
On Solving Temporal Logic Constraints
in Constrained Transition Systems

François Fages
Joint work with Thierry Martinez, Aurélien Rizk, Sylvain
Soliman, Grégory Batt, Calin Belta, Neda Saeedloei

EPI Contraintes
INRIA Paris-Rocquencourt, France

CP meets CAV
28 June 2012

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

Systems Biology

System-level understanding of high-level cell functions from their
biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

S + E ←−k2−→k1 ES −→k3 E + P

Petri nets ! with reaction rates

Ordinary Differential Equations

Ṡ = −k1 ∗ S ∗ E + k2 ∗ ES
Ṗ = k3 ∗ ES
Ė = −k1 ∗ S ∗ E + (k2 + k3) ∗ ES
ĖS = k1 ∗ S ∗ E − (k2 + k3) ∗ ES

Continuous-Time Markov Chain

Systems Biology

System-level understanding of high-level cell functions from their
biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

S + E ←−k2−→k1 ES −→k3 E + P

Petri nets ! with reaction rates

Ordinary Differential Equations

Ṡ = −k1 ∗ S ∗ E + k2 ∗ ES
Ṗ = k3 ∗ ES
Ė = −k1 ∗ S ∗ E + (k2 + k3) ∗ ES
ĖS = k1 ∗ S ∗ E − (k2 + k3) ∗ ES

Continuous-Time Markov Chain

Systems Biology

System-level understanding of high-level cell functions from their
biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

S + E ←−k2−→k1 ES −→k3 E + P

Petri nets ! with reaction rates

Ordinary Differential Equations

Ṡ = −k1 ∗ S ∗ E + k2 ∗ ES
Ṗ = k3 ∗ ES
Ė = −k1 ∗ S ∗ E + (k2 + k3) ∗ ES
ĖS = k1 ∗ S ∗ E − (k2 + k3) ∗ ES

Continuous-Time Markov Chain

Systems Biology

System-level understanding of high-level cell functions from their
biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

S + E ←−k2−→k1 ES −→k3 E + P

Petri nets ! with reaction rates

Ordinary Differential Equations

Ṡ = −k1 ∗ S ∗ E + k2 ∗ ES
Ṗ = k3 ∗ ES
Ė = −k1 ∗ S ∗ E + (k2 + k3) ∗ ES
ĖS = k1 ∗ S ∗ E − (k2 + k3) ∗ ES

Continuous-Time Markov Chain

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K

Biological Properties = Temporal Logic Formulae φ
Automatic Verification = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ

Automatic Verification = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ
Automatic Verification = Model-checking K |= φ

Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ
Automatic Verification = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ
Automatic Verification = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae φ
Automatic Verification = Model-checking K |= φ
Model Inference = Constraint Solving K ′ |= φ′

I Expression of high-level specifications
I Model-checking can be efficient on large complex systems
I Temporal logic with numerical constraints can deal with

continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]
Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB
06] [Rizk et al. 08 CMSB]
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

Temporal Logic with constraints over R

2

10

[A]

time

ẋ = f (x) ODEs

biological observation

T

I F([A]>10) : the concentration of A eventually gets above 10.
I FG([A]>10) : the concentration of A eventually reaches and

remains above value 10.
I F(Time=t1∧[A]=v1 ∧ F(.... ∧ F(Time=tN∧[A]=vN)...))

Numerical data time series (e.g. experimental curves)
I Local maxima, oscillations, period constraints, etc.

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
suited to several problems :

I parameter search, optimization and control of continuous
models

I quantitative estimation of robustness
I sensitivity analyses

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
suited to several problems :

I parameter search, optimization and control of continuous
models

I quantitative estimation of robustness
I sensitivity analyses

→ need for a continuous degree of satisfaction of temporal logic
formulae

How far is the system from verifying the specification ?

