
CP also meets Software Testing

Arnaud Gotlieb

Certus Software V&V Centre
SIMULA RESEARCH LABORATORY

Lysaker, Norway

CP meets CAV Workshop, Turunc, Turkey
A day in June 2012

1

CERTUS is also a
Centre for research-based innovation (SFI)

Host
Simula Research Laboratory

User partners

CISCO Systems Norway
ESITO

FMC Technologies
KONGSBERG Maritime

TOLL customs and excises

Budget
~10 MNOK (1.3 MEUR) per year over a 8-years period

Origin (2011)

Prof. Lionel Briand (now in Luxembourg)

Industry-driven research problems in
Software Validation & Verification

 Certification and verification of
real-time embedded software-systems

 Modelling and testing of
highly-configurable software-systems

 Automated testing of
data-intensive administrative software-systems

With an increasing usage of Constraint Programming
techniques (Finite Domains constraint solving, constraint
optimization, MIP, Modelling)

3

Outline

A.Time-aware test configurations generation with
Constraint Programming

B.Testing deadline misses for real-time systems
using constraint-based scheduling techniques

C. Extraction of a formally verified constraint solver
for the certification of tax computation

4



Outline

Constraint-based testing (CBT)

Constraint-based program exploration for
automatic test data generation

Constraints over Memory Model Variables for testing
pointer programs

Conclusions

5



Constraint-Based Testing (CBT)

Constraint-Based Testing (CBT) is the process of generating test cases
against a testing objective by using constraint solving techniques
(LP, CP, SAT, SMT, …)

Introduced 20 years ago by Offut and DeMillo in
(Constraint-based automatic test data generation IEEE TSE 1991)

Developed in the context of code-based testing and model-based testing

Lots of Research works and tools !

CBT: main tools

CEA - List (Osmose S. Bardin P.Herrmann)
Univ. of Madrid (PET M. Gomez-Zamalloa, E. Albert, G. Puebla)
Univ. of Stanford (EXE D. Engler, C. Cadar, P. Guo)
Univ. of Nice Sophia-Antipolis (CPBPV M. Rueher, H. Collavizza, P.V. Hentenryck)
INRIA - Celtique (Euclide, JAUT A. Gotlieb, F. Charreteur)
…

Tools with external industrial usage :
 GATEL (CEA B. Marre, since 2004)
 Test Designer (Smartesting B. Legeard, since 2003)
 PEX (Microsoft P. de Halleux, N. Tillmann, since 2009)

Tools with internal industrial usage :
 Inka V1 (Dassault A. Gotlieb, B. Botella, in 2001)
 PathCrawler (CEA N. Williams, since 2004)
 SAGE (Microsoft P. Godefroid, since 2010)

The automatic test data generation problem

Given a location k in a program under test, generate a test input that reaches k

Even when adding bounds,
hard combinatorial problem

Using Random Testing,
Prob{ reack k} = 2 over 232  232  232 = 2-95 = 0.00000…1.

Reachability problem in infinite-state systems is undecidable in general!

 Loops (i.e., infinite-state systems) and infeasible paths

 Pointers, dynamic structures, higher-order computations (virtual calls)

 Floating-point computations, modular computations

 f (int x1, int x2, int x3) {

 if(x1 == x2 && x2 ==x3)
 if(x3==x1*x2) ... }

Constraint solving techniques are required!

Context of this talk

Code-based testing (not model-based testing)

Imperative programs (C, …) (not Functionnal P., not Logic P.,
 not Object-Oriented P.)

Programs with loops (i.e., infinite-state systems)

Single-threaded programs (no concurrent or parallel programs)

Selected location in code (i.e., reachability problems)

Constraint-based program exploration
for automatic test data generation

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …
d

b

a

f

t

t

f

 A reacheability problem

…

value of i to reach e ?

e

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Path-oriented exploration

…

1. Path selection
 e.g., (a-b)14-…-d-e

2. Path condition generation (via symbolic exec.)
 j1=100, i1>1, j2=j1+1, i2=i1-1, i2>1,…, j15>500

 3. Path condition solving
 unsatisfiable  FAIL

 Backtrack !

e

Even without loops, #paths
is exponential with #decisions

 f(int i, …)
 {

a. j = 100;

 while(i > 1)

b. { j++ ; i-- ;}

 …

d. if(j > 500)

e. …

d

b

a

f

t

t

f

 Constraint-based program exploration

…

1. Constraint model generation

2. Control dependencies generation;
 j1=100, i3 ≤ 1, j3 > 500

3. Constraint model solving

 j1  j3 entailed  unroll the loop 400 times  i1 in 401 .. 231-1

No backtrack !

