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Circular Phenomena in Comp. Sci.
• Circularity has dogged Mathematics and Computer 

Science ever since Set Theory was first developed:
– The well known Russell’s Paradox: 

• R = { x | x is a set that does not contain itself}
Is R contained in R?  Yes and No

– Liar Paradox: I am a liar
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– Liar Paradox: I am a liar
– Hypergame paradox (Zwicker & Smullyan)

• All these paradoxes involve self-reference through 
some type of negation

• Russell put the blame squarely on circularity and 
sought to ban it from scientific discourse:

``Whatever involves all of the collection must not be one of 
the collection” -- Russell 1908
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Circularity in Computer Science
• Following Russell’s lead, Tarski proposed to ban self-

referential sentences in a language
• Rather, have a hierarchy of languages
• Kripke’s challenged this in a1975 paper:

argued that circular phenomenon are far more common and 

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD  Slide- 3

argued that circular phenomenon are far more common and 
circularity can’t simply be banned.

• Circularity has been banned from automated theorem 
proving and logic programming through the occurs 
check rule:

An unbound variable cannot be unified with a term  
containing that variable  (i.e., X = f(X) not allowed)

• What if we allowed such unification to proceed (as LP 
systems always did for efficiency reasons)?
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Circularity in Computer Science
• If occurs check is removed, we’ll generate 

circular (infinite) structures:
X = [1,2,3 | X]            X  = f(X)                      

• Such structures, of course, arise in computing 
(circular linked lists), but banned in logic/LP.
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(circular linked lists), but banned in logic/LP.
• Subsequent LP systems did allow for such 

circular structures (rational terms), but they 
only exist as data-structures, there is no proof 
theory to go along with it. 
– One can hold the data-structure in memory within 

an LP execution, but one can’t reason about it.
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Circularity in Everyday Life
• Circularity arises in every day life

– Most natural phenomenon are cyclical
• Cyclical movement of the earth, moon, etc.
• Our digestive system works in cycles

– Social interactions are cyclical:
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– Social interactions are cyclical:
• Conversation = (1st speaker, (2nd Speaker, Conversation)
• Shared conventions are cyclical concepts

• Numerous other examples can be found 
elsewhere (Barwise & Moss 1996) 
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Circularity in Computer Science
• Circular phenomenon are quite common in 

Computer Science:
– Circular linked lists
– Graphs (with cycles)
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– Graphs (with cycles)
– Controllers (run forever)
– Bisimilarity
– Interactive systems
– Automata over infinite strings/Kripke structures
– Perpetual processes

• Logic/LP not equipped to model circularity directly
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Coinduction
• Circular structures are infinite structures

X = [1, 2 | X]   is logically speaking X = [1, 2, 1, 2, ….] 
• Proofs about their properties are infinite-sized
• Coinduction is the technique for proving these 

properties
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properties
– first proposed by Peter Aczel in the 80s

• Systematic presentation of coinduction & its 
application to computing, math. and set theory: 

“Vicious Circles” by Moss and Barwise  (1996)
• Our focus: inclusion of coinductive reasoning 

techniques in C/LP (and theorem proving), and its 
applications  to verfication and reasoning
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Induction vs Coinduction
• Induction is a mathematical technique for finitely 

reasoning about an infinite (countable) no. of things. 
• Examples of inductive structures:

– Naturals: 0, 1, 2, …
– Lists: [ ],   [X],    [X, X],     [X, X, X], …
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– Lists: [ ],   [X],    [X, X],     [X, X, X], …
• 3 components of an inductive definition: 

(1) Initiality, (2) iteration, (3) minimality
– for example, the set of lists is specified as follows:

[ ] – an empty list is a list (initialityinitialityinitialityinitiality)   ……(i) 
[H | T]  is a list if T is a list and H is an element (iterationiterationiterationiteration) ..(ii)
minimal set that satisfies (i) and (ii)  (minimalityminimalityminimalityminimality)
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Induction vs Coinduction
• Coinduction is a mathematical technique for 

(finitely) reasoning about infinite things.
– Mathematical dual of induction
– If all things were finite, then coinduction would not be 

needed.
– Perpetual programs, automata over infinite strings
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– Perpetual programs, automata over infinite strings
• 2 components of a coinductive definition: 

(1) iteration, (2) maximality
– for example, for a list:

[ H | T ] is a list if T is a list and H is an element (iterationiterationiterationiteration).
MaximalMaximalMaximalMaximal set that satisfies the specification of a list.