From Model-Checking to TL Constraint Solving

QFLTL(R)

Φ*=F([A]≥x
 ∧F([A]≤y))

Constraint solving

the formula is true for any
x≤10 ∧ y≥2

Φ=F([A]≥7
 ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T)
2

10

[A]

time

T
y

xφ

Dφ∗(T)

vd=2 sd=1/3

From Model-Checking to TL Constraint Solving

QFLTL(R)

Φ*=F([A]≥x
 ∧F([A]≤y))

Constraint solving

the formula is true for any
x≤10 ∧ y≥2

Φ=F([A]≥7
 ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T)
2

10

[A]

time

T
y

xφ

Dφ∗(T)

vd=2 sd=1/3

From Model-Checking to TL Constraint Solving

QFLTL(R)

Φ*=F([A]≥x
 ∧F([A]≤y))

Constraint solving

the formula is true for any
x≤10 ∧ y≥2

Φ=F([A]≥7
 ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T)
2

10

[A]

time

T
y

xφ

Dφ∗(T)

vd=2 sd=1/3

Validity domain for the free variables [Fages Rizk CMSB’07, TCS 11]

From Model-Checking to TL Constraint Solving

QFLTL(R)

Φ*=F([A]≥x
 ∧F([A]≤y))

Constraint solving

the formula is true for any
x≤10 ∧ y≥2

Φ=F([A]≥7
 ∧F([A]≤0))

Model-checking

the formula is false

LTL(R)

Dφ∗(T)
2

10

[A]

time

T
y

xφ

Dφ∗(T)

vd=2 sd=1/3

Validity domain for the free variables [Fages Rizk CMSB’07, TCS 11]
Violation degree vd(T , φ) = distance(val(φ),Dφ∗(T))
Satisfaction degree sd(T , φ) = 1

1+vd(T ,φ) ∈ [0, 1]

Bifurcation Diagrams and LTL(R) Satisfaction Diagrams

Example with :
I yeast cell cycle model [Tyson PNAS 91]

I oscillation of at least 0.3
φ∗: F([A]>x ∧ F([A]<y)); amplitude x-y≥0.3

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)

1000r

E 1001

10I

0.1 1.0

k6 min1
10

FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Bifurcation diagram LTL(R) satisfaction diagram

Parameter Inference by Local Search

I LTL(R) satisfaction degree as black-box fitness function
(computed by TL constraint solving)

I Other constraints on parameter range, inequalities,... added to
the fitness function

I Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[Hansen Osermeier 01, Hansen 08]: probabilistic neighborhood
updated in covariance matrix at each move

Kinetic Parameter Inference from LTL(R) Spec.

I yeast cell cycle control model [Tyson PNAS 91]

I 6 variables, 8 kinetic parameters

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0.3

p p∗
[MPF]

I Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F([A]>x ∧ F([A]<y))
amplitude z=x-y
goal : z = 0.3

I → solution found after 30s (100 calls to the fitness function)

Kinetic Parameter Inference from LTL(R) Spec.

I yeast cell cycle control model [Tyson PNAS 91]

I 6 variables, 8 kinetic parameters

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0.3

p p∗
[MPF]

I Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F([A]>x ∧ F([A]<y))
amplitude z=x-y
goal : z = 0.3

I → solution found after 30s (100 calls to the fitness function)

Kinetic Parameter Inference from LTL(R) Spec.

I yeast cell cycle control model [Tyson PNAS 91]

I 6 variables, 8 kinetic parameters

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0.3

p p∗
[MPF]

I Pb : find values of 8 parameters such that amplitude is ≥ 0.3
φ∗: F([A]>x ∧ F([A]<y))
amplitude z=x-y
goal : z = 0.3

I → solution found after 30s (100 calls to the fitness function)

Kinetic Parameter Search from Period Constraints

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

p p∗
[MPF]

I Pb : find values of 8 parameters such that period is 20

I → Solution found after 60s (200 calls to the fitness function)

I Scales up to 50-100 parameters.

I Linear speed-up on a cluster of 10000 cores. Parallelization of
parameter sets and multiconditions for mutants.

Kinetic Parameter Search from Period Constraints

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

p p∗
[MPF]

I Pb : find values of 8 parameters such that period is 20

I → Solution found after 60s (200 calls to the fitness function)

I Scales up to 50-100 parameters.

I Linear speed-up on a cluster of 10000 cores. Parallelization of
parameter sets and multiconditions for mutants.

