
University of Texas at Dallas

Logic, Infinite Computation,
Coinduction, Real-time, ….

Gopal Gupta
Neda Saeedloei, Brian DeVries, Kyle Marple, Feliks Kluzniak,

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 1

Neda Saeedloei, Brian DeVries, Kyle Marple, Feliks Kluzniak,
Luke Simon, Ajay Bansal, Ajay Mallya, Richard Min

Applied Logic, Programming-Languages
and Systems (ALPS) Lab

The University of Texas at Dallas

University of Texas at Dallas

Circular Phenomena in Comp. Sci.
• Circularity has dogged Mathematics and Computer

Science ever since Set Theory was first developed:
– The well known Russell’s Paradox:

• R = { x | x is a set that does not contain itself}
Is R contained in R? Yes and No

– Liar Paradox: I am a liar

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 2

– Liar Paradox: I am a liar
– Hypergame paradox (Zwicker & Smullyan)

• All these paradoxes involve self-reference through
some type of negation

• Russell put the blame squarely on circularity and
sought to ban it from scientific discourse:

``Whatever involves all of the collection must not be one of
the collection” -- Russell 1908

University of Texas at Dallas

Circularity in Computer Science
• Following Russell’s lead, Tarski proposed to ban self-

referential sentences in a language
• Rather, have a hierarchy of languages
• Kripke’s challenged this in a1975 paper:

argued that circular phenomenon are far more common and

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 3

argued that circular phenomenon are far more common and
circularity can’t simply be banned.

• Circularity has been banned from automated theorem
proving and logic programming through the occurs
check rule:

An unbound variable cannot be unified with a term
containing that variable (i.e., X = f(X) not allowed)

• What if we allowed such unification to proceed (as LP
systems always did for efficiency reasons)?

University of Texas at Dallas

Circularity in Computer Science
• If occurs check is removed, we’ll generate

circular (infinite) structures:
X = [1,2,3 | X] X = f(X)

• Such structures, of course, arise in computing
(circular linked lists), but banned in logic/LP.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 4

(circular linked lists), but banned in logic/LP.
• Subsequent LP systems did allow for such

circular structures (rational terms), but they
only exist as data-structures, there is no proof
theory to go along with it.
– One can hold the data-structure in memory within

an LP execution, but one can’t reason about it.

University of Texas at Dallas

Circularity in Everyday Life
• Circularity arises in every day life

– Most natural phenomenon are cyclical
• Cyclical movement of the earth, moon, etc.
• Our digestive system works in cycles

– Social interactions are cyclical:

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 5

– Social interactions are cyclical:
• Conversation = (1st speaker, (2nd Speaker, Conversation)
• Shared conventions are cyclical concepts

• Numerous other examples can be found
elsewhere (Barwise & Moss 1996)

University of Texas at Dallas

Circularity in Computer Science
• Circular phenomenon are quite common in

Computer Science:
– Circular linked lists
– Graphs (with cycles)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 6

– Graphs (with cycles)
– Controllers (run forever)
– Bisimilarity
– Interactive systems
– Automata over infinite strings/Kripke structures
– Perpetual processes

• Logic/LP not equipped to model circularity directly

University of Texas at Dallas

Coinduction
• Circular structures are infinite structures

X = [1, 2 | X] is logically speaking X = [1, 2, 1, 2, ….]
• Proofs about their properties are infinite-sized
• Coinduction is the technique for proving these

properties

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 7

properties
– first proposed by Peter Aczel in the 80s

• Systematic presentation of coinduction & its
application to computing, math. and set theory:

“Vicious Circles” by Moss and Barwise (1996)
• Our focus: inclusion of coinductive reasoning

techniques in C/LP (and theorem proving), and its
applications to verfication and reasoning

University of Texas at Dallas

Induction vs Coinduction
• Induction is a mathematical technique for finitely

reasoning about an infinite (countable) no. of things.
• Examples of inductive structures:

