On Solving Temporal Logic Constraints in Constrained Transition Systems

François Fages Joint work with Thierry Martinez, Aurélien Rizk, Sylvain Soliman, Grégory Batt, Calin Belta, Neda Saeedloei

> EPI Contraintes INRIA Paris-Rocquencourt, France

> > CP meets CAV 28 June 2012

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over $\mathbb{R}_{\mathsf{lin}}$

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $FOCTL(\mathbb{R}_{lin})$

Conclusion

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over \mathbb{R}_{lin}

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $\mathsf{FOCTL}(\mathbb{R}_{\mathsf{lin}})$

Conclusion

System-level understanding of high-level cell functions from their biochemical basis at the molecular level [Kitano 2000]

System-level understanding of high-level cell functions from their biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

$$\mathsf{S} + \mathsf{E} \xrightarrow{\longleftarrow_{k_1}} \mathsf{ES} \longrightarrow^{k_3} \mathsf{E} + \mathsf{P}$$

System-level understanding of high-level cell functions from their biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

$$\mathsf{S} + \mathsf{E} \xrightarrow{\longleftarrow_{k_1}} \mathsf{ES} \longrightarrow^{k_3} \mathsf{E} + \mathsf{P}$$

Petri nets ! with reaction rates

System-level understanding of high-level cell functions from their biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

$$\mathsf{S} + \mathsf{E} \xrightarrow{\longleftarrow_{k_1}} \mathsf{ES} \longrightarrow^{k_3} \mathsf{E} + \mathsf{P}$$

Petri nets ! with reaction rates Ordinary Differential Equations $\dot{S} = -k_1 * S * E + k_2 * ES$ $\dot{P} = k_3 * ES$ $\dot{E} = -k_1 * S * E + (k_2 + k_3) * ES$ $\dot{ES} = k_1 * S * E - (k_2 + k_3) * ES$ Continuous-Time Markov Chain

Biological Model = (Quantitative) State Transition System K

Biological Model = (Quantitative) State Transition System K Biological Properties = Temporal Logic Formulae ϕ

Biological Model = (Quantitative) State Transition System K Biological Properties = Temporal Logic Formulae ϕ Automatic Verification = Model-checking K $\models \phi$

Biological Model = (Quantitative) State Transition System K Biological Properties = Temporal Logic Formulae ϕ Automatic Verification = Model-checking K $\models \phi$ Model Inference = Constraint Solving K' $\models \phi'$

Biological Model = (Quantitative) State Transition System K Biological Properties = Temporal Logic Formulae ϕ Automatic Verification = Model-checking K $\models \phi$ Model Inference = Constraint Solving K' $\models \phi'$

- Expression of high-level specifications
- Model-checking can be efficient on large complex systems
- Temporal logic with numerical constraints can deal with continuous time models (ODE or CTMC, hybrid systems)

Biological Model = (Quantitative) State Transition System K Biological Properties = Temporal Logic Formulae ϕ Automatic Verification = Model-checking K $\models \phi$ Model Inference = Constraint Solving K' $\models \phi'$

- Expression of high-level specifications
- Model-checking can be efficient on large complex systems
- Temporal logic with numerical constraints can deal with continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02, Chabrier Fages CMSB 03, Batt et al. Bi 05] Analysis of experimental data time series [Fages Rizk CMSB 07] Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB 06] [Rizk et al. 08 CMSB] Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB]

Temporal Logic with constraints over ${\mathbb R}$

- ▶ **F**([A]>10) : the concentration of A eventually gets above 10.
- FG([A]>10) : the concentration of A eventually reaches and remains above value 10.
- ► F(Time=t1∧[A]=v1 ∧ F(.... ∧ F(Time=tN∧[A]=vN)...)) Numerical data time series (e.g. experimental curves)
- Local maxima, oscillations, period constraints, etc.

