CP also meets Software Testing

Arnaud Gotlieb

Certus Software V&V Centre
SIMULA RESEARCH LABORATORY

Lysaker, Norway

CP meets CAV Workshop, Turunc, Turkey
A day in June 2012

CERTUS is also a
Centre for research-based innovation (SFI)

Host
Simula Research Laboratory

User partners
CISCO Systems Norway
ESITO
FMC Technologies
KONGSBERG Maritime
TOLL customs and excises

Budget
~10 MNOK (1.3 MEUR) per year over a 8-years period

Origin (2011)
Prof. Lionel Briand (now in Luxembourg)

) ::II lsl :: IC; I +MC Technologies m

CUSTOMS KONGSBERG

Industry-driven research problems in
Software Validation & Verification

<> Certification and verification of
real-time embedded software-systems

<2 Modelling and testing of
highly-configurable software-systems

<> Automated testing of
data-intensive administrative software-systems

With an increasing usage of Constraint Programming
techniques (Finite Domains constraint solving, constraint
optimization, MIP, Modelling)

Outline <&

A.Time-aware test configurations generation with
Constraint Programming

B. Testing deadline misses for real-time systems
using constraint-based scheduling techniques

C. Extraction of a formally verified constraint solver
for the certification of tax computation

Outline &>

Constraint-based testing (CBT)

Constraint-based program exploration for
automatic test data generation

Constraints over Memory Model Variables for testing
pointer programs

Conclusions

Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases

against a testing objective by using constraint solving techniques
(LP, CP, SAT, SMT, .)

Introduced 20 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Developed in the context of code-based testing and model-based testing

Lots of Research works and tools !

CBT: main tools

CEA - List (Osmose S. Bardin P.Herrmann)
Univ. of Madrid (PET M. Gomez-Zamalloa, E. Albert, G. Puebla)
Univ. of Stanford (EXE D. Engler, C. Cadar, P. Guo)
Univ. of Nice Sophia-Antipolis (CPBPV M. Rueher, H. Collavizza, P.V. Hentenryck)

INRIA - Celtique (Euclide, JAUT A. Gotlieb, F. Charreteur)

Tools with external industrial usage :

GATEL (CEA B. Marre, since 2004)
Test Designer (Smartesting B. Legeard, since 2003)
PEX (Microsoft P.de Halleux, N. Tillmann, since 2009)
Tools with internal industrial usage :
Inka V1 (Dassault A. Gotlieb, B. Botella, in 2001)
PathCrawler (CEA N. Williams, since 2004)

SAGE (Microsoft P. Godefroid, since 2010)

The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

Reachability problem in infinite-state systems is undecidable in generall

Even when adding bounds, f(int x, int x;, int x3) {
hard combinatorial problem iF(x, == x, && X, ::XV

If(x3==x,"x3) ..
Using Random Testing,
Prob{ reack k} = 2 over 232 x 232 x 232 = 2-95 = 0.00000..1.

Constraint solving techniques are required!

v" Loops (i.e., infinite-state systems) and infeasible paths
v" Pointers, dynamic structures, higher-order computations (virtual calls)
v" Floating-point computations, modular computations

Context of this talk

Code-based testing (not model-based testing)

Imperative programs (C, ...) (not Functionnal P., not Logic P.,
not Object-Oriented P.)

Programs with loops (i.e., infinite-state systems)
Single-threaded programs (no concurrent or parallel programs)

Selected location in code (i.e., reachability problems)

Constraint-based program exploration
for automatic test data generation

£
{

a.

b.

A reacheability problem

int 1, ..)

7 = 100;
while(1 > 1)
{ J++ ; 1i-- ;}

if(3 > 500)

-~ value of i to reach e ?

Path-oriented exploration

f(1int 1, ..)
{ t
a. 7 = 100;
while(1 > 1) f
b. { 3++ ; 1-—- ;}

1. Path selection
e.qg., (a-b)4-...-d-e

d. if(3 > 500) N
e.
@ t
f

2. Path condition generation (via symbolic exec.) &~
3. Path condition solving
unsatisfiable > FAIL Even without loops, #paths

Is exponential with #decisions

— —__ Backtfrack!

Constraint-based program exploration

f(1int 1, ..)
{
7 = 100; t
while(i > 1) f
{ J++ 7 1-- ;}

if(3 > 500)

d. .
1. Constraint model generation @ t
f

2. Control dependencies generation;

j;=100, i, <1, j, > 500 r

3. Constraint model solving ‘
j1 # j3 entailed = unroll the loop 400 times =» i; in 401 .. 23!-1

No backtrack !