– Naturals: 0, 1, 2, …
– Lists: [], [X], [X, X], [X, X, X], …

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 8

– Lists: [], [X], [X, X], [X, X, X], …
• 3 components of an inductive definition:

(1) Initiality, (2) iteration, (3) minimality
– for example, the set of lists is specified as follows:

[] – an empty list is a list (initialityinitialityinitialityinitiality) ……(i)
[H | T] is a list if T is a list and H is an element (iterationiterationiterationiteration) ..(ii)
minimal set that satisfies (i) and (ii) (minimalityminimalityminimalityminimality)

University of Texas at Dallas

Induction vs Coinduction
• Coinduction is a mathematical technique for

(finitely) reasoning about infinite things.
– Mathematical dual of induction
– If all things were finite, then coinduction would not be

needed.
– Perpetual programs, automata over infinite strings

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 9

– Perpetual programs, automata over infinite strings
• 2 components of a coinductive definition:

(1) iteration, (2) maximality
– for example, for a list:

[H | T] is a list if T is a list and H is an element (iterationiterationiterationiteration).
MaximalMaximalMaximalMaximal set that satisfies the specification of a list.

– This coinductive interpretation specifies all infinite sized
lists

University of Texas at Dallas

Example: Natural Numbers
• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• Inductive interpretation

– N = µΓΝΝΝΝ

– corresponds to least fix point interpretation

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 10

– corresponds to least fix point interpretation
• Coinductive interpretation

– N’ = νΓΝΝΝΝ = N ∪ { ω }
– ω = succ(succ(succ(...))) = succ(ω) = ω + 1
– corresponds to greatest fixed point interpretation.

University of Texas at Dallas

Mathematical Foundations
• Duality provides a source of new mathematical tools

that reflect the sophistication of tried and true
techniques.

DefinitionDefinitionDefinitionDefinition ProofProofProofProof MappingMappingMappingMapping

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 11

Least fixed point Induction Recursion

Greatest fixed point Coinduction Corecursion

• Co-recursion: recursive def’n without a base case

University of Texas at Dallas

Applications of Coinduction
• model checking
• bisimilarity proofs
• lazy evaluation in FP
• reasoning with infinite structures

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 12

• reasoning with infinite structures
• perpetual processes
• cyclic structures
• operational semantics of “coinductive logic

programming”
• Type inference systems for lazy functional

languages

University of Texas at Dallas

Inductive C/LP
• (Constraint) Logic Programming

– is actually inductive C/LP.
– has inductive definition.
– useful for writing programs for reasoning about

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 13

– useful for writing programs for reasoning about
finite things:

- data structures
- properties

University of Texas at Dallas

Infinite Objects and Properties
• Traditional logic programming is unable to reason

about infinite objects and/or properties.
• (The glass is only half-full)
• Example: perpetual binary streams

– traditional logic programming cannot handle

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 14

– traditional logic programming cannot handle

bit(0).
bit(1).
bitstream([H | T]) :- bit(H), bitstream(T).
|?- X = [0, 1, 1, 0 | X], bitstream(X).

• Goal: Combine traditional LP with coinductive LP

University of Texas at Dallas

Overview of Coinductive LP
• Coinductive Logic Program is

a definite program with maximal co-Herbrand model
declarative semantics.

• Declarative Semantics: across the board dual of
traditional LP:

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 15

• Declarative Semantics: across the board dual of
traditional LP:
– greatest fixed-points
– terms: co-Herbrand universe Ucocococo(P)
– atoms: co-Herbrand base Bcocococo(P)
– program semantics: maximal co-Herbrand model Mcocococo(P).

University of Texas at Dallas

Operational Semantics: co-SLD Resolution

• nondeterministic state transition system
• states are pairs of

– a finite list of syntactic atoms [resolvent] (as in Prolog)
– a set of syntactic term equations of the form x = f(x) or x = t

• For a program p :- p. => the query |?- p. will succeed.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 16

• For a program p :- p. => the query |?- p. will succeed.
• p([1 | T]) :- p(T). => |?- p(X) to succeed with X= [1 | X].

