Logic, Infinite Computation,
Coinduction, Real-time,

Gopal Gupta
Neda Saeedloel, Brian DeVries, Kyle Marple, Feliks Kluzniak,
Luke Simon, Ajay Bansal, Ajay Mallya, Richard Min

Applied Logic, Programming-Languages
and Systems (ALPS) Lab
The University of Texas at Dallas

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 1

Circular Phenomena in Comp. Sci.

« Circularity has dogged Mathematics and Computer
Science ever since Set Theory was first developed:
— The well known Russell’'s Paradox:

« R={x|xis a set that does not contain itself}
Is R contained in R? Yes and No
— Liar Paradox: | am a liar

— Hypergame paradox (Zwicker & Smullyan)

« All these paradoxes involve self-reference through
some type of negation

* Russell put the blame squarely on circularity and
sought to ban it from scientific discourse:

“"Whatever involves all of the collection must not be one of
the collection” -- Russell 1908

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 2

Circularity in Computer Science

* Following Russell's lead, Tarski proposed to ban self-
referential sentences in a language

« Rather, have a hierarchy of languages
» Kripke's challenged this in a1975 paper:

argued that circular phenomenon are far more common and
circularity can’t simply be banned.

« Circularity has been banned from automated theorem
proving and logic programming through the occurs
check rule:

An unbound variable cannot be unified with a term
containing that variable (i.e., X = f(X) not allowed)

« What if we allowed such unification to proceed (as LP
systems always did for efficiency reasons)?

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 3

Circularity in Computer Science

* If occurs check is removed, we'll generate
circular (infinite) structures:
X=[1,2,3]X] X =f(X)
« Such structures, of course, arise in computing
(circular linked lists), but banned in logic/LP.

« Subsequent LP systems did allow for such
circular structures (rational terms), but they
only exist as data-structures, there is no proof
theory to go along with it.

— One can hold the data-structure in memory within
an LP execution, but one can’t reason about it.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 4

Circularity in Everyday Life

« Circularity arises in every day life

— Most natural phenomenon are cyclical
» Cyclical movement of the earth, moon, etc.
« Our digestive system works in cycles

— Social interactions are cyclical:
« Conversation = (15t speaker, (2" Speaker, Conversation)
« Shared conventions are cyclical concepts

* Numerous other examples can be found
elsewhere (Barwise & Moss 1996)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide-5

Circularity in Computer Science

« Circular phenomenon are quite common in
Computer Science:
— Circular linked lists
— Graphs (with cycles)
— Controllers (run forever)
— Bisimilarity
— Interactive systems
— Automata over infinite strings/Kripke structures
— Perpetual processes

* Logic/LP not equipped to model circularity directly

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 6

Coinduction

e Circular structures are infinite structures
X=[1,2|X] islogically speaking X=1[1, 2,1, 2,]
* Proofs about their properties are infinite-sized

« Coinduction is the technique for proving these
properties
— first proposed by Peter Aczel in the 80s
« Systematic presentation of coinduction & its
application to computing, math. and set theory:
“Vicious Circles” by Moss and Barwise (1996)

» Qur focus: inclusion of coinductive reasoning
techniques in C/LP (and theorem proving), and its
applications to verfication and reasoning

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 7

Induction vs Coinduction

 Induction is a mathematical technique for finitely
reasoning about an infinite (countable) no. of things.

« Examples of inductive structures:
— Naturals: 0, 1, 2, ...
— Lists: [], [X], [X, X], [X X, X], ...
« 3 components of an inductive definition:
(1) Initiality, (2) iteration, (3) minimality
— for example, the set of lists is specified as follows:
[]—an empty list is a list (initiality) (i)
[H]| T] isalistif T is alist and H is an element (iteration) ..(ii)
minimal set that satisfies (i) and (ii) (minimality)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 8

Induction vs Coinduction

« Coinduction is a mathematical technique for
(finitely) reasoning about infinite things.
— Mathematical dual of induction

— If all things were finite, then coinduction would not be
needed.

— Perpetual programs, automata over infinite strings

« 2 components of a coinductive definition:
(1) iteration, (2) maximality
— for example, for a list:
[H| T]isalistif Tis a list and H is an element (iteration).
Maximal set that satisfies the specification of a list.

