Constraints in Abstract Model Checking Direct implementation of an abstract interpretation

John Gallagher¹²

¹Roskilde University ²IMDEA Software Institute, Madrid

CP meets CAV Turunç, Turkey

John Gallagher Constraints in Abstract Model Checking

< ≣ →

- < ⊒ >

Encoding operational semantics

pre and pre functions

From a transition relation, compute functions *pre* : $2^S \rightarrow 2^S$, *pre* : $2^S \rightarrow 2^S$.

- *pre*(*Z*): the set of possible predecessors of set of states *Z*.
- $\widetilde{pre}(Z)$: the set of definite predecessors of set of states Z.

A constraint $c(\bar{X})$ stands for the set of states satisfying $c(\bar{X})$.

 $pre(c'(\bar{y})) = \bigvee \{ \exists \bar{y}(c'(\bar{y}) \land c(\bar{x}, \bar{y})) \mid \bar{x} \xrightarrow{c(\bar{x}, \bar{y})} \bar{y} \text{ is a transition} \}$ $pre(c'(\bar{y})) = \neg (pre(\neg c'(\bar{y})))$

We assume that the constraint solver has a projection $(\exists$ -elimination) operation and is closed under boolean operations.

Define a function $[\![\phi]\!]$ returning the set of states where ϕ holds. Compositional definition:

$$\begin{array}{ll} \llbracket p \rrbracket &= \operatorname{states}(p) \\ \llbracket EF\phi \rrbracket &= \operatorname{lfp.}\lambda Z.(\llbracket \phi \rrbracket \cup \operatorname{pre}(Z)) \\ \llbracket AG\phi \rrbracket &= \operatorname{gfp.}\lambda Z.(\llbracket \phi \rrbracket \cap \widetilde{\operatorname{pre}}(Z)) \\ \cdots \end{array}$$

where states(p) is the set of states where proposition p holds (i.e. a constraint). Model checking ϕ :

• Evaluate $\llbracket \phi \rrbracket$.

2 Check that $I \subseteq \llbracket \phi \rrbracket$, where *I* is the set of initial states.

Equivalently, check that $I \cap \llbracket \neg \phi \rrbracket = \emptyset$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

- When the set of states is infinite, [[\u03c6]] cannot usually be evaluated
- As an example, consider an abstract domain constructed from a *finite partition* of the set of states.

(雪) (ヨ) (ヨ)

Galois connection

John Gallagher Constraints in Abstract Model Checking

Assume that the elements of the partition are given by constraints. Let c_d be the constraint defining the partition element d.

$$\alpha(\boldsymbol{c}) = \{ \boldsymbol{d} \in \boldsymbol{A} \mid \mathsf{SAT}(\boldsymbol{c}_{\boldsymbol{d}} \land \boldsymbol{c}) \}$$

$$\gamma(\boldsymbol{V}) = \bigvee \{ \boldsymbol{c}_{\boldsymbol{d}} \mid \boldsymbol{d} \in \boldsymbol{V} \}$$

• *SAT* can be implemented by an SMT solver. We used Yices (http://yices.csl.sri.com/) interfaced to Prolog. Given a function

$$f: 2^S \rightarrow 2^S$$

on the concrete domain, the most precise approximation of f in the abstract domain is

$$\alpha \circ f \circ \gamma : \mathbf{2}^{A} \to \mathbf{2}^{A}.$$

通 とう ほう う ほうし

ъ

Abstract checking of CTL properties

Applying this construction to the function $[\![.]\!]$, obtain a function $[\![\phi]\!]^a$.

$$\begin{array}{ll} \llbracket p \rrbracket^{a} &= (\alpha \circ \text{states})(p) \\ \llbracket EF\phi \rrbracket^{a} &= \mathsf{lfp.}\lambda Z.(\llbracket \phi \rrbracket^{a} \cup (\alpha \circ \textit{pre} \circ \gamma)(Z)) \\ \llbracket AG\phi \rrbracket^{a} &= \mathsf{gfp.}\lambda Z.(\llbracket \phi \rrbracket^{a} \cap (\alpha \circ \overrightarrow{\textit{pre}} \circ \gamma)(Z)) \\ \cdots \end{array}$$

Computation of $\llbracket \phi \rrbracket^a$ terminates. It can be shown that for all ϕ ,

 $\llbracket \phi \rrbracket \subseteq \gamma(\llbracket \phi \rrbracket^a)$

Abstract Model Checking of ϕ

- Compute $[\neg \phi]^a$.
- 2 Check that $I \cap \gamma(\llbracket \neg \phi \rrbracket^a) = \emptyset$.
- **③** This implies that $I \cap \llbracket \neg \phi \rrbracket = \emptyset$, since $\gamma(\llbracket \neg \phi \rrbracket^a) \supseteq \llbracket \neg \phi \rrbracket$.

▶ ▲ 王 ▶ 王 • ○ Q ()

Arbitrary CTL formulas can be checked (not just A-formulas as in standard abstract model checking).

System	Property	A	Δ	secs.
Water	$AF(W \ge 10)$	5	4	0.02
Monitor	$AG(0 \leq W \land W \leq 12)$	5	4	0.01
	$AF(AG(1 \le W \land W \le 12))$	5	4	0.02
	$AG(W = 10 \rightarrow AF(W < 10 \lor W > 10))$	10	4	0.05
	$AG(AG(AG(AG(AG(AG(0 \le W \land W \le 12))))))$	5	4	0.02
	EF(W=10)	10	4	0.01
	$EU(W < 12, AU(W < 12, W \ge 12))$	7	4	0.04
Task	EF(K2 = 1)	18	12	0.53
Sched.	$AG(K2 > 0 \rightarrow AF(K2 = 0))$	18	12	0.30
	$AG(K2 \le 1)$	18	12	0.04

・ 同 ト ・ ヨ ト ・ ヨ ト …

Conclusions

- Direct abstraction framework, based on Galois connections
- Abstract semantics parameterised by Galois connection, not tied to any particular kind of abstraction
- No need for (dual) abstract transition systems
- Not limited to reachability properties
- For constraint-based domains, direct implementation using constraint solvers and satisfiability checkers.
- Future Research: mainly on refinement (e.g. CEGAR, or Ganty's scheme).
 - This is a huge search problem in itself!
- Other abstractions than partitions

< 回 > < 回 > < 回 > -

CLP program encoding reachable states

transition(X,X')	\leftarrow	$c_1(X,X').$
transition(X,X')	\leftarrow	$c_{2}(X,X').$
	\leftarrow	
initState(X)	\leftarrow	c _{init} (X).
initState(X) reach(X)		<i>c_{init}</i> (X). initState(X).

æ

- Liveness property (nested CTL property): AG(K2 > 0 → AF(K2 = 0)). (A waiting high priority task is eventually scheduled).
- Existential liveness property: EF(K2 = 1). (A high priority task can arise).
- Safety property: AG(K2 ≤ 1). (No more than one high priority task can be waiting).

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Example: A task scheduler [Halbwachs et al. 94]

イロト 不得 とくほ とくほとう

ъ

Sample transition of Scheduler.

```
transition((J, L, N, P, R, S, G),(A, B, C, D, E, F, 0)) :-
  G<H.
  1*I=1*J+1*(H-G),
  1^{K}=1^{L}+1^{H}-G
  1*M=1*N+O*(H-G),
  1*O=1*P+O*(H-G),
  1^{Q}=1^{R}+0^{H}-G
  1^* = 1^*S + 0^*(H-G),
  K>=20, A=1, B=0,
  C=M, D=O, E=Q,
  F=1.
```

★ 문 ► ★ 문 ►