Constraint-based program exploration

- Based on a constraint model of the whole program
(i.e., each statement is seen as a relation)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:
* propagation queue management with priorities
* specific propagators and meta-constraints

* structure-aware labelling heuristics
(Systematic search over finite domains)

Prototype tools: Inka (Gotlieb Botella Rueher ISSTA'98)
Euclide (Gotlieb ICST09)

Assignment as Constraint

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g. SSA)

ik=tti ; = i, = (i,+1)2

Using bound-consistency filtering over finite domains:

i, =3 ? ;1IN -4..2 no i, in -5..3
i*x=++1; /* iy = (ig+1) 2 */

/ 1 I N

i, =16 i, =97 i, =77 i, in 5..16 ?

Statements as constraints

Type declaration: signed long x; =2 Xxin-2312311
Assignments: i*=++i ; 2> i, = (i;+1)?

Memory and array accesses and updates:
v=A[i] (or p=Mem[&p]) -2 variations of element/3

Control structures: dedicated meta-constraints
(intferface, awakening conditions and filtering algorithms)

Conditionnals (SSA) if D then C,, else C, > ite/6

Loops (SSA) while D do C > w/b

Conditional as meta-constraint: ite/6

ite(x>0, i1, §2 3, j1=5., j.=18) iff
* x>0 > 179 A J3T
¢ =(x>0) —» j,=18 Aj3=j;

—|(X>O/\J1—5/\J3—J1)—)—|(X>O)/\J2=18 /\J3:J2
¢ (x>0 A j3=Jj2) & x>0A j1=D Aj3=]

0Join(x>0/\j1=5/\j3:j1 —.(X>O)/\ Jl 18AJ3—J2)

Implemented as a new global constraint
(interface, awakening conditions, filtering algo.)

Loop as meta-constraint: w/5

V3 - d)(Vi, VZ)
while(Dec)

w(Dec, V;, V,, Vs, body) iff

* Decyseyi > bodyyseyr A w(Dec, v,V V3, DOdYyocynen)
¢ —Decyzeyt = v3=Vy

—(Decyzcys A bodyyzeyr) > —Decyzeys A V3=V
* —(—Decyzcvi A vsmvy)) = Decyszeyr A bodyyseyi A w(Dec,va Vi, V3,.00dYy2c ynew)

* join(Decyzcyi A bodyyscyr A w(Dec v, Ve, V3,00dY o cynew) , —DeCyscys A V3=vy)

t o int 1) w(Dec, V,, V,, V3, body) :-

) = 100; = ¢ DeCy3¢y; = DOdYyzeys A W(DEC, Vo VieynVs, DOAY 2 e vnew)
while(1 > 1) ¢ —DeCyzey1 = V3=V,
. : ¢+ —(Dec A bod — —Dec A Vo=V
{ I+ i-- ; } (V3€Vi Yvzevt) vaevi A V3=V,

* —(—=Decyzey A Va=Vy) =
Decy3¢cyv1 A bodyy 3y A W(DEC,V,,V 60 V3,000Yy 5 c\rew)
* join(Decy3¢yy A bOdyyzeyy A W(DEC, V5, Ve, V3,000Yy o ynew |
—Decyz¢vy A V5=Vy)

if(3§ > 500)

| = 23, 11:100 ? no

\ f Vi

W(z > 1, (1,)q), (12:)2)s (I3)3)s Jo =gt 1Al =153-1)

/ f \

s =1, ;=122 i, =107 J, = 100,
s > 500 ?

1in 401..231-1

Features of constraint-based exploration

v’ Special meta-constraints implementation for ite and w

By construction, w is unfolded only when necessary
but w may NOT terminate !
- only a semi-correct test data generation procedure

v Join is implemented using Abstract Interpretation operators
(e.g., interval-based union, weak-join operator, widening in Euclide)

v' Special propagators based on linear-based relaxations
Using Linear Programming over rationals (i.e., Q_polyhedra)

Abstraction-based relaxations @

Abstraction-based relaxations

- During constraint propagation, constraints can be relaxed in Abstract

Domains (e.g., Q-Polyhedra, Octagons, ...)
Z=X*Y, Xina.b,Yinc.d

& { Z -Ya-Xc+ac 20,
Xd-Z-ad +aVY 20,
bY -bc-Z+ Xc>0,
bd-bY-Xd+Z>0,
a<X<b,c¢cY<«d}

-

e

|

d

N

—

a

i

~
N

\

b

- To benefit from specialized algorithm (e.g., simplex for linear constraints)

and capture global states of the constraint system

- Require safe/correct over-approximation (o preserve property such as:
if the Q-Polyhedra is void then the constraint system is unsatistiable)