• transition rules
– definite clause rule
– “coinductive hypothesis rule”

• if a coinductive goal G is called,
and G unifies with a call made earlier

then G succeeds.

?-G

….

G

coinductive
success

University of Texas at Dallas

Correctness
• Theorem (soundness). If atom A has a

successful co-SLD derivation in program P,
then E(A) is true in program P, where E is the
resulting variable bindings for the derivation.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 17

resulting variable bindings for the derivation.

• Theorem (completeness). If A ∈ Mcocococo(P) has a
rational proof, then A has a successful co-
SLD derivation in program P.
– Completeness only for rational/regular proofs

University of Texas at Dallas

Implementation
• Search strategy: hypothesis-first, leftmost, depth-first
• Meta-Interpreter implementation.

query(Goal) :- solve([],Goal).
solve(Hypothesis, (Goal1,Goal2)) :-

solve(Hypothesis, Goal1), solve(Hypothesis,Goal2).
solve(_ , Atom) :- builtin(Atom), Atom.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 18

solve(_ , Atom) :- builtin(Atom), Atom.
solve(Hypothesis,Atom):- member(Atom, Hypothesis).
solve(Hypothesis,Atom):- notbuiltin(Atom),

clause(Atom,Atoms), solve([Atom|Hypothesis],Atoms).

• A complete meta-interpreter available
• Implementation on top of YAP, SWI Prolog available
• Implementation within Logtalk + library of examples

University of Texas at Dallas

Example: Number Stream
:- coinductive stream/1.
stream([H | T]) :- num(H), stream(T).
num(0).
num(s(N)) :- num(N).

|?- stream([0, s(0), s(s (0)) | T]).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 19

|?- stream([0, s(0), s(s (0)) | T]).
1. MEMO: stream([0, s(0), s(s (0)) | T])
2. MEMO: stream([s(0), s(s (0)) | T])
3. MEMO: stream([s(s (0)) | T])
4. stream(T)

Answers:
T = [0, s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)), s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)) | T]
T = [0, s(0), s(s(0)) | X] (where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)

University of Texas at Dallas

Example: Append
:- coinductive append/3.
append([], X, X).
append([H | T], Y, [H | Z]) :- append(T, Y, Z).

|?- Y = [4, 5, 6 | Y], append([1, 2, 3], Y, Z).
Answer: Z = [1, 2, 3 | Y], Y=[4, 5, 6 | Y]

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 20

Answer: Z = [1, 2, 3 | Y], Y=[4, 5, 6 | Y]

|?- X = [1, 2, 3 | X], Y = [3, 4 | Y], append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z].

|?- Z = [1, 2 | Z], append(X, Y, Z).
Answer: X = [], Y = [1, 2 | Z] ; X = [1, 2 | X], Y = _

X = [1], Y = [2 | Z] ;
X = [1, 2], Y = Z; …. ad infinitum

University of Texas at Dallas

Example: Comember
member(H, [H | T]).
member(H, [X | T]) :- member(H, T).

?- L = [1,2 | L], member(3, L). succeeds. Instead:

:- coinductive comember/2. %drop/3 is inductive
comember(X, L) :- drop(X, L, R), comember(X, R).
drop(H, [H | T], T).
drop(H, [X | T], T1) :- drop(H, T, T1).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 21

drop(H, [X | T], T1) :- drop(H, T, T1).

?- X=[1, 2, 3 | X], comember(2,X). ?- X = [1,2 | X], comember(3, X).
Answer: yes. Answer: no

?- X=[1, 2, 3, 1, 2, 3], comember(2, X).
Answer: no.

?- X=[1, 2, 3 | X], comember(Y, X).
Answer: Y = 1;

Y = 2;
Y = 3;

University of Texas at Dallas

Co-Logic Programming
• combines both halves of logic programming:

– traditional logic programming
– coinductive logic programming

• syntactically identical to traditional logic
programming, except predicates are labeled:
– Inductive, or

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 22

– Inductive, or
– coinductive

• and stratification restriction enforced where:
– inductive and coinductive predicates cannot be mutually

recursive. e.g.,
p :- q.
q :- p.