– This coinductive interpretation specifies all infinite sized 
lists
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Example: Natural Numbers
• ΓΝΝΝΝ (S) = { 0 } ∪ { succ(x) | x ∈ S }
• Inductive interpretation

– N = µΓΝΝΝΝ

– corresponds to least fix point interpretation

Applied Logic, Programming-Languages and Systems (ALPS) Lab @ UTD  Slide- 10

– corresponds to least fix point interpretation
• Coinductive interpretation

– N’  = νΓΝΝΝΝ = N ∪ { ω }
– ω = succ( succ( succ( ... ) ) ) = succ( ω ) = ω + 1
– corresponds to greatest fixed point interpretation.
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Mathematical Foundations
• Duality provides a source of new mathematical tools 

that reflect the sophistication of tried and true 
techniques.

DefinitionDefinitionDefinitionDefinition ProofProofProofProof MappingMappingMappingMapping
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Least fixed point Induction Recursion

Greatest fixed point Coinduction Corecursion

• Co-recursion: recursive def’n without a base case



University of Texas at Dallas

Applications of Coinduction
• model checking
• bisimilarity proofs
• lazy evaluation in FP
• reasoning with infinite structures
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• reasoning with infinite structures
• perpetual processes
• cyclic structures
• operational semantics of “coinductive logic 

programming”
• Type inference systems for lazy functional 

languages
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Inductive C/LP
• (Constraint) Logic Programming 

– is actually inductive C/LP.
– has inductive definition.
– useful for writing programs for reasoning about 
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– useful for writing programs for reasoning about 
finite things:

- data structures
- properties
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Infinite Objects and Properties
• Traditional logic programming is unable to reason 

about infinite objects and/or properties. 
• (The glass is only half-full)
• Example: perpetual binary streams  

– traditional logic programming cannot handle
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– traditional logic programming cannot handle

bit(0).
bit(1).
bitstream( [ H | T ] ) :- bit( H ), bitstream( T ).
|?- X = [ 0, 1, 1, 0 | X ], bitstream( X ).

• Goal: Combine traditional LP with coinductive LP
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Overview of Coinductive LP
• Coinductive Logic Program is 

a definite program with maximal co-Herbrand model 
declarative semantics.

• Declarative Semantics: across the board dual of 
traditional LP:
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• Declarative Semantics: across the board dual of 
traditional LP:
– greatest fixed-points
– terms: co-Herbrand universe Ucocococo(P)
– atoms: co-Herbrand base Bcocococo(P)
– program semantics: maximal co-Herbrand model Mcocococo(P).
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Operational Semantics: co-SLD Resolution

• nondeterministic state transition system
• states are pairs of

– a finite list of syntactic atoms [resolvent] (as in Prolog)
– a set of syntactic term equations of the form x = f(x) or x = t

• For a program  p :- p.  => the query |?- p.  will succeed.
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• For a program  p :- p.  => the query |?- p.  will succeed.
• p( [ 1 | T ] ) :- p( T ).  => |?- p(X)  to succeed with X= [ 1 | X ].

• transition rules
– definite clause rule
– “coinductive hypothesis rule”

• if a coinductive goal G is called, 
and G unifies with a call made earlier 

then G succeeds. 

?-G

….

G

coinductive
success
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Correctness
• Theorem (soundness).  If atom A has a 

successful co-SLD derivation in program P, 
then E(A) is true in program P, where E is the 
resulting variable bindings for the derivation.
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resulting variable bindings for the derivation.