— This coinductive interpretation specifies all infinite sized
lists

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide-9

Example: Natural Numbers

e [(S)={0}0{succ(x) | xS}
* |Inductive interpretation
— N=ul
— corresponds to least fix point interpretation
« Coinductive interpretation
-N =viy=NUO{w}
— w=succ(succ(succ(...)))=succ(w)=w+1
— corresponds to greatest fixed point interpretation.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 10

Mathematical Foundations

« Duality provides a source of new mathematical tools
that reflect the sophistication of tried and true

techniques.
Definition Proof Mapping
Least fixed point Induction Recursion
Greatest fixed point Coinduction Corecursion

 Co-recursion: recursive def'n without a base case

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 11

Applications of Coinduction

* model checking

* bisimilarity proofs

 lazy evaluation in FP

* reasoning with infinite structures
* perpetual processes

 cyclic structures

» operational semantics of “coinductive logic
programming”

* Type inference systems for lazy functional
languages

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 12

Inductive C/LP

* (Constraint) Logic Programming
— iIs actually inductive C/LP.
— has inductive definition.

— useful for writing programs for reasoning about
finite things:
- data structures
- properties

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 13

Infinite Objects and Properties

« Traditional logic programming is unable to reason
about infinite objects and/or properties.

* (The glass is only half-full)

« Example: perpetual binary streams
— traditional logic programming cannot handle

bit(0).

bit(1).

bitstream([H | T]) :- bit(H), bitstream(T).
|?-X=10,1,1,0]| X], bitstream(X).

 (Goal: Combine traditional LP with coinductive LP

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 14

Overview of Coinductive LP

* Coinductive Logic Program is
a definite program with maximal co-Herbrand model
declarative semantics.

* Declarative Semantics: across the board dual of
traditional LP:
— greatest fixed-points
— terms: co-Herbrand universe Uc°(P)
— atoms: co-Herbrand base B¢°(P)
— program semantics: maximal co-Herbrand model M¢°(P).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 15

Operational Semantics: co-SLD Resolution

* nondeterministic state transition system

» states are pairs of
— a finite list of syntactic atoms [resolvent] (as in Prolog)

— a set of syntactic term equations of the form x = f(x) or x = t
« For a program p :- p. =>the query |?- p. will succeed.
e p([1]|T]):-p(T). =>1|?- p(X) to succeed with X=[1| X].

* transition rules

— definite clause rule ‘
— “coinductive hypothesis rule” .
- if a coinductive goal G is called, A
and G unifies with a call made earlier .
then G succeeds. coinductive
success

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 16

Correctness

 Theorem (soundness). If atom A has a
successful co-SLD derivation in program P,
then E(A) is true in program P, where E is the
resulting variable bindings for the derivation.

 Theorem (completeness). If A [1 M®°(P) has a
rational proof, then A has a successful co-
SLD derivation in program P.

— Completeness only for rational/regular proofs

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 17

Implementation

Search strategy: hypothesis-first, leftmost, depth-first

Meta-Interpreter implementation.
query(Goal) :- solve([],Goal).

solve(Hypothesis, (Goal1,Goal2)) :-
solve(Hypothesis, Goal 1), solve(Hypothesis,Goal 2).

solve(_, Atom) :- builtin(Atom), Atom.
solve(Hypothesis,Atom):- member(Atom, Hypothesis).

solve(Hypothesis,Atom):- notbuiltin(Atom),
clause(Atom,Atoms), solve([Atom|Hypothesis],Atoms).

* A complete meta-interpreter available
Implementation on top of YAP, SWI Prolog available
Implementation within Logtalk + library of examples

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 18

Example: Number Stream

.- coinductive stream/1.
stream([H|T]):-num(H), stream(T).
num(0).

num(s(N)) :-num(N).

|?- stream([0,s(0),s(s(0)) | T]).
1. MEMO: stream([0,s(0),s(s(0))|T])
2. MEMO: stream([s(0),s(s(0))|T])
3. MEMO: stream([s(s(0))]|T])
4. stream(T)

Answers:
=[0,s(0),s(s(0)) [T
= [0, s(0), s(s(0)), s(0), s(s(0)) | T]
=10, s(0),s(s(0)|T] ...

=10, s(0),s(s(0)) | X] (where X is any rational list of numbers.)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 19

Example: Append

.- coinductive append/3.

append([H | T]

Y, [H|Z]) :-append(T,Y, Z).