Program rejected, if p coinductive & q inductive

University of Texas at Dallas

Application of Co-LP
• Co-LP allows one to compute both LFP & GFP
• Computable functions can be specified more elegantly

– Interepreters for Modal Logics can be elegantly specified:
– Model Checking: LTL interpreter elegantly specified
– Timed ω-automata: elegantly modeled and properties verified

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 23

– Timed ω-automata: elegantly modeled and properties verified
– Modeling/Verification of Cyber Physical Systems/Hybrid automata
– Goal-directed execution of Answer Set Programs
– Goal-directed SAT solvers (Davis-Putnam like procedure)
– Planning under real-time constraints
– Operational semantics of the π-calculus (incl. timed π -calculus)

• infinite replication operator modeled with co-induction

Co-LP allows systems to be modeled naturally & elegantly

University of Texas at Dallas

Application: Model Checking
• automated verification of hardware and software

systems
• ω-automata

– accept infinite strings
– accepting state must be traversed infinitely often

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 24

– accepting state must be traversed infinitely often
• requires computation of lfp and gfp
• co-logic programming provides an elegant framework

for model checking
• traditional LP works for safety property (that is based

on lfp) in an elegant manner, but not for liveness .

University of Texas at Dallas

Safety versus Liveness
• Safety

– “nothing bad will happen”
– naturally described inductively
– straightforward encoding in traditional LP

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 25

– straightforward encoding in traditional LP
• liveness

– “something good will eventually happen”
– dual of safety
– naturally described coinductively
– straightforward encoding in coinductive LP

University of Texas at Dallas

Finite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).

trans(s0, a, s1). trans(s1, b, s2). trans(s2, c, s3).
trans(s3, d, s0). trans(s2, 3, s0). final(s2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 26

?- automata(X,s0).
X=[a, b];
X=[a, b, e, a, b];
X=[a, b, e, a, b, e, a, b];
……
……
……

University of Texas at Dallas

Infinite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1). trans(s1,b,s2). trans(s2,c,s3).
trans(s3,d,s0). trans(s2,3,s0). final(s2).

?- automata(X,s0).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 27

?- automata(X,s0).
X=[a, b, c, d | X];
X=[a, b, e | X];

University of Texas at Dallas

Verifying Liveness Properties
• Verifying safety properties in LP is relatively easy:

safety modeled by reachability
• Accomplished via tabled logic programming
• Verifying liveness is much harder: a counterexample

to liveness is an infinite trace

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 28

to liveness is an infinite trace
• Verifying liveness is transformed into a safety check

via use of negations in model checking and tabled LP
– Considerable overhead incurred

• Co-LP solves the problem more elegantly:
– Infinite traces that serve as counter-examples are produced

as answers

University of Texas at Dallas

Verifying Liveness Properties
• Consider Safety:

– Question: Is an unsafe state, Su, reachable?
– If answer is yes, the path to Su is the counter-ex.

• Consider Liveness, then dually

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 29

• Consider Liveness, then dually
– Question: Is a state, D, that should be dead, live?
– If answer is yes, the infinite path containing D is

the counter example
• Co-LP will produce this infinite path as the answer

• Checking for liveness is in a manner similar
to safety

University of Texas at Dallas

Nested Finite and Infinite Automata

:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,

state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 30

state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work. enter. repeat. exit. error.
work :- work.
|?- state(s0,X), absent(s2,X).