• Theorem (completeness). If A ∈ Mcocococo(P) has a 
rational proof, then A has a successful co-
SLD derivation in program P.
– Completeness only for rational/regular proofs
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Implementation
• Search strategy: hypothesis-first, leftmost, depth-first
• Meta-Interpreter implementation.

query(Goal) :- solve([],Goal).
solve(Hypothesis, (Goal1,Goal2)) :-

solve( Hypothesis, Goal1), solve(Hypothesis,Goal2).
solve( _ , Atom) :- builtin(Atom), Atom.
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solve( _ , Atom) :- builtin(Atom), Atom.
solve(Hypothesis,Atom):- member(Atom, Hypothesis).
solve(Hypothesis,Atom):- notbuiltin(Atom), 

clause(Atom,Atoms),  solve([Atom|Hypothesis],Atoms).

• A complete meta-interpreter available 
• Implementation on top of YAP, SWI Prolog available
• Implementation within Logtalk + library of examples
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Example: Number Stream
:- coinductive stream/1.
stream( [ H | T ] ) :- num( H ), stream( T ).
num( 0 ).
num( s( N ) ) :- num( N ).

|?- stream( [ 0, s( 0 ), s( s ( 0 ) )   |   T ] ).
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|?- stream( [ 0, s( 0 ), s( s ( 0 ) )   |   T ] ).
1. MEMO: stream( [ 0, s( 0 ), s( s ( 0 ) ) | T ] )
2. MEMO: stream( [ s( 0 ), s( s ( 0 ) ) | T ] )
3. MEMO: stream( [ s( s ( 0 ) ) | T ] )
4. stream(T)

Answers:
T = [ 0, s(0), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)), s(0), s(s(0)) | T ]
T = [ 0, s(0), s(s(0)) | T ]   . . .. . .. . .. . .
T = [ 0, s(0), s(s(0)) | X ]     (where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)(where X is any rational list of numbers.)
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Example: Append
:- coinductive append/3.
append( [ ], X, X ).
append( [ H | T ], Y, [ H | Z ] ) :- append( T, Y, Z ).

|?- Y = [ 4, 5, 6 | Y ], append( [ 1, 2, 3 ], Y, Z).
Answer: Z = [ 1, 2, 3 | Y ], Y=[ 4, 5, 6 | Y]
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Answer: Z = [ 1, 2, 3 | Y ], Y=[ 4, 5, 6 | Y]

|?- X = [ 1, 2, 3  | X ], Y = [ 3, 4 | Y ], append( X, Y, Z).
Answer: Z = [ 1, 2, 3 | Z ].

|?- Z = [ 1, 2 | Z ], append( X, Y, Z ).
Answer: X = [ ], Y = [ 1, 2 | Z ] ;        X = [1, 2 | X], Y = _

X = [ 1 ], Y = [ 2 | Z ] ;
X = [ 1, 2 ], Y = Z;  …. ad infinitum
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Example:  Comember
member(H, [ H | T ]).
member(H, [ X | T ]) :- member(H, T).

?- L = [1,2 | L], member(3, L).    succeeds.     Instead:

:- coinductive comember/2.    %drop/3 is inductive
comember(X, L) :- drop(X, L, R), comember(X, R).
drop(H, [ H | T ], T).
drop(H, [ X | T ], T1) :- drop(H, T, T1).
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drop(H, [ X | T ], T1) :- drop(H, T, T1).

?- X=[ 1, 2, 3 | X ], comember(2,X).           ?- X = [1,2 | X], comember(3, X).
Answer: yes.                                                  Answer: no

?- X=[ 1, 2, 3, 1, 2, 3], comember(2, X).
Answer: no.

?- X=[1, 2, 3 | X], comember(Y, X).
Answer: Y = 1; 

Y = 2;
Y = 3;  
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Co-Logic Programming
• combines both halves of logic programming:

– traditional logic programming
– coinductive logic programming

• syntactically identical to traditional logic 
programming, except predicates are labeled: 
– Inductive, or 
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– Inductive, or 
– coinductive

• and stratification restriction enforced where:
– inductive and coinductive predicates cannot be mutually 

recursive. e.g.,
p :- q.
q :- p.