e

Constraint-based program exploration

- Based on a constraint model of the whole program
 (i.e., each statement is seen as a relation)

- Constraint reasoning over control structures

- Requires to build dedicated constraint solvers:

 * propagation queue management with priorities

 * specific propagators and meta-constraints

 * structure-aware labelling heuristics

 (Systematic search over finite domains)

Prototype tools: Inka (Gotlieb Botella Rueher ISSTA’98)
 Euclide (Gotlieb ICST’09)

Viewing an assignment as a relation requires to normalize expressions
and rename variables (through single assignment languages, e.g. SSA)

 i*=++i ; i2 = (i1+1)2

Assignment as Constraint

i*=++i; /* i2 = (i1+1) 2 */

 i1 = 3 ?

i2 = 16

i1 in -4..2

 i2 = 9 ?

i1 in -5..3

 i2 in 5..16 ? i2 = 7 ?

 no

 Using bound-consistency filtering over finite domains:

Statements as constraints

 Type declaration: signed long x;  x in -231..231-1

 Assignments: i*=++i ;  i2 = (i1+1)2

 Memory and array accesses and updates:
 v=A[i] (or p=Mem[&p])  variations of element/3

 Control structures: dedicated meta-constraints
(interface, awakening conditions and filtering algorithms)

Conditionnals (SSA) if D then C1; else C2  ite/6

Loops (SSA) while D do C  w/5

Conditional as meta-constraint: ite/6

ite(x > 0, j1, j2, j3, j1 = 5, j2 = 18) iff

if(x > 0)

3

2

0

j2 = 18;

= …. j3 …

 (x > 0  j1 = 5  j3 = j1)  (x > 0)  j2 = 18  j3 = j2
 ((x > 0)  j3 = j2)  x > 0  j1 = 5  j3 = j1

 Join(x > 0  j1 = 5  j3 = j1 , (x > 0)  j1 = 18  j3 = j2)

 x > 0  j1 = 5  j3 = j1
 (x > 0)  j2 = 18  j3 = j2

j1 = 5; 1

Implemented as a new global constraint
(interface, awakening conditions, filtering algo.)

Loop as meta-constraint: w/5

v3 = (v1 , v2)
while(Dec)

1

2

body
3

w(Dec, V1, V2, V3, body) iff

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)
 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1
 (DecV3V1  v3=v1)  DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew) , DecV3V1  v3=v1)

f(int i) {

 j = 100;

 while(i > 1)

 { j++ ; i-- ;}

 …

 if(j > 500)

 …

w(i3 > 1, (i,j1), (i2,j2), (i3,j3), j2 = j3 + 1  i2 = i3 - 1)

 i = 23, j1=100 ?

i3 = 1, j3 = 122

 no

 i3 = 10 ?

i in 401..231-1

 j1 = 100,

 j3 > 500 ?

w(Dec, V1, V2, V3, body) :-

 DecV3V1  bodyV3V1  w(Dec, v2,vnew,v3, bodyV2Vnew)

 DecV3V1  v3=v1

 (DecV3V1  bodyV3V1)  DecV3V1  v3=v1

 (DecV3V1  v3=v1) 

 DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew)

 join(DecV3V1  bodyV3V1  w(Dec,v2,vnew,v3,bodyV2Vnew ,

 DecV3V1  v3=v1)

Features of constraint-based exploration

 Special meta-constraints implementation for ite and w

By construction, w is unfolded only when necessary
but w may NOT terminate !
 only a semi-correct test data generation procedure

 Join is implemented using Abstract Interpretation operators
(e.g., interval-based union, weak-join operator, widening in Euclide)

 Special propagators based on linear-based relaxations
Using Linear Programming over rationals (i.e., Q_polyhedra)

Abstraction-based relaxations

Abstraction-based relaxations

 During constraint propagation, constraints can be relaxed in Abstract
Domains (e.g., Q-Polyhedra, Octagons, …)

  { Z - Ya – Xc +ac ≥ 0,

 Xd – Z –ad + aY ≥ 0,
 bY – bc – Z + Xc ≥ 0,
 bd – bY – Xd + Z ≥ 0,
 a ≤ X ≤ b, c ≤ Y ≤ d}

To benefit from specialized algorithm (e.g., simplex for linear constraints)
and capture global states of the constraint system

 Require safe/correct over-approximation (to preserve property such as:
if the Q-Polyhedra is void then the constraint system is unsatisfiable)

 Q-Polyhedra in Euclide, implementing Dynamic Linear Relaxation,
propagation queue with priorities

a b

c

d
Z = X * Y, X in a..b, Y in c..d

Abstraction-based relaxations:
weak-join operator

(Sankaranarayanan et al. VMCAI’06)

Join operations can be realized by convex hull, but usually too costly !

