(s2,X).
   X=[s0, s3 | X]
```

An Interpreter for LTL

%--- nots have been pushed to propositions: tabled verify/2.

```
verify(S, [S], A):-proposition(A), holds(S,A).
                                                         % p
verify(S, [S], not(A)) :- proposition(A), \+holds(S,A).
                                                        % not(p)
verify(S,P, or(A,B)):- verify(S, P, A); verify(S, P, B). %A or B
verify(S,P, and(A,B)):- verify(S,P1, A), verify(S,P2, B). %A and B
          (prefix(P2, P1), P=P1; prefix(P2,P1), P=P2)
verify(S, [S|P], x(A)) := trans(S, S1), verify(S1, P, A).
                                                         % X(A)
verify(S, P, f(A)) := verify(S, P, A); verify(S, P, x(f(A))).
                                                          % F(A)
verify(S, P, g(A)) := coverify(S, P, g(A)).
                                                          % G(A)
verify(S, P,u(A,B)) :- verify(S, P,B);
                   verify(S, P,and(A, x(u(A,B)))).
                                                          % A u B
verify(S, r(A,B)) := coverify(S, r(A,B)).
                                                           % ArB
:- coinductive coverify/2.
coverify(S, g(A)):- verify(S, P, and(A, x(g(A))).
coverify(S, r(A,B)):- verify(S, P, and(A,B)).
coverify(S, r(A,B)) :- verify(S, P, and(B, x(r(A,B)))).
```


Timed Automata

- ω-automata w/ time constrained transitions & stopwatches
- straightforward encoding into CLP(R) + Co-LP
- Assumption: no concurrent events

:- use_module(library(clpr)).

:- coinductive driver/9.

train(X, up, X, T1,T2,T2). % up=idle train(s0,approach,s1,T1,T2,T3):-{T3=T1}. train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2} train(s2,out,s3,T1,T2,T3). train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}. train(X,lower,X,T1,T2,T2). train(X,down,X,T1,T2,T2). train(X,raise,X,T1,T2,T2).

contr(s0,approach,s1,T1,T2,T1).

contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.

contr(s2,exit,s3,T1,T2,T1).

contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.

contr(X,in,X,T1,T2,T2).

contr(X,up,X,T1,T2,T2).

contr(X, out, X, T1, T2, T2).

contr(X,down,X,T1,T2,T2).


```
gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2}.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).
```

Verification of Real-Time Systems

```
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [ X | Rest ], [ (X,T) | R ]) :-
        train(S0,X,S00,T,T0,T00), contr(S1,X,S10,T,T1,T10),
        gate(S2,X,S20,T,T2,T20), \{TA > T\},
        driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).
[?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).
  R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),
      (raise,G), (up,H) | R],
  X=[approach, lower, down, in, out, exit, raise, up | X];
  R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G),
      (approach,H),(up,I)|R],
  X=[approach,lower,down,in,out,exit,raise,approach,up | X];
  % where A, B, C, ... H, I are the corresponding wall clock time of events generated.
TECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEM
```

DPP – Safety: Deadlock Free

- One potential solution
 - Force one philosopher to pick forks in different order than others
- Checking for deadlock
 - Bad state is not reachable
 - Implemented using Tabled LP

- :- table reach/2. reach(Si, Sf) :- trans(_,Si,Sf). reach(Si, Sf) :- trans(_,Si,Sfi), reach(Sfi,Sf).
- ?- reach([1,1,1,1,1], [2,2,2,2,2]). no

DPP – Liveness: Starvation Free

- Phil. waits forever on a fork
- One potential solution
 - phil. waiting longest gets the access
 - implemented using CLP(R)
- Checking for starvation
 - once in bad state, is it possible to remain there forever?
 - implemented using co-LP