Program rejected, if p coinductive & q inductive
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Application of Co-LP
• Co-LP allows one to compute both LFP & GFP
• Computable functions can be specified more elegantly

– Interepreters for Modal Logics can be elegantly specified:
– Model Checking: LTL interpreter elegantly specified
– Timed ω-automata: elegantly modeled and properties verified
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– Timed ω-automata: elegantly modeled and properties verified
– Modeling/Verification of Cyber Physical Systems/Hybrid automata
– Goal-directed execution of Answer Set Programs
– Goal-directed SAT solvers (Davis-Putnam like procedure)
– Planning under real-time constraints
– Operational semantics of the π-calculus  (incl. timed π -calculus)

• infinite replication operator modeled with co-induction

Co-LP allows systems to be modeled naturally & elegantly
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Application: Model Checking
• automated verification of hardware and software 

systems
• ω-automata

– accept infinite strings
– accepting state must be traversed infinitely often
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– accepting state must be traversed infinitely often
• requires computation of lfp and gfp
• co-logic programming provides an elegant framework 

for model checking
• traditional LP works for safety property (that is based 

on lfp) in an elegant manner, but not for liveness .
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Safety versus Liveness
• Safety

– “nothing bad will happen”
– naturally described inductively
– straightforward encoding in traditional LP
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– straightforward encoding in traditional LP
• liveness

– “something good will eventually happen”
– dual of safety
– naturally described coinductively
– straightforward encoding in coinductive LP



University of Texas at Dallas

Finite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).
automata([ ], St) :- final(St).

trans(s0, a, s1).     trans(s1, b, s2).         trans(s2, c, s3). 
trans(s3, d, s0).     trans(s2, 3, s0).         final(s2).
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?- automata(X,s0).
X=[ a, b];
X=[ a, b, e, a, b];
X=[ a, b, e, a, b, e, a, b];
……
……
……
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Infinite Automata
automata([X|T], St):- trans(St, X, NewSt), automata(T, NewSt).

trans(s0,a,s1).     trans(s1,b,s2).         trans(s2,c,s3). 
trans(s3,d,s0).     trans(s2,3,s0).         final(s2).

?- automata(X,s0).
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?- automata(X,s0).
X=[ a, b, c, d | X ];
X=[ a, b, e | X ];
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Verifying Liveness Properties
• Verifying safety properties in LP is relatively easy: 

safety modeled by reachability
• Accomplished via tabled logic programming
• Verifying liveness is much harder: a counterexample 

to liveness is an infinite trace
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to liveness is an infinite trace
• Verifying liveness is transformed into a safety check 

via use of negations in model checking and tabled LP
– Considerable overhead incurred

• Co-LP solves the problem more elegantly:
– Infinite traces that serve as counter-examples are produced 

as answers
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Verifying Liveness Properties
• Consider Safety:

– Question: Is an unsafe state, Su, reachable?
– If answer is yes, the path to Su is the counter-ex.

• Consider Liveness, then dually
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• Consider Liveness, then dually
– Question: Is a state, D, that should be dead, live?
– If answer is yes, the infinite path containing D is 

the counter example
• Co-LP will produce this infinite path as the answer

• Checking for liveness is in a manner similar 
to safety
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Nested Finite and Infinite Automata

:- coinductive state/2.
state(s0, [s0,s1 | T]):- enter, work,      

state(s1,T).
state(s1, [s1 | T]):- exit, state(s2,T).
state(s2, [s2 | T]):- repeat, state(s0,T).
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state(s2, [s2 | T]):- repeat, state(s0,T).
state(s0, [s0 | T]):- error, state(s3,T).
state(s3, [s3 | T]):- repeat, state(s0,T).
work.       enter. repeat. exit. error.
work :- work.  
|?- state(s0,X), absent(s2,X).

X=[ s0, s3 | X ]
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An Interpreter for LTL
%--- nots have been pushed to propositions
:- tabled verify/2.
verify(S, [S], A) :- proposition(A), holds(S,A).                % p
verify(S, [S], not(A)) :- proposition(A), \+holds(S,A).      % not(p)
verify(S,P, or(A,B)) :- verify(S, P, A) ; verify(S, P, B).    %A or B
verify(S,P, and(A,B)) :- verify(S,P1, A), verify(S,P2, B). %A and B