- Q-Polyhedra in Euclide, implementing Dynamic Linear Relaxation,

propagation queue with priorities

Abstraction-based relaxations:

weak-join operator
(Sankaranarayanan et al. VMCAT'06)

Join operations can be realized by convex hull, but usually too costly |

In Euclide, we took advantage of the weak-join of Q_polyhedra
(based on simplex calculations)

Abstraction-based relaxations:

weak-join operator
(Sankaranarayanan et al. VMCAT'06)

Abstraction-based relaxations:

weak-foin operator
(Sankaranarayanan et al. VMCAI06)

Weak_join operator

The disjunction: {gl(t) = 'E{ }fsf v {gl(t) > c;l}r'si’
X=(X..,Xn), Wherexi= 2

Weak_join: @1 = Mmmze gll (x) subject to [E (I}}H

gp = Minimize i¥“(x) subject to [g (x) }m ;
arp+1 = Mintmize g% (x) subject to rlgl (x) }.e 1

a1p = Minimize g5 (x) subject to '[gf (I}}M
g,(x) = Min(a q),

g?ﬂrﬂ} (x) = Min{ ac2p. cg‘ﬁ:ﬁ')

Constraint-based program exploration

- Handles loops in constraint-based test data generation,
without bounding the number of iterations ;

- Useful for reaching a particular uncovered location in the code
(complement an existing test set generated by « systematic »
path-exploration)

- Use of the global constraint interface in clpfd to implement w, or
dedicated solver (propagation queue management)

- May not terminate, timeout needed!

Foundations of the approach (Gotlieb Botella Rueher ISSTA'98,SEN'98,CL'00)
Abstraction-based relaxation (Denmat Gotlieb Ducassé ISSRE'07)
Global constraint w, extended with widenning (Denmat Gotlieb Ducassé CP'07)
Euclide: A Constraint-based testing platform for C (Gotlieb ICST'09)
Application on the TCAS case study (Gotlieb KER Journal 2012)

Constraints over Memory Model Variables
for testing pointer programs

Constraints over memory models:
aliasing problems

How to apply constraint-based reasoning over statement like *p := *p+1 ?

“pi=Tp+ 1

p

Then fail or exception

Then a, = a;+1

Then a, = a;+1 or b, = b,+1

Then p, = p;+1, meaning that
p now refers to the next
memory location

Our propositions

How to represent abstract memories and to reason on them ?

1) Constraint reasoning over Cal a2 D
Memory, as a set of graphs e = -
(Gotlieb et al., ASE'05, IST 2007) W

V. integer within a

. finite domain
TAB : tableau
Type : 16 32 64 bits,

. . status: closed or not signed. unsigned
2) Constraint r‘easonlng over cont. {1 @ - Vs - d dom © {possible values}
Min .. Max
Memory, as a structured set
Of unbounded arrays V : float within an interval
(Char'r'eTeur‘ et Cll. JSS 2009) M : memory _ Type : float (32), double (54)
! Integers : TABI dom. : Min .. Max
Floats : TABfT
Pointers : TABp
structures | [S51,52,.] :
V:pointer
possibly_null : yes no
dom - {possibles values}

nondom : {non-possible values}
S . structure

status : closed ornot
cont. : {@g

Weaknesses of our first memory model

Requires a preliminary points-to analysis that may be too imprecise when
dynamic (de-)allocation is involved

Pointers as function inputs, can point to anything on the heap

Some conditions may constrain the shape of dynamic data structures.
How to handle this in a constraint solver ?

constrains t to

t
int P(struct cell * t) { /
If(t==t->next) { ...

next

Memory, as a structured set
of unbounded arrays

TAB : tableau
status: closed or not
cont. :{ @, -V, ..
M : memory
Integers : TABI
Floats : TABf
Pointers : TABp

Structures : [S1,52,..]

S : structure

status : closed or not

cont.

H{@}

4

V : integer within a
finite domain
Type : 16,32,64 bits,
signed, unsigned
dom : {possible values}
Min .. Max

V : float within an interval
Type : float (32), double (64)
dom. : Min .. Max

V:pointer
possibly null :yes, no
dom . {possibles values}

nondom : {non-possible values}

Introducing constraints on memories

* Memories = unknowns representing states (sets of pairs Adress-Value)
- Relations on these unknowns, constraint reasonning on these unknowns

C program Constraints store

1=1+1 - > load elt (@i, I,, M)
I, = I, + 1
store elt (@i, I, M;,M,)

P= 3 - > load elt (@p, Py, M,)
DP, = 3
store elt(P,,DP,,M,,M;)

J= 1+ 2 e > load elt (@i, I, M;)
J, = I, + 2
store elt (€@j,Jd,, M;,M,)