?7-Y =[4,5,6]|Y],append([1,2,3],Y, 2Z).
Answer:Z=[1,2,3|Y],Y=[4,5,6]Y]

7-X=[1,2,3 | X],Y=[3,4]|Y] append(X,Y, 2).
Answer.Z=[1,2,3|Z].

|7-Z2=[1,2|Z
Answer: X =

X

], append(X, Y, Z).

LY=[1,2]|2]; X=[,2[X],Y=_
(1L Y=[2]2];
(1,2],Y=Z, ad infinitum

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 20

Example: Comember

member(H, [X | T]) :- member(H, T).
?-L=[1,2| L], member(3, L). succeeds. Instead:

.- coinductive comember/2. %drop/3 is inductive
comember(X, L) :- drop(X, L, R), comember(X, R).
drop(H,[H|T], T).

drop(H, [X | T], T1) :-drop(H, T, T1).

?-X=[1, 2, 3 | X], comember(2,X). ?- X=[1,2| X], comember(3, X).
Answer: yes. Answer: no

?-X=[1, 2, 3, 1, 2, 3], comember(2, X).
Answer: no.

?- X=[1, 2, 3 | X], comember(Y, X).
Answer: Y = 1;
Y =2;
Y =3;

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 21

Co-Logic Programming

« combines both halves of logic programming:
— traditional logic programming
— coinductive logic programming

 syntactically identical to traditional logic
programming, except predicates are labeled:
— Inductive, or
— coinductive

 and stratification restriction enforced where:

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 22

Application of Co-LP

e Co-LP allows one to compute both LFP & GFP
« Computable functions can be specified more elegantly

Interepreters for Modal Logics can be elegantly specified:

Model Checking: LTL interpreter elegantly specified

Timed w-automata: elegantly modeled and properties verified
Modeling/Verification of Cyber Physical Systems/Hybrid automata
Goal-directed execution of Answer Set Programs

Goal-directed SAT solvers (Davis-Putnam like procedure)
Planning under real-time constraints

Operational semantics of the 1r-calculus (incl. timed 1 -calculus)
* infinite replication operator modeled with co-induction

Co-LP allows systems to be modeled naturally & elegantly

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 23

Application: Model Checking

 automated verification of hardware and software
systems

* w-automata

— accept infinite strings

— accepting state must be traversed infinitely often
* requires computation of Ifp and gfp

* co-logic programming provides an elegant framework
for model checking

 traditional LP works for safety property (that is based
on Ifp) in an elegant manner, but not for liveness .

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 24

Safety versus Liveness

o Safety
— “nothing bad will happen”
— naturally described inductively
— straightforward encoding in traditional LP

* liveness
— “something good will eventually happen”
— dual of safety
— naturally described coinductively
— straightforward encoding in coinductive LP

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 25

Finite Automata

automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).

trans(sO, a, s1). trans(s1, b, s2). trans(s2, c, s3).
trans(s3, d, s0). trans(s2, 3, s0). final(s2).

?- automata(X,s0).
X=[a, b];

X=[a, b, e, a, b]; : F@

X=[a, b, e, a, b, e, a, b];

Figure A

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 26

Infinite Automata

automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(sO,a,s1). trans(s1,b,s2). trans(s2,c,s3).
trans(s3,d,s0). trans(s2,3,s0). final(s2).

?- automata(X,s0).

X=[a, b, c,d|X]: - -@

X=[a, b, e| X];

Figure A

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 27

Verifying Liveness Properties

» Verifying safety properties in LP is relatively easy:
safety modeled by reachability

* Accomplished via tabled logic programming

» Verifying liveness is much harder: a counterexample
to liveness is an infinite trace

* Verifying liveness is transformed into a safety check
via use of negations in model checking and tabled LP
— Considerable overhead incurred

* Co-LP solves the problem more elegantly:

— Infinite traces that serve as counter-examples are produced
as answers

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 28

Verifying Liveness Properties

* Consider Safety:
— Question: Is an unsafe state, Su, reachable?
— If answer is yes, the path to Suis the counter-ex.

« Consider Liveness, then dually
— Question: Is a state, D, that should be dead, live?