In Euclide, we took advantage of the weak-join of Q_polyhedra
(based on simplex calculations)

A
B

Abstraction-based relaxations:
weak-join operator

(Sankaranarayanan et al. VMCAI’06)

A
B

A
B

Abstraction-based relaxations:
weak-join operator

(Sankaranarayanan et al. VMCAI’06)

Foundations of the approach (Gotlieb Botella Rueher ISSTA’98,SEN’98,CL’00)
Abstraction-based relaxation (Denmat Gotlieb Ducassé ISSRE’07)
Global constraint w, extended with widenning (Denmat Gotlieb Ducassé CP’07)
Euclide: A Constraint-based testing platform for C (Gotlieb ICST’09)
Application on the TCAS case study (Gotlieb KER Journal 2012)

Constraint-based program exploration

- Handles loops in constraint-based test data generation,
without bounding the number of iterations ;

- Useful for reaching a particular uncovered location in the code
(complement an existing test set generated by « systematic »
 path-exploration)

- Use of the global constraint interface in clpfd to implement w, or
 dedicated solver (propagation queue management)

- May not terminate, timeout needed!

Constraints over Memory Model Variables

for testing pointer programs

Constraints over memory models:
aliasing problems

How to apply constraint-based reasoning over statement like *p := *p+1 ?

*p := *p + 1

Then fail or exception

Then a2 = a1+1

Then a2 = a1+1 or b2 = b1+1

Then p2 = p1+1, meaning that
p now refers to the next
memory location

b

p a

p a

p

p

Our propositions

How to represent abstract memories and to reason on them ?

1) Constraint reasoning over
 Memory, as a set of graphs
 (Gotlieb et al., ASE’05, IST 2007)

p

a1 an a2
....

2) Constraint reasoning over
Memory, as a structured set
of unbounded arrays

 (Charreteur et al., JSS 2009)

Weaknesses of our first memory model

- Requires a preliminary points-to analysis that may be too imprecise when
dynamic (de-)allocation is involved

- Pointers as function inputs, can point to anything on the heap

- Some conditions may constrain the shape of dynamic data structures.
How to handle this in a constraint solver ?

t

 next

 int P(struct cell * t) {

 if(t == t->next) { …

constrains t to

Memory, as a structured set
of unbounded arrays

M : memory

Integers : TABi

Floats : TABf

Pointers : TABp

Structures : [S1,S2,..]

TAB : tableau

 status: closed or not

 cont. : { @i – Vi, …}

V : integer within a

 finite domain

Type : 16,32,64 bits,

 signed, unsigned

dom : {possible values}

 Min .. Max

V : float within an interval

Type : float (32), double (64)

dom. : Min .. Max

V:pointer

 possibly_null : yes, no

 dom : {possibles values}

 nondom : {non-possible values}

 S : structure

 status : closed or not
 cont. : {@i}

Introducing constraints on memories

• Memories = unknowns representing states (sets of pairs Adress-Value)

• Relations on these unknowns, constraint reasonning on these unknowns

 C program Constraints store

 i = i + 1 ---------> load_elt(@i, I1, M1)

 I2 = I1 + 1

 store_elt(@i, I2, M1,M2)

 *p = 3 -----------> load_elt(@p, P1, M2)

 DP1 = 3

 store_elt(P1,DP1,M2,M3)

 j = i + 2 ----------> load_elt(@i,I3,M3)

 J1 = I3 + 2

 store_elt(@j,J1, M3,M4)

Constraints on memories

 new_elt(TYPE, X, V_INIT, M0, M1, ENV)

 delete_elt(TYPE, X, M0, M1, ENV)

 load_elt(TYPE, X, VALUE, M, ENV)

 store_elt(TYPE, X, VALUE, M0, M1, ENV)

 M1 = M2 /* Useful in control structures */

 closed(M)