X=[s0, s3 | X]

University of Texas at Dallas

An Interpreter for LTL
%--- nots have been pushed to propositions
:- tabled verify/2.
verify(S, [S], A) :- proposition(A), holds(S,A). % p
verify(S, [S], not(A)) :- proposition(A), \+holds(S,A). % not(p)
verify(S,P, or(A,B)) :- verify(S, P, A) ; verify(S, P, B). %A or B
verify(S,P, and(A,B)) :- verify(S,P1, A), verify(S,P2, B). %A and B

(prefix(P2, P1), P=P1 ; prefix(P2,P1), P=P2)
verify(S, [S|P], x(A)) :- trans(S, S1), verify(S1, P, A). % X(A)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 31

verify(S, [S|P], x(A)) :- trans(S, S1), verify(S1, P, A). % X(A)
verify(S, P, f(A)) :- verify(S, P, A); verify(S, P, x(f(A))). % F(A)
verify(S, P, g(A)) :- coverify(S, P, g(A)). % G(A)
verify(S, P,u(A,B)) :- verify(S, P,B);

verify(S, P,and(A, x(u(A,B)))). % A u B
verify(S, r(A,B)) :- coverify(S, r(A,B)). % A r B
:- coinductive coverify/2.
coverify(S, g(A)) :- verify(S, P, and(A, x(g(A))).
coverify(S, r(A,B)) :- verify(S, P, and(A,B)).
coverify(S, r(A,B)) :- verify(S, P, and(B, x(r(A,B)))).

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 32

• ω-automata w/ time constrained transitions & stopwatches
• straightforward encoding into CLP(R) + Co-LP
• Assumption: no concurrent events

Timed Automata

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X, up, X, T1,T2,T2). % up=idle

train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 33

train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 34

contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).

University of Texas at Dallas

Verification of Real-Time Systems
“Train, Controller, Gate”

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 35

gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).

University of Texas at Dallas

Verification of Real-Time Systems
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [X | Rest], [(X,T) | R]) :-

train(S0,X,S00,T,T0,T00), contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T},
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

|?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 36

R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),
(raise,G), (up,H) | R],

X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G),

(approach,H),(up,I)|R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;
% where A, B, C, ... H, I are the corresponding wall clock time of events generated.

TECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEM

University of Texas at Dallas

DPP – Safety: Deadlock Free

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 37

• One potential solution
– Force one philosopher to pick forks

in different order than others
• Checking for deadlock

– Bad state is not reachable
– Implemented using Tabled LP

:- table reach/2.
reach(Si, Sf) :- trans(_,Si,Sf).
reach(Si, Sf) :- trans(_,Si,Sfi),

reach(Sfi,Sf).
?- reach([1,1,1,1,1], [2,2,2,2,2]).

no

University of Texas at Dallas

DPP – Liveness: Starvation Free
• Phil. waits forever on a fork
• One potential solution

– phil. waiting longest gets the access
– implemented using CLP(R)

• Checking for starvation
– once in bad state, is it possible to

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 38

?- starved(X).
no

– once in bad state, is it possible to
remain there forever?

– implemented using co-LP

University of Texas at Dallas

Other Applications
• Advanced ω-structures can also be modeled and

reasoned about: ω-PTA , ω-grammars
• Operational semantics of pi-calculus can be given

– infinite replication operator modeled with co-induction;
– can be extended with real-time through CLP(R)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 39

• Non monotonic reasoning:
– CoLP allows goal-directed execution of Answer Set

Programs (ASP): IMPLEMENTATION AVAILABLE
– Abductive reasoners can be elegantly implemented
– Answer sets programming can be extended to predicates
– ASP can be elegantly extended with constraints:
– planning under real-time constraints become possible

University of Texas at Dallas

Cyber-Physical Systems (CPS)
• CPS:

-- Networked/distributed Hybrid Systems
-- Discrete digital systems with

– Inputs: continuous physical quantities
• e.g., time, distance, acceleration, temperature, etc.