(prefix(P2, P1), P=P1 ; prefix(P2,P1), P=P2)
verify(S, [S|P], x(A)) :- trans(S, S1), verify(S1, P, A).     % X(A)
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verify(S, [S|P], x(A)) :- trans(S, S1), verify(S1, P, A).     % X(A)
verify(S, P, f(A)) :- verify(S, P, A); verify(S, P, x(f(A))).   % F(A)
verify(S, P, g(A)) :- coverify(S, P, g(A)).                          % G(A)
verify(S, P,u(A,B)) :- verify(S, P,B);

verify(S, P,and(A, x(u(A,B)))).            % A u B
verify(S, r(A,B)) :- coverify(S, r(A,B)).                              % A r B
:- coinductive coverify/2.
coverify(S, g(A)) :- verify(S, P, and(A, x(g(A))).
coverify(S, r(A,B)) :- verify(S, P, and(A,B)).
coverify(S, r(A,B)) :- verify(S, P, and(B, x(r(A,B)))).
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Verification of Real-Time Systems
“Train, Controller, Gate”
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• ω-automata w/ time constrained transitions & stopwatches
• straightforward encoding into CLP(R) + Co-LP
• Assumption: no concurrent events

Timed Automata
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Verification of Real-Time Systems
“Train, Controller, Gate”

:- use_module(library(clpr)).
:- coinductive driver/9.

train(X, up, X, T1,T2,T2).        % up=idle

train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
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train(s0,approach,s1,T1,T2,T3) :- {T3=T1}.
train(s1,in,s2,T1,T2,T3):-{T1-T2>2,T3=T2}
train(s2,out,s3,T1,T2,T3).
train(s3,exit,s0,T1,T2,T3):-{T3=T2,T1-T2<5}.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

contr(s0,approach,s1,T1,T2,T1).
contr(s1,lower,s2,T1,T2,T3):- {T3=T2, T1-T2=1}.
contr(s2,exit,s3,T1,T2,T1).
contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
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contr(s3,raise,s0,T1,T2,T2):-{T1-T2<1}.
contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).
contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).
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Verification of Real-Time Systems
“Train, Controller, Gate”

gate(s0,lower,s1,T1,T2,T3):- {T3=T1}.
gate(s1,down,s2,T1,T2,T3):- {T3=T2,T1-T2<1}.
gate(s2,raise,s3,T1,T2,T3):- {T3=T1}.
gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
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gate(s3,up,s0,T1,T2,T3):- {T3=T2,T1-T2>1,T1-T2<2 }.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).
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Verification of Real-Time Systems
:- coinductive driver/9.
driver(S0,S1,S2, T,T0,T1,T2, [ X | Rest ], [ (X,T) | R ]) :-

train(S0,X,S00,T,T0,T00),  contr(S1,X,S10,T,T1,T10),
gate(S2,X,S20,T,T2,T20), {TA > T}, 
driver(S00,S10,S20,TA,T00,T10,T20,Rest,R).

|?- driver(s0,s0,s0,T,Ta,Tb,Tc,X,R).
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R=[(approach,A), (lower,B), (down,C), (in,D), (out,E), (exit,F),   
(raise,G), (up,H) | R ],

X=[approach, lower, down, in, out, exit, raise, up | X] ;
R=[(approach,A),(lower,B),(down,C),(in,D),(out,E),(exit,F),(raise,G), 

(approach,H),(up,I)|R],
X=[approach,lower,down,in,out,exit,raise,approach,up | X] ;
%  where A, B, C, ... H, I are the corresponding wall clock time of events generated.

TECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEMTECHNIQUE USED TO VERIFY THE GENERALIZED RAILROAD CROSSING PROBLEM
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DPP – Safety: Deadlock Free
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• One potential solution
– Force one philosopher to pick forks 

in different order than others
• Checking for deadlock

– Bad state is not reachable
– Implemented using Tabled LP

:- table reach/2.
reach(Si, Sf) :- trans(_,Si,Sf).
reach(Si, Sf) :- trans(_,Si,Sfi), 

reach(Sfi,Sf).
?- reach([1,1,1,1,1],  [2,2,2,2,2]).

no
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DPP – Liveness: Starvation Free
• Phil. waits forever on a fork
• One potential solution

– phil. waiting longest gets the access
– implemented using CLP(R)

• Checking for starvation
– once in bad state, is it possible to 
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?- starved(X).
no

– once in bad state, is it possible to 
remain there forever?