 /* Useful to closed the memory during final search */

Store_elt
M1 :

Status : not closed

Includes :

 i – Vi

 j – Vj

 k – Vk

 …

M2 :

Status : not closed

Includes :

 i – Vi’

 j – Vj’

 k – Vk’ …

P :

Domain pointer

{i,j}

V:

Domain Integer

1.. 5

store_elt(P,V,M1,M2)

Store_elt
M1 :

Status : not closed

Includes :

 i – Vi  1.. 2

 j – Vj  5.. 9

 k – Vk 2

 …

M2 :

Status : not closed

Includes :

 i – Vi’  3..6

 j – Vj’  7..18

 k – Vk’ ?

 …

P :

Domain pointer

{i, j}

V:

Domain Integer

1.. 5

Automatic deductions after the constraint propagation step :

 P = i, V = Vi’ in 3..5, Vj = Vj’ in 7..9, Vk = Vk’ =2

store_elt(P,V,M1,M2)

Model for the definition of a new constraint

SVAR

success

failure

Constraints
Store

Awake

Suspend

reduce

SVAR

success

failure

Constraints

Store

Awake

Suspend

reduce

store_elt(P,V,M1,M2)

dom(P)  {i / dom(M2[i])  dom(V) != }

dom(V)  idom(P) dom(M2[i])

dom(M1[i])  dom(M2[i])  dom(M1[i]) if(i  dom(P))

dom(M2[i])  dom(M1[i])  dom(M2[i]) if(i  dom(P))

dom(M2[i])  dom(M1[i]  dom(V)) otherwise

Conclusions

What was left apart in my talk

• Constraints over floating-point variables: FPSE Solver
 (Botella Gotlieb Michel STVR 2006, Carlier Gotlieb ICTAI’11)

• Constraints over modular integers (Gotlieb Leconte Marre ModRef’10)

• Constraints over memory models for Java Bytecode (i.e., with inhritance and
virtual method calls) (Charreteur Gotlieb ISSRE’10)

• Uniform random generation of test data in path testing
 (Gotlieb Petit CP’07, JSS’10)

• Explanation-based generalization of infeasible paths in
Dynamic Symbolic Execution (Delahaye Botella Gotlieb ICST’10, TSE in rev)

Applications & Systems

• Applications to the testing of
critical embedded software

- BCE ABE Rafale (2001)
- Java Card (2004-2005)
- TCAS SIR (2008)
- TCAS unmaned planes (2011)

• Development of 4 Research prototype tools :

Inka, Euclide, PRT and FPSE
(more than 45KLOC Prolog, Java, C, Tcl/Tk)

• Research projects: INKA, DANOCOPS,
CASTLES, ACI V3F, ANR CAT/U3CAT,
ANR CAVERN…

BCE Rafale – Dassault Electronics

TCAS - Airbus

Java Card - Oberthur

Conclusions

• Emerging concept in code- and model-based software testing

• Constraint Programming techniques offers:

- Global constraint design

- disjunctive constraint programs in a constructive way.

- Time-aware optimization through branch&bound is given for free

 - but unsatisfiability detection has to be improved
 (e.g., by combining techniques SMT/CP)

• Mature tools (academic and industrial) already exist, but application on

real-sized industrial cases still have to be demonstrated

Further work

- Array constraint solving. (More global reasonning are required!)

A combined SMT/CP approach for solving constraints with arrays and
arithmetics. Constraint solver CCFD and large experimental validation over
random formulas.

joint work with S. Bardin from CEA

- Improving constraint-reasoning over function calls,
modelling function calls as global constraints

- Dedicated labelling search, exploiting the structure of the programme

Thank you!

• PhD students

Tristan Denmat,
Matthieu Petit,
Florence Charreteur,
Mickael Delahaye,
Nadjib Lazaar,
Aymeric Hervieu

• Post-doc

Sandrine Gouraud, Pierre Rousseau, Matthieu Carlier

• Co-authors

Olivier Lhomme, Michel Rueher, Claude Michel, Yahia Lebbah, Michel Leconte,
Mireille Ducassé, Bernard Botella, Patrick Taillibert, Franck Calvet, Bruno
Marre , Benjamin Blanc, Frédéric Dadeau, Nicky Williams, Catherine Dubois,
Patrick Bernard, Matthieu Wattel, Benoit Baudry, Sébastien Bardin, Lionel
Briand