Kinetic Parameter Search from Period Constraints

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

0

0.1

0.2

0.3

0.4

0.5

 0 20 40 60 80 100 120 140

Cdc2
Cdc2~{p1}
Cyclin
Cdc2-Cyclin~{p1,p2}
Cdc2-Cyclin~{p1}
Cyclin~{p1}

p p∗
[MPF]

I Pb : find values of 8 parameters such that period is 20

I → Solution found after 60s (200 calls to the fitness function)

I Scales up to 50-100 parameters.

I Linear speed-up on a cluster of 10000 cores. Parallelization of
parameter sets and multiconditions for mutants.

Robustness Measure

Robustness defined as mean functionality with respect to :
I a biological system
I a functionality property φ
I a set P of perturbations

Measure of robustness w.r.t. LTL(R) spec:

Rφ,P =

∫
p∈P

sd(φ,T (p)) prob(p) dp

where T (p) is the trace obtained by numerical integration of
the ODE for perturbation p of the parameters
−→ estimated by sampling

Example on Cell Cycle Control

k
4

k6

.

.Violation degree in parameter space

. .

.

pA pB

pC

Proc. Natl. Acad. Sci. USA 88 (1991)

1000r

E 1001

10I

0.1 1.0

k6 min1
10

FIG. 2. Qualitative behavior of the cdc2-cyclin model of cell-
cycle regulation. The control parameters are k4, the rate constant
describing the maximum rate of MPF activation, and k6, the rate
constant describing dissociation ofthe active MPF complex. Regions
A and C correspond to stable steady-state behavior of the model;
region B corresponds to spontaneous limit cycle oscillations. In the
stippled area the regulatory system is excitable. The boundaries
between regions A, B, and C were determined by integrating the
differential equations in Table 1, for the parameter values in Table 2.
Numerical integration was carried out by using Gear's algorithm for
solving stiffordinary differential equations (32). The "developmental
path" 1 ... 5 is described in the text.

so k6 abruptly increases 2-fold. Continued cell growth causes
k6(t) again to decrease, and the cycle repeats itself. The
interplay between the control system, cell growth, and DNA
replication generates periodic changes in k6(t) and periodic
bursts of MPF activity with a cycle time identical to the
mass-doubling time of the growing cell.

Figs. 2 and 3 demonstrate that, depending on the values of
k4 and k6, the cell cycle regulatory system exhibits three

b

0.4
a 100

0 20 40 60 80 100 0 20 40 60 80 100

t, min t, min

different modes of control. For small values of k6, the system
displays a stable steady state of high MPF activity, which I
associate with metaphase arrest of unfertilized eggs. For
moderate Values of k6, the system executes autonomous
oscillations reminiscent of rapid cell cycling in early em-
bryos. For large values of k6, the system is attracted to an
excitable steady state of low MPF activity, which corre-
sponds to interphase arrest of resting somatic cells or to
growth-controlled bursts of MPF activity in proliferating
somatic cells.

Midblastula Traiisiton

A possible developmental scenario is illustrated by the path
1 ... 5 in Fig. 2. Upon fertilization, the metaphase-arrested
egg (at point 1) is stimulated to rapid cell divisions (2) by an
increase in the activity of the enzyme catalyzing step 6 (28).
During the early embryonic cell cycles (2-+ 3), the regulatory
system is executing autonomous oscillations, and the control
parameters, k4 and k6, increase as the nuclear genes coding
for these enzymes are activated. At midblastula (3), auton-
omous oscillations cease, and the regulatory system enters
the excitable domain. Cell division now becomes growth
controlled. As cells grow, k6 decreases (inhibitor diluted)
and/or k4 increases (activator accumulates), which drives the
regulatory system back into domain B (4 -S 5). The subse-
quent burst of MPF activity triggers mitosis, causes k6 to
increase (inhibitor synthesis) and/or k4 to decrease (activator
degradation), and brings the regulatory system back into the
excitable domain (5 -* 4).
Although there is a clear and abrupt lengthening of inter-

division times at MBT, there is no visible increase in cell
volume immediately thereafter (6, 20), so how can we enter-
tain the idea that cell division becomes growth controlled
after MBT? In the paradigm ofgrowth control ofcell division,
cell "size" is never precisely specified, because no one
knows what molecules, structures, or properties are used by
cells to monitor their size. Thus, even though post-MBT cells