```
starved(X):-
    X=1, str_driver([1,1,1,1,1], [2,__,__,_]);
    X=2, str_driver([1,1,1,1,1], [_,2,__,_]);
    X=3, str_driver([1,1,1,1,1], [_,_,2,__,]);
    X=4, str_driver([1,1,1,1,1], [_,_,2,_]);
    X=5, str_driver([1,1,1,1,1], [_,_,_,2,_]);
no
```

Other Applications

- Advanced ω -structures can also be modeled and reasoned about: ω -PTA , ω -grammars
- Operational semantics of pi-calculus can be given
 - infinite replication operator modeled with co-induction;
 - can be extended with real-time through CLP(R)
- Non monotonic reasoning:
 - CoLP allows goal-directed execution of Answer Set Programs (ASP): IMPLEMENTATION AVAILABLE
 - Abductive reasoners can be elegantly implemented
 - Answer sets programming can be extended to predicates
 - ASP can be elegantly extended with constraints:
 - planning under real-time constraints become possible

Cyber-Physical Systems (CPS)

- CPS:
 - -- Networked/distributed Hybrid Systems
 - -- Discrete digital systems with
 - Inputs: continuous physical quantities
 - e.g., time, distance, acceleration, temperature, etc.
 - Outputs: control physical (analog) devices
- Elegantly modeled via co-LP extended with constraints
- Characteristics of CPS:
 - -- perform discrete computations (modeled via LP)
 - -- deal with continuous physical quantities (modeled via constraints)
 - -- are concurrent (modeled via LP coroutining)
 - -- run forever (modeled via coinduction)

CPS Example

Reactor Temperature Control System

Rod1 & Rod2

```
trans_r1(out1, add1, in1, T, Ti, To, W)
    \{T - Ti \ge W, To = Ti\}.
                                                                              add<sub>1</sub>
trans_r1(in1, remove1, out1, T, Ti, To,
                                                                                        in₁
                                                                     out<sub>1</sub>
                                                                             r_1 := 0
   W) :- \{T_0 = T\}.
                                                                             remove<sub>1</sub>
                                                                             r_2 >= W
trans_r2(out2, add2, in2, T, Ti, To, W)
                                                                              add<sub>2</sub>
                                                                                        in_2
                                                                     out<sub>2</sub>
                                                                             r_2 := 0
                                                                             remove<sub>2</sub>
    \{T - Ti \ge W, To = Ti\}.
trans_r2(in2, remove2, out2, T, Ti, To,
   W) :- \{To = T\}.
```

Controller

```
trans_c(norod, add1, rod1, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F):-
  (F == 1 -> Ti = Ti1; Ti = Ti2),
  \{\text{Tetai} < 550, \text{Tetao} = 550, \exp(e, (T - Ti)/10) = 5, \}
   To1 = T, To2 = Ti2.
trans c(rod1, remove1, norod Tetai, Tetao, T, Ti1, Ti2, To1, To2, F):-
  \{\text{Tetai} > 510 \text{ Tetao} = 510, \exp(e, (T - Ti1)/10) = 5, \}
   To1 = T, To2 = Ti2.
trans_c(norod, add2, rod2, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F):-
  (F == 1 -> Ti = Ti1; Ti = Ti2),
                                                                                                                                  \theta = \theta_m
  \{\text{Tetai} < 550, \text{Tetao} = 550, \exp(e, (T - Ti)/10) = 5, \}
   To1 = Ti1, To2 = T.
                                                                                                             \theta = \theta_{\mathbf{M}}
                                                                                                                            no rod
                                                                                             rod<sub>1</sub>
                                                                                                        add_{1} c_{1} := 0
trans_c(rod2, remove2, norod, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F,
                                                                                                                          \theta = \frac{0}{10} - 50
  \{\text{Tetai} > 510, \text{Tetao} = 510, \exp(e, (T - \text{Ti2})/10) = 9/5, \}
   To1 = Ti1, To2 = T.
                                                                                                                                              \theta = \theta_{\rm m}
                                                                                                             \theta = \theta_{\rm m}
                                                                                                                           \theta \ll \theta_{\rm M}
                                                                                                                                        remove_2 c_2 :=
trans c(norod, , shutdown, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F):-
                                                                                                      remove_1, c_1 := 0
                                                                                                                                 \theta = \theta_M
  (F == 1 -> Ti = Ti1; Ti = Ti2),
  \{\text{Tetai} < 550 \text{ Tetao} = 550, \exp(e, (T - Ti)/10) = 5, \}
   To1 = Ti1, To2 = Ti2.
                                                                                                                          shutdown
```

Controller | Rod1 | Rod2

```
:- coinductive(contr/7).