Constraints on memories

new elt(TYPE, X, V INIT, MO, M1, ENV)
delete elt(TYPE, X, MO, M1, ENV)

load elt(TYPE, X, VALUE, M, ENV)
store elt(TYPE, X, VALUE, MO, M1, ENV)

M2 /*Useful in control structures */

= closed (M)
/* Useful to closed the memory during final search */

M1

store_elt(P,V,M1,M2)

M1) Store_elt . M2
Status : not closed = Status : not closed
Includes : Includes :
| — Vi | — Vi’
J— V] =V
k — VK k — VK’
= V:

Domain pointer Domain Integer
{i,]} 1..5

store_elt(P,V,M1,M2)

M1 .

Store elt L M2
Status : not closed ‘ = Status : not closed
Includes : Includes :
1—-Vi=> 1.2 1— Vi’ > 3..6
j—V] =2 5..9 |-V > 7.18
k—-Vk=>2 k—-Vk'=>?
.P ; | -
Domal_n pomter Domain Integer
U, 1} 1.5

Automatic deductions after the constraint propagation step :

P=i V=Vi’in 3.5 Vj=Vjin 7.9, Vk=Vk’=2

Model for the definition of a new constraint

Constraints Awake
Store o t
- Suspend

reauce

store_elt(P,V,M1,M2)

Constraints Awake

[
P>

Store ;

;Suspend

reduce

dom(P) < {i/ dom(M2[i]) »dom(V) != &}

| com(V) < L/iedom(P) dom(M2[i])
dom(M1[i]) € dom(M2[i]) »dom(M1[i]) if(i & dom(P))
dom(M2[i]) € dom(M1[i]) ~dom(M2[i]) if(i g dom(P))
dom(M2[i]) € dom(M1[i] ~dom(V)) otherwise

Conclusions

What was left apart in my talk

Constraints over floating-point variables: FPSE Solver
(Botella Gotlieb Michel STVR 2006, Carlier Gotlieb ICTATI'11)

Constraints over modular integers (Gotlieb Leconte Marre ModRef'10)

Constraints over memory models for Java Bytecode (i.e., with inhritance and
virtual method calls) (Charreteur Gotlieb ISSRE'10)

Uniform random generation of test data in path testing
(Gotlieb Petit CP'07, JSS'10)

Explanation-based generalization of infeasible paths in
Dynamic Symbolic Execution (Delahaye Botella Gotlieb ICST10, TSE in rev)

Applications & Systems

Applications to the testing of
critical embedded software

- BCE ABE Rafale (2001) BCE Rafale — Dassault Electronics
- Java Card (2004-2005)

- TCAS SIR (2008)

- TCAS unmaned planes (2011)

Development of 4 Research prototype tools :

Inka, Euclide, PRT and FPSE TCAS - Airbus
(more than 45KLOC Prolog, Java, C, Tcl/Tk)

Research projects: INKA, DANOCOPS, B== L1
CASTLES. ACT V3F, ANR CAT/U3CAT. a5 [§— ey
ANR CAVERN... s Wamore

Java Card - Oberthur

Conclusions

Emerging concept in code- and model-based software testing

Constraint Programming techniques offers:

- Global constraint design
- disjunctive constraint programs in a constructive way.

- Time-aware optimization through branchd&bound is given for free

- but unsatisfiability detection has to be improved
(e.g., by combining techniques SMT/CP)

Mature tools (academic and industrial) already exist, but application on
real-sized industrial cases still have to be demonstrated

Further work

- Array constraint solving. (More global reasonning are required!)
A combined SMT/CP approach for solving constraints with arrays and
arithmetics. Constraint solver CCFD and large experimental validation over
random formulas.

joint work with S. Bardin from CEA

- Improving constraint-reasoning over function calls,
modelling function calls as global constraints

- Dedicated labelling search, exploiting the structure of the programme

- PhD students

Tristan Denmat, 7’ /
Matthieu Petit, W W/ﬂ,
Florence Charreteur,

Mickael Delahaye,

Nadjib Lazaar,

Aymeric Hervieu

Post-doc

Sandrine Gouraud, Pierre Rousseau, Matthieu Carlier

Co-authors

Olivier Lhomme, Michel Rueher, Claude Michel, Yahia Lebbah, Michel Leconte,
Mireille Ducassé, Bernard Botella, Patrick Taillibert, Franck Calvet, Bruno
Marre , Benjamin Blanc, Frédéric Dadeau, Nicky Williams, Catherine Dubois,
Patrick Bernard, Matthieu Wattel, Benoit Baudry, Sébastien Bardin, Lionel
Briand