– implemented using co-LP
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Other Applications
• Advanced ω-structures can also be modeled and 

reasoned about: ω-PTA , ω-grammars
• Operational semantics of pi-calculus can be given

– infinite replication operator modeled with co-induction; 
– can be extended with real-time through CLP(R)
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• Non monotonic reasoning:
– CoLP allows goal-directed execution of Answer Set 

Programs (ASP): IMPLEMENTATION AVAILABLE
– Abductive reasoners can be elegantly implemented
– Answer sets programming can be extended to predicates
– ASP can be elegantly extended with constraints: 
– planning under real-time constraints become possible
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Cyber-Physical Systems (CPS)
• CPS:

-- Networked/distributed Hybrid Systems
-- Discrete digital systems with 

– Inputs: continuous physical quantities 
• e.g., time, distance, acceleration, temperature, etc. 

– Outputs: control physical (analog) devices 
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– Outputs: control physical (analog) devices 
• Elegantly modeled via co-LP extended with constraints
• Characteristics of CPS:

-- perform discrete computations (modeled via LP)
-- deal with continuous physical quantities (modeled via constraints) 
-- are concurrent (modeled via LP coroutining)
-- run forever (modeled via coinduction)
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CPS Example

no_rod

Reactor Temperature Control System

θ = ― - 50
10
θ

.
θ = ― - 56

10
θ

. θ = ― - 60
10
θ

.
rod2rod1

θ = θM

add1 , c1  := 0  

θ = θM

add2 , c2  := 0 

θ = θ

θ = θm

in1

r1 >= W  

add1

r1  := 0  
out1

r1 = W 
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θ <= θM

1010
θm <= θ θm <= θθ = θm

θ = θm

remove1 , c1  := 0 remove2 , c2  := 0 
θ = θM

shutdown

r1  := 0  

remove1

in2

r2 >= W  

add2

r2  := 0  

remove2

out2

r2 = W 
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Rod1 & Rod2
trans_r1(out1, add1, in1, T, Ti, To, W) 

:-
{T – Ti >= W, To = Ti}.

trans_r1(in1, remove1, out1, T, Ti, To, 
W) :- {To = T}.

in1

r1 >= W  

add1

r1  := 0  

remove1

out1
r1 = W 
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W) :- {To = T}.

trans_r2(out2, add2, in2, T, Ti, To, W) 
:-
{T – Ti >= W, To = Ti}.

trans_r2(in2, remove2, out2, T, Ti, To, 
W) :- {To = T}.

remove1

in2

r2 >= W  

add2

r2  := 0  

remove2

out2

r2 = W 
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Controller
trans_c(norod, add1, rod1, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-

(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5, 
To1 = T, To2 = Ti2}.

trans_c(rod1, remove1, norod Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
{Tetai > 510 Tetao = 510, exp(e, (T - Ti1)/10) = 5, 
To1 = T, To2 = Ti2}.

trans_c(norod, add2, rod2, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5, θ = θm
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{Tetai < 550, Tetao = 550, exp(e, (T - Ti)/10) = 5, 
To1 = Ti1, To2 = T}.

trans_c(rod2, remove2, norod, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
{Tetai > 510, Tetao = 510, exp(e, (T - Ti2)/10) = 9/5, 
To1 = Ti1, To2 = T}.

trans_c(norod, _, shutdown, Tetai, Tetao, T, Ti1, Ti2, To1, To2, F) :-
(F == 1 -> Ti = Ti1; Ti = Ti2),
{Tetai < 550 Tetao = 550, exp(e, (T - Ti)/10) = 5, 
To1 = Ti1, To2 = Ti2}.

no_rod

θ <= θM

θ = ― - 50
10
θ

.
θ = ― - 56

10
θ

. θ = ― - 60
10
θ

.
rod2rod1

θm <= θ θm <= θ

θ = θM

add1 , c1  := 0  

θ = θM

add2 , c2  := 0 

θ = θm
θ = θm

remove1 , c1  := 0 remove2 , c2  := 0 
θ = θM

shutdown

θ = θm



Controller | Rod1 | Rod2
:- coinductive(contr/7).