C

r k6' min-1

0 100 200 300 400 500

t, min

FIG. 3. Dynamical behavior of the cdc2-cyclin model. The curves are total cyclin ([YT] = [Y] + [YP] + [pM] + [M]) and active MPF [Ml
relative to total cdc2 ([CT] = [C2] + [CP] + [pM] + [MI). The differential equations in Table 1, for the parameter values in Table 2, were solved
numerically by using a fourth-order Adams-Moulton integration routine (33) with time step = 0.001 min. (The adequacy of the numerical
integration was checked by decreasing the time step and also by comparison to solutions generated by Gear's algorithm.) (a) Limit cycle
oscillations for k4 = 180 min-', k6 = 1 min- (point x in Fig. 2). A "limit cycle" solution of a set of ordinary differential equations is a periodic
solution that is asymptotically stable with respect to small perturbations in any of the dynamical variables. (b) Excitable steady state for k4 =
180 min 1, k6 = 2 min' (point + in Fig. 2). Notice that the ordinate is a logarithmic scale. The steady state of low MPF activity ([M]/[CT]
= 0.0074, [YT]/[CT] = 0.566) is stable with respect to small perturbations of MPF activity (at 1 and 2) but a sufficiently large perturbation of
[Ml (at 3) triggers a transient activation of MPF and subsequent destruction of cyclin. The regulatory system then recovers to the stable steady
state. (c) Parameter values as in b except that k6 is now a function of time (oscillating near point + in Fig. 2). See text for an explanation of
the rules for k6(Q). Notice that the period between cell divisions (bursts in MPF activity) is identical to the mass-doubling time (Td = 116 min
in this simulation). Simulations with different values of Td (not shown) demonstrate that the period between MPF bursts is typically equal to
the mass-doubling time-i.e., the cell division cycle is growth controlled under these circumstances. Growth control can also be achieved
(simulations not shown), holding k6 constant, by assuming that k4 increases with time between divisions and decreases abruptly after an MPF
burst.

7330 Cell Biology: Tyson

Rφ,pA = 0.83, Rφ,pB = 0.43, Rφ,pC = 0.49

Example on a Synthetic Toggle Switch for E. Coli
Cascade of transcriptional inhibitions added to E.coli [Weiss et al
PNAS 05] input small molecule aTc output protein EYFP

Specification: EYFP has to remain below 103 for at least 150
min., then exceeds 105 after at most 450 min., and switches from
low to high levels in less than 150 min.

Specification in FOLTL(R)

The timing specifications can be formalized in temporal logic as
follows:

φ(t1, t2) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > 150 ∧ t2 < 450 ∧ t2 − t1 < 150

which is abstracted into

φ(t1, t2, b1, b2, b3) = G(time < t1 → [EYFP] < 103)
∧ G(time > t2 → [EYFP] > 105)
∧ t1 > b1 ∧ t2 < b2 ∧ t2 − t1 < b3

for computing validity domains for b1, b2, b3

with the objective b1 = 150, b2 = 450, b3 = 150
for computing the satisfaction degree in a given trace.

Improving robustness

Variance-based global sensitivity indices Si =
Var(E(R|Pi))

Var(R) ∈ [0, 1]

Sγ 20.2% Sκeyfp ,γ 8.7%
Sκeyfp 7.4% SκcI ,γ 6.2%
SκcI 6.1% Sκ0

cI ,γ
5.0%

Sκ0
lacI

3.3% Sκ0
cI ,κeyfp

2.8%
Sκ0

cI
2.0% SκcI ,κeyfp 1.8%

SκlacI 1.5% Sκ0
eyfp ,γ

1.5%
Sκ0

eyfp
0.9% Sκ0

cI ,κcI
1.1%

SuaTc 0.4% Sκ0
cI ,κlacI

0.5%
total first order 40.7% total second order 31.2%

degradation factor γ has the strongest impact on the cascade.