— If answer is yes, the infinite path containing D is
the counter example
» Co-LP will produce this infinite path as the answer
« Checking for liveness is in a manner similar
to safety

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 29

Nested Finite and Infinite Automata

.- coinductive state/2.

state(s0, [s0,s1 | T]):- enter, work,
state(s1,T).

state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(sO,T).
state(s0, [sO | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(sO,T).
work. enter. repeat. exit. error.
work :- work.
|?- state(s0,X), absent(s2,X).

X=[s0, s3 | X]

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 30

v
T D University of Texas at Dallas

An Interpreter for LTL

%--- nots have been pushed to propositions

.- tabled verify/2.

verify(S, [S], A) :- proposition(A), holds(S,A). % p

verify(S, [S], not(A)) :- proposition(A), \+holds(S,A). % not(p)

verify(S,P, or(A,B)) :- verify(S, P, A) ; verify(S, P, B). %A orB

verify(S,P, and(A,B)) :- verify(S,P1, A), verify(S,P2, B). %A and B
(prefix(P2, P1), P=P1 ; prefix(P2,P1), P=P2)

verify(S, [S|P], x(A)) :- trans(S, S1), verify(S1, P, A). % X(A)

verify(S, P, f(A)) :- verify(S, P, A); verify(S, P, x(f(A))). % F(A)

verify(S, P, g(A)) :- coverify(S, P, g(A)). % G(A)
verify(S, P,u(A,B)) :- verify(S, P,B);

verify(S, P,and(A, x(u(A,B)))). % AuB
verify(S, r(A,B)) :- coverify(S, r(A,B)). % ArB

.- coinductive coverify/2.

coverify(S, g(A)) :- verify(S, P, and(A, x(g(A))).
coverify(S, r(A,B)) :- verify(S, P, and(A,B)).
coverify(S, r(A,B)) :- verify(S, P, and(B, x(r(A,B)))).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 31

Verification of Real-Time Systems
“Train, Controller, Gate”

C@—O

d=1 d< 1| down
{{d.{] p
- @

(1) controller (“” gate

(1) train

Timed Automata

« w-automata w/ time constrained transitions & stopwatches
« straightforward encoding into CLP(R) + Co-LP
« Assumption: no concurrent events

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 32

Verification of Real-Time Systems
“Train, Controller, Gate”

.- use_module(library(clpr)).
.- coinductive driver/9.

train(X, up, X, T1,T2,T2). % up=idle
train(sO,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down, X, T1,T2,T2).
train(X,raise, X, T1,T2,T2).

(1) train

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 33

Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).

(i) controller contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 34

Verification of Real-Time Systems
“Train, Controller, Gate”

d< 1| down
fdréy Eup =

d=0 @

(111) gate

J{ilﬂ

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):-{T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).

gate(X,out, X, T1,T2,T2).

gate(X,exit,X,T1,T2,T2).

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 35

Verification of Real-Time Systems

.- coinductive driver/9.
driver(S0,51,52, T,TO,T1,T2,[X | Rest], [(X,T) | R]) :-
train(S0,X,S00,T,T0,T00), contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T},
driver(S00,510,520,TA,T00,T10,T20,Rest,R).
|'?- driver(s0,s0,s0,T,Ta, Tb,Tc,X,R).
R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),
(raise,G), (up,H) | R],
X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G),
(approach,H),(up,))[R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;

% where A, B, C, ... H, | are the corresponding wall clock time of events generated.
TECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEM

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 36

DPP - Safety: Deadlock Free

Pl (P1)
.'\-\.__ A) _—— :
Lefty 4
o W —— '\.-‘:'b‘ e, —
- T, T f'r = -"“';7‘ b
Ps - B i, -
A 2\ () S /=
H._ L . ! / ",
j J -\.I. ! I|' |"r \".I .
, L/ | [- . I
N B y = ' |
" b .'I W ‘\E-_ _'-.--. i
\ . ,--*'Ii ‘“‘*--a"fl_ s
- ~ I”_"‘=- P (P4 |~ I~
P4 — ~| P3| N (P3)
"M._.p-“ 1'%-_--""' -.NH_ ‘;.-

« One potential solution - table regch/2: _
— Force one philosopher to pick forks reach(Si, Sf) :- trans(_,SI, Si).

in different order than others reach(Si, Sf) :- trans(_,Si,Sfi),

« Checking for deadlock reach(Sfi,Sf).
— Bad state is not reachable ?-reach([1,1,1,1,1], [2,2,2,2,2]).
— Implemented using Tabled LP no