– Outputs: control physical (analog) devices

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 40

– Outputs: control physical (analog) devices
• Elegantly modeled via co-LP extended with constraints
• Characteristics of CPS:

-- perform discrete computations (modeled via LP)
-- deal with continuous physical quantities (modeled via constraints)
-- are concurrent (modeled via LP coroutining)
-- run forever (modeled via coinduction)

University of Texas at Dallas

CPS Example

no_rod

Reactor Temperature Control System

θ = ― - 50
10
θ

.
θ = ― - 56

10
θ

. θ = ― - 60
10
θ

.
rod2rod1

θ = θM

add1 , c1 := 0

θ = θM

add2 , c2 := 0

θ = θ

θ = θm

in1

r1 >= W

add1

r1 := 0
out1

r1 = W

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 41

θ <= θM

1010
θm <= θ θm <= θθ = θm

θ = θm

remove1 , c1 := 0 remove2 , c2 := 0
θ = θM

shutdown

r1 := 0

remove1

in2

r2 >= W

add2

r2 := 0

remove2

out2

r2 = W

University of Texas at Dallas

Rod1 & Rod2
trans_r1(out1, add1, in1, T, Ti, To, W)

:-
{T – Ti >= W, To = Ti}.

trans_r1(in1, remove1, out1, T, Ti, To,
W) :- {To = T}.

in1

r1 >= W

add1

r1 := 0

remove1

out1
r1 = W

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 42

W) :- {To = T}.

trans_r2(out2, add2, in2, T, Ti, To, W)
:-
{T – Ti >= W, To = Ti}.

trans_r2(in2, remove2, out2, T, Ti, To,
W) :- {To = T}.

remove1

in2

r2 >= W

add2

r2 := 0

remove2

out2

r2 = W

University of Texas at Dallas

Controller
trans_c(norod, add1, rod1, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-

(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5,
To1 = T, To2 = Ti2}.

trans_c(rod1, remove1, norod Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
{Tetai > 510 Tetao = 510, exp(e, (T - Ti1)/10) = 5,
To1 = T, To2 = Ti2}.

trans_c(norod, add2, rod2, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5, θ = θm

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 43

{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5,
To1 = Ti1, To2 = T}.

trans_c(rod2, remove2, norod, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
{Tetai > 510, Tetao = 510, exp(e, (T - Ti2)/10) = 9/5,
To1 = Ti1, To2 = T}.

trans_c(norod, _, shutdown, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550 Tetao = 550, exp(e, (T - Ti)/10) = 5,
To1 = Ti1, To2 = Ti2}.

no_rod

θ <= θM

θ = ― - 50
10
θ

.
θ = ― - 56

10
θ

. θ = ― - 60
10
θ

.
rod2rod1

θm <= θ θm <= θ

θ = θM

add1 , c1 := 0

θ = θM

add2 , c2 := 0

θ = θm
θ = θm

remove1 , c1 := 0 remove2 , c2 := 0
θ = θM

shutdown

θ = θm

Controller | Rod1 | Rod2
:- coinductive(contr/7).

contr(X, Si, T, Tetai, Ti1, Ti2, Fi) :-

(H = add1; H = remove1; H = add2; H = remove2; H = shutdown),

{Ta > T},

freeze(X, contr(Xs, So, Ta, Tetao, To1, To2, Fo)),

trans_c(Si, H, So, Tetai, Tetao, T, Ti1, Ti2, To1, To2, Fi),

((H=add1; H=remove1) -> Fo = 1; Fo = 2),

((H=add1; H=remove1; H=add2; H=remove2) -> X = [(H, T) | Xs]; X = [(H, T)]).((H=add1; H=remove1; H=add2; H=remove2) -> X = [(H, T) | Xs]; X = [(H, T)]).

:- coinductive(rod1/6).

rod1([(H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :-

H = add1 ->

freeze(Xs,rod1(Xs, So1, Si2, To1, Ti2, W));

H = remove1 ->

freeze(Xs,rod1(Xs, So1, Si2, To1, Ti2, W);

rod2(Xs, So1, Si2, To1, Ti2, W)),

trans_r1(Si1, H, So1, T, Ti1, To1, W);

H = shutdown -> {T - Ti1 < A, T - Ti2 < A}.

:- coinductive(rod2/6).

rod2([(H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :-

H = add2 ->

freeze(Xs,rod2(Xs, Si1, So2, Ti1, To2, W));

H = remove2 ->

freeze(Xs,rod1(Xs, Si1, So2, Ti1, To2, W);

rod2(Xs, Si1, So2, Ti1, To2, W)),

trans_r2(Si2, H, So2, T, Ti2, To2, W);

H = shutdown -> {T - Ti1 < A, T - Ti2 < A}.