aTc variations have a very low impact

different importance of the basal κ0
eyfp and regulated κeyfp EYFP

production rates

Constraints on Transitions in Piecewise Multi-affine Models

a

A

b

B
ẋa = κara(xb, θb, θ

′
b)− γa xa

ẋb = κbrb(xa, θa, θ
′
a)− γb xb

y

3

2

1

1 2 3 x

κa > 8
κa < 8

κa > 12
κa < 12

κa > 8

κb > 16κb < 16 κb > 16

κb > 24κb < 24

FOCTL queries:

Reachability
? EF (X = 3)
Enumeration of stable states:
? X = V ∧ AX (X = V)
X = V = 1 ∧ κa < 8 ∧ κb < 16
X = V = 2 ∧ 8 < κa < 12 ∧ κb < 16
X = V = 3 ∧ 12 < κa
X = V = 4 ∧ κa < 8 ∧ 16 < κb < 24
X = V = 7 ∧ 24 < κb

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

States as Constraints

I Computation domain D
I Constraint language closed by conjunction, negation,

quantification (e.g. Rlin: finite unions of polyhedra)

I Finite set X of state variables: ~x
I State constraint: any constraint over ~x , noted s(~x)

I Set of ground states: |s|D = {ρ(~x) | ρ : X −→ D, D |= ρ(s)}

States as Constraints

I Computation domain D
I Constraint language closed by conjunction, negation,

quantification (e.g. Rlin: finite unions of polyhedra)

I Finite set X of state variables: ~x
I State constraint: any constraint over ~x , noted s(~x)

I Set of ground states: |s|D = {ρ(~x) | ρ : X −→ D, D |= ρ(s)}

States as Constraints

I Computation domain D
I Constraint language closed by conjunction, negation,

quantification (e.g. Rlin: finite unions of polyhedra)

I Finite set X of state variables: ~x
I State constraint: any constraint over ~x , noted s(~x)

I Set of ground states: |s|D = {ρ(~x) | ρ : X −→ D, D |= ρ(s)}

Transitions as Constraints

I Finite set of primed state variables: ~x ′

I Transition constraint: any constraint over ~x ∪~x ′, noted r(~x ,~x ′)

I Set of ground transitions: from state ρ(~x) to state ρ(~x ′) for all
valuations ρ s.t. D |= ρ(r).

I Predecessor state constraint: pred(r) = ∃~x ′ r

I A Constrained Transition System (CTS) is a transition
constraint r s.t. |succ(r)|D ⊆ |pred(r)|D,
i.e. D |= succ(r)⇒ pred(r).

I A CTS r is finitary (resp. bounded) if for any s the set of
predecessors {∃~x ′(r i ∧ s[~x ′/~x])}i≥1 is finite (bounded card.).

Transitions as Constraints

I Finite set of primed state variables: ~x ′

I Transition constraint: any constraint over ~x ∪~x ′, noted r(~x ,~x ′)

I Set of ground transitions: from state ρ(~x) to state ρ(~x ′) for all
valuations ρ s.t. D |= ρ(r).

I Predecessor state constraint: pred(r) = ∃~x ′ r

I A Constrained Transition System (CTS) is a transition
constraint r s.t. |succ(r)|D ⊆ |pred(r)|D,
i.e. D |= succ(r)⇒ pred(r).

I A CTS r is finitary (resp. bounded) if for any s the set of
predecessors {∃~x ′(r i ∧ s[~x ′/~x])}i≥1 is finite (bounded card.).

Transitions as Constraints

I Finite set of primed state variables: ~x ′

I Transition constraint: any constraint over ~x ∪~x ′, noted r(~x ,~x ′)

I Set of ground transitions: from state ρ(~x) to state ρ(~x ′) for all
valuations ρ s.t. D |= ρ(r).

I Predecessor state constraint: pred(r) = ∃~x ′ r

I A Constrained Transition System (CTS) is a transition
constraint r s.t. |succ(r)|D ⊆ |pred(r)|D,
i.e. D |= succ(r)⇒ pred(r).

I A CTS r is finitary (resp. bounded) if for any s the set of
predecessors {∃~x ′(r i ∧ s[~x ′/~x])}i≥1 is finite (bounded card.).