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 37

DPP - Liveness: Starvation Free

) * Phil. waits forever on a fork
. = Onepotential solution
'E}";}"fﬁf—xaﬁv” PIE;.S — phil. waiting longest gets the access

\1 { o\ / — implemented using CLP(R)
[| {7 . .
L\ ad » Checking for starvation
N T | ' / — once in bad state, is it possible to
(pa) —L— (m) remain there forever?
"'H-_-HJI lkx_--fl . .
— implemented using co-LP
starved(l) :-
X=1, atr_driver{f[i,1,2,1.1]1, [2,_ ,_._._1):
I=2. ptr driver{[1 4t .2, 4.1], T 2. _ . T} ?- Starved(X).
X=3, etr_driver(l1,1,1,8 11, [._.2,._._1): NO

X=4, ptr_driver([1,1,1,2.1), L. i.2..1):
X=F. atr driver{[i1.1.1.2.1). [L..oioece2])

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 38

Other Applications

 Advanced w-structures can also be modeled and
reasoned about: w-PTA , w-grammars

» QOperational semantics of pi-calculus can be given
— infinite replication operator modeled with co-induction;

— can be extended with real-time through CLP(R)
* Non monotonic reasoning:

— CoLP allows goal-directed execution of Answer Set
Programs (ASP): IMPLEMENTATION AVAILABLE

— Abductive reasoners can be elegantly implemented

— Answer sets programming can be extended to predicates
— ASP can be elegantly extended with constraints:

— planning under real-time constraints become possible

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 39

Cyber-Physical Systems (CPS)

« CPS:
-- Networked/distributed Hybrid Systems

-- Discrete digital systems with

— Inputs: continuous physical quantities
 e.g., time, distance, acceleration, temperature, etc.

— Outputs: control physical (analog) devices
« Elegantly modeled via co-LP extended with constraints
e Characteristics of CPS:

-- perform discrete computations (modeled via LP)

-- deal with continuous physical quantities (modeled via constraints)
-- are concurrent (modeled via LP coroutining)

-- run forever (modeled via coinduction)

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 40

CPS Example

Reactor Temperature Control System

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 41

Rod1 & Rod2

trans_r1(out1, add1, in1, T, Ti, To, W)

(T-Ti>=W, To = Ti}. L omw
trans_r1(in1, remove1, out1, T, Ti, To, 2% ax, > - < n,
W) :-{To=T}. "
trans_r2(out2, add2, in2, T, Ti, To, W) ==w/ > , < N
- r,:=0
remove,

{T-Ti>=W, To = Ti}.

trans_r2(in2, remove2, out2, T, Ti, To,
W) - {To =T}.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 42

Controller

trans_c(norod, add1, rod1, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F==1->Ti=Ti1; Ti=Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) =5,
To1 =T, To2 =Ti2}.

trans_c(rod1, remove1, norod Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
{Tetai > 510 Tetao = 510, exp(e, (T - Ti1)/10) = 5,
To1=T, To2 =Ti2}.

trans_c(norod, add2, rod2, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F==1->Ti=Ti1; Ti=Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) =5,
To1=Ti1, To2=T}.

trans_c(rod2, remove2, norod, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F,
{Tetai > 510, Tetao = 510, exp(e, (T - Ti2)/10) = 9/5,
To1=Ti1, To2 =T}.

trans_c(norod, _, shutdown, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F==1->Ti=Ti1; Ti=Ti2),
{Tetai < 550 Tetao = 550, exp(e, (T - Ti)/10) =5,
To1 =Ti1, To2 = Ti2}.

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 43

Controller | Rod1 | Rod?2

.- coinductive(contr/7).
contr(X, Si, T, Tetai, Til, Ti2, Fi) :-
(H=add1; H =removel; H=add2; H = remove2; H = shutdown),
{Ta>T},
freeze(X, contr(Xs, So, Ta, Tetao, Tol, To2, Fo)),
trans_c(Si, H, So, Tetai, Tetao, T, Til, Ti2, Tol, To2, Fi),
((H=add1; H=removel) -> Fo = 1; Fo = 2),
((H=add1; H=removel; H=add2; H=remove2) ->X=[(H, T) | Xs]; X=[(H, T)]).