University of Texas at Dallas

Controller || Rod1 || Rod2
main(S, T, W) :- {T - Tr1 = W, T - Tr2 = W},

freeze(S, (rod1(S, s0, s0, Tr1, Tr2, W);
rod2(S, s0, s0, Tr1, Tr2, W))),

contr(S, s0, T, 510, Tc1, Tc2, 1).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 45

• With more elegant modeling with LP, we were able to improve
the bounds on W compared to previous work

• HyTech determines W < 20.44 to prevent shutdown
• Subsequently, using linear hybrid automata with clock

translation, HyTech improves to W < 37.8
• Using our LP method, we refine it to W < 38.06

University of Texas at Dallas

Related Publications
1. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic

programming. In ICLP’06 .
2. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-Logic programming:

Extending logic programming with coinduction. In ICALP’07.
3. G. Gupta et al. Co-LP and its applications, ICLP’07 (tutorial)
4. G. Gupta et al. Infinite computation, coinduction and computational

logic. CALCO’11
5. A. Bansal, R. Min, G. Gupta. Goal-directed Execution of ASP. Internal

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 46

5. A. Bansal, R. Min, G. Gupta. Goal-directed Execution of ASP. Internal
Report, UT Dallas

6. R. Min, A. Bansal, G. Gupta. Co-LP with negation, LOPSTR 2009
7. R. Min, G. Gupta. Towards Predicate ASP, AIAI’09
8. N. Saeedloei, G. Gupta. Coinductive Constraint Programming.

FLOPS’12.
9. N. Saeedloei, G. Gupta, Timed π-Calculus
10.N. Saeedloei, G. Gupta. Modeling/verification of CPS with coinductive

coroutined CLP(R)

University of Texas at Dallas

Conclusion
• Circularity is a common concept in everyday life and

computer science:
• Logic/LP is unable to cope with circularity
• Solution: introduce coinduction in Logic/LP

– dual of traditional logic programming

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 47

– dual of traditional logic programming
– operational semantics for coinduction
– combining both halves of logic programming

• applications to verification, non monotonic reasoning,
negation in LP, propositional satisfiability, hybrid
systems, cyberphysical systems

• Metainterpreter available:
http://www.utdallas.edu/~gupta/meta.tar.gz

University of Texas at Dallas

Conclusion (cont’d)
• Computation can be classified into two types:

– Well-founded,
• Based on computing elements in the LFP
• Implemented w/ recursion (start from a call, end in base case)

– Consistency-based
• Based on computing elements in the GFP (but not LFP)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 48

• Based on computing elements in the GFP (but not LFP)
• Implemented via co-recursion (look for consistency)

• Combining the two allows one to compute any
computable function elegantly:
– Implementations of modal logics (LTL, etc.)
– Complex reasoning systems (NM reasoners)

• Combining them is challenging

University of Texas at Dallas

Motivation

G

COMPUTATION

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 49

L
F
P

F

P

G

University of Texas at Dallas

Motivation

L

COMPUTATION

G

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 50

L
F
P

G
F
P

University of Texas at Dallas

Conclusions: Future Work
• Design execution strategies that enumerate all rational

infinite solutions while avoiding redundant solutions
p([a|X]) :- p(X).
p([b|X]) :- p(X).

-- If X = [a|X] is reported, then avoid X = [a, a | X], X = [a,a,a|X], etc.
-- A fair depth first search strategy that will produce

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 51

-- A fair depth first search strategy that will produce
X = [a,b|X]

• Combining induction (tabling) and co-induction:
– Stratified co-LP: equivalent to stratified Büchi tree automata

(SBTAs)
– Non-stratified co-LP: inspired by Rabin automata; 3 class of

predicates (i) coinductive, (ii) weakly coinductive and (iii) strongly
coinductive

University of Texas at Dallas

QUESTIONS?

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 52