contr(X, Si, T, Tetai, Ti1, Ti2, Fi) :-

(H = add1; H = remove1; H = add2; H = remove2; H = shutdown),

{Ta > T},

freeze(X, contr(Xs, So, Ta, Tetao, To1, To2, Fo)),

trans_c(Si, H, So, Tetai, Tetao, T, Ti1, Ti2, To1, To2, Fi),

((H=add1; H=remove1) -> Fo = 1; Fo = 2),

((H=add1; H=remove1; H=add2; H=remove2) -> X = [ (H, T) | Xs]; X = [ (H, T) ] ).
```

Controller | Rod1 | Rod2

```
\begin{aligned} \text{main}(S,\,T,\,W) := & & \{\text{T-Tr1} = \text{W},\,\text{T-Tr2} = \text{W}\}, \\ & & \text{freeze}(S,\,(\text{rod1}(S,\,s0,\,s0,\,\text{Tr1},\,\text{Tr2},\,\text{W}); \\ & & \text{rod2}(S,\,s0,\,s0,\,\text{Tr1},\,\text{Tr2},\,\text{W}))), \\ & & \text{contr}(S,\,s0,\,\text{T},\,510,\,\text{Tc1},\,\text{Tc2},\,1). \end{aligned}
```

- With more elegant modeling with LP, we were able to improve the bounds on W compared to previous work
- HyTech determines W < 20.44 to prevent shutdown
- Subsequently, using linear hybrid automata with clock translation, HyTech improves to W < 37.8
- Using our LP method, we refine it to W < 38.06

Related Publications

- 1. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic programming. In *ICLP'06*.
- 2. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-Logic programming: Extending logic programming with coinduction. In *ICALP'07*.
- 3. G. Gupta et al. Co-LP and its applications, ICLP'07 (tutorial)
- 4. G. Gupta et al. Infinite computation, coinduction and computational logic. CALCO'11
- 5. A. Bansal, R. Min, G. Gupta. Goal-directed Execution of ASP. Internal Report, UT Dallas
- 6. R. Min, A. Bansal, G. Gupta. Co-LP with negation, LOPSTR 2009
- 7. R. Min, G. Gupta. Towards Predicate ASP, AIAI'09
- 8. N. Saeedloei, G. Gupta. Coinductive Constraint Programming. FLOPS'12.
- 9. N. Saeedloei, G. Gupta, Timed π-Calculus
- 10. N. Saeedloei, G. Gupta. Modeling/verification of CPS with coinductive coroutined CLP(R)

Conclusion

- Circularity is a common concept in everyday life and computer science:
- Logic/LP is unable to cope with circularity
- Solution: introduce coinduction in Logic/LP
 - dual of traditional logic programming
 - operational semantics for coinduction
 - combining both halves of logic programming
- applications to verification, non monotonic reasoning, negation in LP, propositional satisfiability, hybrid systems, cyberphysical systems
- Metainterpreter available:
 - http://www.utdallas.edu/~gupta/meta.tar.gz

Conclusion (cont'd)

- Computation can be classified into two types:
 - Well-founded,
 - Based on computing elements in the LFP
 - Implemented w/ recursion (start from a call, end in base case)
 - Consistency-based
 - Based on computing elements in the GFP (but not LFP)
 - Implemented via co-recursion (look for consistency)
- Combining the two allows one to compute any computable function elegantly:
 - Implementations of modal logics (LTL, etc.)
 - Complex reasoning systems (NM reasoners)
- Combining them is challenging

Motivation

Motivation

Conclusions: Future Work

Design execution strategies that enumerate all rational infinite solutions while avoiding redundant solutions

$$p([a|X]) :- p(X).$$

 $p([b|X]) :- p(X).$

- -- If X = [a|X] is reported, then avoid X = [a, a | X], X = [a,a,a|X], etc.
- -- A fair depth first search strategy that will produce

$$X = [a,b|X]$$

- Combining induction (tabling) and co-induction:
 - Stratified co-LP: equivalent to stratified Büchi tree automata (SBTAs)
 - Non-stratified co-LP: inspired by Rabin automata; 3 class of predicates (i) coinductive, (ii) weakly coinductive and (iii) strongly coinductive

QUESTIONS?