contr(X, Si, T, Tetai, Ti1, Ti2, Fi) :-

(H = add1; H = remove1; H = add2; H = remove2; H = shutdown),

{Ta > T},

freeze(X, contr(Xs, So, Ta, Tetao, To1, To2, Fo)),

trans_c(Si, H, So, Tetai, Tetao, T, Ti1, Ti2, To1, To2, Fi),

((H=add1; H=remove1) -> Fo = 1; Fo = 2),

((H=add1; H=remove1; H=add2; H=remove2) -> X = [ (H, T) | Xs]; X = [ (H, T) ] ).((H=add1; H=remove1; H=add2; H=remove2) -> X = [ (H, T) | Xs]; X = [ (H, T) ] ).

:- coinductive(rod1/6).

rod1([ (H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :-

H = add1 ->

freeze(Xs,rod1(Xs, So1, Si2, To1, Ti2, W));

H = remove1 ->

freeze(Xs,rod1(Xs, So1, Si2, To1, Ti2, W);

rod2(Xs, So1, Si2, To1, Ti2, W)),

trans_r1(Si1, H, So1, T, Ti1, To1, W);

H = shutdown -> {T - Ti1 < A, T - Ti2 < A}.

:- coinductive(rod2/6).

rod2([ (H, T)| Xs], Si1, Si2, Ti1, Ti2, W) :-

H = add2 ->

freeze(Xs,rod2(Xs, Si1, So2, Ti1, To2, W));

H = remove2 ->

freeze(Xs,rod1(Xs, Si1, So2, Ti1, To2, W);

rod2(Xs, Si1, So2, Ti1, To2, W)),

trans_r2(Si2, H, So2, T, Ti2, To2, W);

H = shutdown -> {T - Ti1 < A, T - Ti2 < A}.
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Controller || Rod1 || Rod2
main(S, T, W) :- {T - Tr1 = W, T - Tr2 = W},

freeze(S, (rod1(S, s0, s0, Tr1, Tr2, W);
rod2(S, s0, s0, Tr1, Tr2, W))),

contr(S, s0, T, 510, Tc1, Tc2, 1).
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• With more elegant modeling with LP, we were able to improve 
the bounds on W compared to previous work

• HyTech determines W < 20.44 to prevent shutdown
• Subsequently, using linear hybrid automata with clock 

translation, HyTech improves to W < 37.8
• Using our LP method, we refine it to W < 38.06
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Conclusion
• Circularity is a common concept in everyday life and 

computer science:
• Logic/LP is unable to cope with circularity
• Solution: introduce coinduction in Logic/LP

– dual of traditional logic programming
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– dual of traditional logic programming
– operational semantics for coinduction
– combining both halves of logic programming

• applications to verification, non monotonic reasoning, 
negation in LP, propositional satisfiability, hybrid 
systems, cyberphysical systems

• Metainterpreter available:
http://www.utdallas.edu/~gupta/meta.tar.gz
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Conclusion (cont’d)
• Computation can be classified into two types:

– Well-founded, 
• Based on computing elements in the LFP
• Implemented w/ recursion (start from a call, end in base case)

– Consistency-based
• Based on computing elements in the GFP (but not LFP)
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• Based on computing elements in the GFP (but not LFP)
• Implemented via co-recursion (look for consistency)

• Combining the two allows one to compute any 
computable function elegantly:
– Implementations of modal logics (LTL, etc.)
– Complex reasoning systems (NM reasoners)

• Combining them is challenging
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Motivation
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Conclusions: Future Work
• Design execution strategies that enumerate all rational 

infinite solutions while avoiding redundant solutions
p([a|X]) :- p(X).
p([b|X]) :- p(X).

-- If X = [a|X] is reported, then avoid X = [a, a | X],  X = [a,a,a|X], etc.
-- A fair depth first search strategy that will produce
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-- A fair depth first search strategy that will produce
X = [a,b|X]

• Combining induction (tabling) and co-induction:  
– Stratified co-LP: equivalent to stratified Büchi tree automata

(SBTAs)
– Non-stratified co-LP: inspired by Rabin automata; 3 class of 

predicates (i) coinductive, (ii) weakly coinductive and (iii) strongly 
coinductive
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QUESTIONS?
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