Transitions as Constraints

I Finite set of primed state variables: ~x ′

I Transition constraint: any constraint over ~x ∪~x ′, noted r(~x ,~x ′)

I Set of ground transitions: from state ρ(~x) to state ρ(~x ′) for all
valuations ρ s.t. D |= ρ(r).

I Predecessor state constraint: pred(r) = ∃~x ′ r

I A Constrained Transition System (CTS) is a transition
constraint r s.t. |succ(r)|D ⊆ |pred(r)|D,
i.e. D |= succ(r)⇒ pred(r).

I A CTS r is finitary (resp. bounded) if for any s the set of
predecessors {∃~x ′(r i ∧ s[~x ′/~x])}i≥1 is finite (bounded card.).

Rlin Linear Arithmetic over the Reals

I Atomic constraints in Rlin are inequalities over linear
combination of variables

2 ∗ x + 4 ∗ y ≤ 5

I Such constraints admit for solutions sets of valuation which
are (open) polyhedra in the n-dimensional space, where n is
the number of variables

I The conjunction of constraints a ∧ b admits for solutions the
intersection of the polyhedra solutions of a and b which is a
polyhedron.

Rlin Linear Arithmetic over the Reals

I Atomic constraints in Rlin are inequalities over linear
combination of variables

2 ∗ x + 4 ∗ y ≤ 5

I Such constraints admit for solutions sets of valuation which
are (open) polyhedra in the n-dimensional space, where n is
the number of variables

I The conjunction of constraints a ∧ b admits for solutions the
intersection of the polyhedra solutions of a and b which is a
polyhedron.

Rlin Linear Arithmetic over the Reals

I Atomic constraints in Rlin are inequalities over linear
combination of variables

2 ∗ x + 4 ∗ y ≤ 5

I Such constraints admit for solutions sets of valuation which
are (open) polyhedra in the n-dimensional space, where n is
the number of variables

I The conjunction of constraints a ∧ b admits for solutions the
intersection of the polyhedra solutions of a and b which is a
polyhedron.

FO(Rlin) through Finite Unions of Polyhedra

Disjunction ∨ A disjunction of conjunctions of linear arithmetic
constraints is a finite union of polyhedra and
(
⋃

i Ai) ∩
(⋃

j Bj

)
=
⋃

i ,j(Ai ∩ Bj)

Negation ¬ The complement of a polyhedron is a union of
polyhedra
The complement of a union of polyhedra is the
intersection of the complements of each polyhedron

Existential ∃ Projection to the subspace of the other dimensions
Universal ∀ ¬∃x(¬c)

Equality = double inclusion U ∩ V = U ∩ V = ∅

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

First-Order Computation Tree Logic FOCTL(D)

CTL ::= | c
| φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ
| EX (φ) | EF (φ) | EG (φ)
| AX (φ) | AF (φ) | AG (φ)

Example:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x=1 x=2 x=3 x=4 x=5

A<1

EG (x ≤ V) ?
(V ≥ 5) ∨ (1 ≤ x ≤ 4 ∧ V ≥ 4 ∧ A < 1)

First-Order Computation Tree Logic FOCTL(D)

CTL ::= | c
| φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ
| EX (φ) | EF (φ) | EG (φ)
| AX (φ) | AF (φ) | AG (φ)

Example:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x=1 x=2 x=3 x=4 x=5

A<1

EG (x ≤ V) ?

(V ≥ 5) ∨ (1 ≤ x ≤ 4 ∧ V ≥ 4 ∧ A < 1)

First-Order Computation Tree Logic FOCTL(D)

CTL ::= | c
| φ ∧ ψ | φ ∨ ψ | ¬φ | ∃xφ | ∀xφ
| EX (φ) | EF (φ) | EG (φ)
| AX (φ) | AF (φ) | AG (φ)

Example:

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

x=1 x=2 x=3 x=4 x=5

A<1

EG (x ≤ V) ?
(V ≥ 5) ∨ (1 ≤ x ≤ 4 ∧ V ≥ 4 ∧ A < 1)

FOCTL Constraint Solving Fixpoint Algorithm

I ex(s) = ∃~x ′(r ∧ s[~x ′/~x])
I ax(s) = ∀~x ′(r ⇒ s[~x ′/~x])

I ¬(ex(s))= ∀~x ′(¬r ∨ ¬s[~x ′/~x])
= ax(¬s)

I ef (s) = µs ′.s ∨ ex(s ′), af (s) = µs ′.s ∨ ax(s ′)
' (s ∨ ex(s ∨ ex(s ∨ . . .)))