.- coinductive(rod1/6). .- coinductive(rod2/6).
rod1([(H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :- rod2([(H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :-
H=addl -> H=add2 ->

freeze(Xs,rod1(Xs, So1l, Si2, Tol, Ti2, W)); freeze(Xs,rod2(Xs, Sil, So2, Til, To2, W));
H =removel -> H =remove2 ->

freeze(Xs,rod1(Xs, Sol, Si2, Tol, Ti2, W); freeze(Xs,rod1(Xs, Sil1, So2, Til, To2, W);

rod2(Xs, Sol, Si2, Tol, Ti2, W)), rod2(Xs, Si1, So2, Til, To2, W)),

trans_r1(Si1, H, So1, T, Ti1, Tol, W); trans_r2(Si2, H, So2, T, Ti2, To2, W);
H = shutdown ->{T-Til <A, T-Ti2 < A}. H = shutdown ->{T-Til <A, T-Ti2 < A}.

Controller || Rod1 || Rod2

main(S, T, W) :- {T-Tr1 =W, T-Tr2 =W},
freeze(S, (rod1(S, s0, s0, Tr1, Tr2, W);
rod2(S, s0, s0, Tr1, Tr2, W))),
contr(S, s0, T, 510, Tc1, Tc2, 1).

« With more elegant modeling with LP, we were able to improve
the bounds on W compared to previous work

 HyTech determines W < 20.44 to prevent shutdown

« Subsequently, using linear hybrid automata with clock
translation, HyTech improves to W < 37.8

« Using our LP method, we refine it to W < 38.06

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 45

Related Publications

1. L. Simon, A. Mallya, A. Bansal, and G. Gupta. Coinductive logic
programming. In /CLP06 .

2. L. Simon, A. Bansal, A. Mallya, and G. Gupta. Co-Logic programming:
Extending logic programming with coinduction. In /CALP07.

G. Gupta et al. Co-LP and its applications, ICLP’07 (tutorial)

4. G. Gupta et al. Infinite computation, coinduction and computational
logic. CALCO’11

5. A. Bansal, R. Min, G. Gupta. Goal-directed Execution of ASP. Internal
Report, UT Dallas

6. R. Min, A. Bansal, G. Gupta. Co-LP with negation, LOPSTR 2009
R. Min, G. Gupta. Towards Predicate ASP, AIAI'09

8. N. Saeedloei, G. Gupta. Coinductive Constraint Programming.
FLOPS’12.

9. N. Saeedloei, G. Gupta, Timed 1m-Calculus

10.N. Saeedloei, G. Gupta. Modeling/verification of CPS with coinductive
coroutined CLP(R)

0

~

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 46

Conclusion

 Circularity is a common concept in everyday life and
computer science:

* Logic/LP is unable to cope with circularity

* Solution: introduce coinduction in Logic/LP
— dual of traditional logic programming
— operational semantics for coinduction
— combining both halves of logic programming

« applications to verification, non monotonic reasoning,
negation in LP, propositional satisfiability, hybrid
systems, cyberphysical systems

« Metainterpreter available:
http://www.utdallas.edu/~gupta/meta.tar.gz

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 47

Conclusion (cont'd)

« Computation can be classified into two types:
— Well-founded,

« Based on computing elements in the LFP
* Implemented w/ recursion (start from a call, end in base case)

— Consistency-based
« Based on computing elements in the GFP (but not LFP)
* Implemented via co-recursion (look for consistency)

« Combining the two allows one to compute any
computable function elegantly:

— Implementations of modal logics (LTL, etc.)
— Complex reasoning systems (NM reasoners)

« Combining them is challenging

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 48

Motivation

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 49

Motivation

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 50

Conclusions: Future Work

* Design execution strategies that enumerate all rational
infinite solutions while avoiding redundant solutions

p([alX]) :- p(X).
p([bIX]) :- p(X).
-- If X =[a|X] is reported, then avoid X =[a, a | X], X =[a,a,a|X], etc.
-- A fair depth first search strategy that will produce
X =[a,b|X]
» Combining induction (tabling) and co-induction:

— Stratified co-LP: equivalent to stratified Bichi tree automata
(SBTAS)

— Non-stratified co-LP: inspired by Rabin automata;, 3 class of
predicates (i) coinductive, (ii) weakly coinductive and (iii) strongly
coinductive

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 51

QUESTIONS?

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD Slide- 52