I eg(s) = νs ′.s ∧ ex(s ′), ag(s) = νs ′.s ∧ ax(s ′)
' (s ∧ ex(s ∧ ex(s ∧ . . .)))

FOCTL Constraint Solving Fixpoint Algorithm

I ex(s) = ∃~x ′(r ∧ s[~x ′/~x])
I ax(s) = ∀~x ′(r ⇒ s[~x ′/~x])

I ¬(ex(s))= ∀~x ′(¬r ∨ ¬s[~x ′/~x])
= ax(¬s)

I ef (s) = µs ′.s ∨ ex(s ′), af (s) = µs ′.s ∨ ax(s ′)
' (s ∨ ex(s ∨ ex(s ∨ . . .)))

I eg(s) = νs ′.s ∧ ex(s ′), ag(s) = νs ′.s ∧ ax(s ′)
' (s ∧ ex(s ∧ ex(s ∧ . . .)))

FOCTL Constraint Solving Fixpoint Algorithm

I ex(s) = ∃~x ′(r ∧ s[~x ′/~x])
I ax(s) = ∀~x ′(r ⇒ s[~x ′/~x])

I ¬(ex(s))= ∀~x ′(¬r ∨ ¬s[~x ′/~x])
= ax(¬s)

I ef (s) = µs ′.s ∨ ex(s ′), af (s) = µs ′.s ∨ ax(s ′)
' (s ∨ ex(s ∨ ex(s ∨ . . .)))

I eg(s) = νs ′.s ∧ ex(s ′), ag(s) = νs ′.s ∧ ax(s ′)
' (s ∧ ex(s ∧ ex(s ∧ . . .)))

FOCTL Constraint Solving Fixpoint Algorithm

I ex(s) = ∃~x ′(r ∧ s[~x ′/~x])
I ax(s) = ∀~x ′(r ⇒ s[~x ′/~x])

I ¬(ex(s))= ∀~x ′(¬r ∨ ¬s[~x ′/~x])
= ax(¬s)

I ef (s) = µs ′.s ∨ ex(s ′), af (s) = µs ′.s ∨ ax(s ′)
' (s ∨ ex(s ∨ ex(s ∨ . . .)))

I eg(s) = νs ′.s ∧ ex(s ′), ag(s) = νs ′.s ∧ ax(s ′)
' (s ∧ ex(s ∧ ex(s ∧ . . .)))

Complexity

For a bounded CTS r with maximum cardinality K for the set of
predecessor state constraints for any state constraint

the time complexity for deciding the D-satisfiability of φ in r with
an oracle constraint solver for D is

O(|φ| ∗ K 2)

(what is implemented in FOCTL(Rlin))

O(|φ| ∗ K)

for traces of length K without branching
(what is implemented in Biocham)

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])

= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])

= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])

= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)

= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])

= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Implementation and Optimizations

I In SWI-Prolog and Parma Polyhedra Library PPL

I Results are projected to pred(r) = ∃~x ′(r): all intermediate
results (in particular for AX) can be intersected with pred(r).

I ax(s)= ∀~x ′(r ⇒ s[~x ′/~x])
= ¬∃~x ′¬(¬r ∨ s[~x ′/~x])
= ¬∃~x ′(r ∧ ¬s[~x ′/~x])
= ¬∃~x ′(r ∧ ex(s) ∧ ¬s[~x ′/~x])

I eg(s)= νs ′.s ∧ ex(s ′)
= νs ′.s ∧ ∃~x ′(r ∧ s ′[~x ′/~x])
= νs ′.∃~x ′(r ∧ s ∧ s ′[~x ′/~x])

I idem for ag(s)

Optimizing representation

I Remove any subsumed Pi from a union of polyhedra
⋃

i Pi ,
But subsumption test quadratic in the size of the union...

I Convex hull computation and maintenance for subsumption
test between unions and for intersections.

I partitionning of discrete dimensions where the variable x
always appears in the form x = constant.

Optimizing representation

I Remove any subsumed Pi from a union of polyhedra
⋃

i Pi ,
But subsumption test quadratic in the size of the union...

I Convex hull computation and maintenance for subsumption
test between unions and for intersections.

I partitionning of discrete dimensions where the variable x
always appears in the form x = constant.

Optimizing representation

I Remove any subsumed Pi from a union of polyhedra
⋃

i Pi ,
But subsumption test quadratic in the size of the union...

I Convex hull computation and maintenance for subsumption
test between unions and for intersections.

I partitionning of discrete dimensions where the variable x
always appears in the form x = constant.

Computation Results
Comparison to Delzanno and Podelski’s CLP(R) implementation on
an Intel(R) Core(TM)2 CPU at 1.86GHz with 2GB of RAM.

CLP(R) FOCTL(Rlin)
bakery 0.69 2.29
bakery3 12.47 3.15
bakery4 47.73 4.21
ticket 0.64 2.76 (widening)
bbuffer1 4.09 3.70
bbuffer2 0.67 6.80
ubuffer 4.49 2.93 (widening)
insertion 0.02 4.43 (widening)
selection 0.02 10.21
mesi 1.03 5.56
matrix-mul 0 .02 16.07
csm 3.81 7.88

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over Rlin

Temporal Logic Constraints over Rlin

Implementation of FOCTL(Rlin)

Conclusion

Conclusion

I FOCTL(Rlin) provides an expressive modeling and querying
language for infinite-state transition systems:

I computes validity domains for free variables in the formula
I computes continuous satisfaction degree for the formula
I computes validity domains for parameters in transition system

I Potential blow-up with large unions of polyhedra
I from ∨, ¬, ⇒
I from fixpoint computation

Implementated in Prolog + PPL

I More efficient implementation for boxes and for non-branching
traces in Biocham: successful for parameter inference problems
in high dimension

I Hybrid computation domains ? (FO)CTL(Rlin,f,Graph,FD) ?

Conclusion

I FOCTL(Rlin) provides an expressive modeling and querying
language for infinite-state transition systems:

I computes validity domains for free variables in the formula
I computes continuous satisfaction degree for the formula
I computes validity domains for parameters in transition system

I Potential blow-up with large unions of polyhedra
I from ∨, ¬, ⇒
I from fixpoint computation

Implementated in Prolog + PPL

I More efficient implementation for boxes and for non-branching
traces in Biocham: successful for parameter inference problems
in high dimension

I Hybrid computation domains ? (FO)CTL(Rlin,f,Graph,FD) ?

Conclusion

I FOCTL(Rlin) provides an expressive modeling and querying
language for infinite-state transition systems:

I computes validity domains for free variables in the formula
I computes continuous satisfaction degree for the formula
I computes validity domains for parameters in transition system

I Potential blow-up with large unions of polyhedra
I from ∨, ¬, ⇒
I from fixpoint computation

Implementated in Prolog + PPL

I More efficient implementation for boxes and for non-branching
traces in Biocham: successful for parameter inference problems
in high dimension

I Hybrid computation domains ? (FO)CTL(Rlin,f,Graph,FD) ?

Conclusion

I FOCTL(Rlin) provides an expressive modeling and querying
language for infinite-state transition systems:

I computes validity domains for free variables in the formula
I computes continuous satisfaction degree for the formula
I computes validity domains for parameters in transition system

I Potential blow-up with large unions of polyhedra
I from ∨, ¬, ⇒
I from fixpoint computation

Implementated in Prolog + PPL

I More efficient implementation for boxes and for non-branching
traces in Biocham: successful for parameter inference problems
in high dimension

I Hybrid computation domains ? (FO)CTL(Rlin,f,Graph,FD) ?

	Motivation: Analysis/Synthesis of Gene/Protein Networks
	States and Transitions as Constraints over Rlin
	Temporal Logic Constraints over Rlin
	Implementation of FOCTL(Rlin)
	Conclusion