True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well suited to several problems :

- parameter search, optimization and control of continuous models
- quantitative estimation of robustness
- sensitivity analyses

True/False valuation of temporal logic formulae

The **True/False** valuation of temporal logic formulae is **not well suited** to several problems :

- parameter search, optimization and control of continuous models
- quantitative estimation of robustness
- sensitivity analyses

 \rightarrow need for a continuous degree of satisfaction of temporal logic formulae

How far is the system from verifying the specification ?

Validity domain for the free variables [Fages Rizk CMSB'07, TCS 11]

3.5

Validity domain for the free variables [Fages Rizk CMSB'07, TCS 11] Violation degree $vd(T, \phi) = distance(val(\phi), D_{\phi^*}(T))$ Satisfaction degree $sd(T, \phi) = \frac{1}{1+vd(T,\phi)} \in [0, 1]$

Bifurcation Diagrams and $LTL(\mathbb{R})$ Satisfaction Diagrams

 $\mathsf{Example} \ \mathsf{with} \ :$

- yeast cell cycle model [Tyson PNAS 91]
- oscillation of at least 0.3

 $\phi^*:$ F([A]>x \wedge F([A]<y)); amplitude x-y ≥ 0.3

Bifurcation diagram

 $\mathsf{LTL}(\mathbb{R})$ satisfaction diagram

Parameter Inference by Local Search

- ► LTL(ℝ) satisfaction degree as black-box fitness function (computed by TL constraint solving)
- Other constraints on parameter range, inequalities,... added to the fitness function
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES) [Hansen Osermeier 01, Hansen 08]: probabilistic neighborhood updated in covariance matrix at each move

Kinetic Parameter Inference from $LTL(\mathbb{R})$ Spec.

- yeast cell cycle control model [Tyson PNAS 91]
- 6 variables, 8 kinetic parameters

Kinetic Parameter Inference from $LTL(\mathbb{R})$ Spec.

- yeast cell cycle control model [Tyson PNAS 91]
- 6 variables, 8 kinetic parameters

Pb : find values of 8 parameters such that amplitude is ≥ 0.3 φ*: F([A]>x ∧ F([A]<y)) amplitude z=x-y goal : z = 0.3

Kinetic Parameter Inference from $LTL(\mathbb{R})$ Spec.

- yeast cell cycle control model [Tyson PNAS 91]
- 6 variables, 8 kinetic parameters

- Pb : find values of 8 parameters such that amplitude is ≥ 0.3 φ*: F([A]>x ∧ F([A]<y)) amplitude z=x-y goal : z = 0.3
- \blacktriangleright \rightarrow solution found after 30s (100 calls to the fitness function)

Kinetic Parameter Search from Period Constraints

> Pb : find values of 8 parameters such that period is 20

Kinetic Parameter Search from Period Constraints

> Pb : find values of 8 parameters such that period is 20

 \blacktriangleright \rightarrow Solution found after 60s (200 calls to the fitness function)

Kinetic Parameter Search from Period Constraints

Pb : find values of 8 parameters such that period is 20

- \blacktriangleright \rightarrow Solution found after 60s (200 calls to the fitness function)
- Scales up to 50-100 parameters.
- Linear speed-up on a cluster of 10000 cores. Parallelization of parameter sets and multiconditions for mutants.

Robustness Measure

Robustness defined as mean functionality with respect to :

- a biological system
- \blacktriangleright a functionality property ϕ
- a set P of perturbations

Measure of robustness w.r.t. $LTL(\mathbb{R})$ spec:

$$\mathcal{R}_{\phi,P} = \int_{oldsymbol{p}\in P} \mathit{sd}(\phi, \mathit{T}(oldsymbol{p})) \, \mathit{prob}(oldsymbol{p}) \, \mathit{dp}$$

where T(p) is the trace obtained by numerical integration of the ODE for perturbation p of the parameters \longrightarrow estimated by sampling

Example on Cell Cycle Control

$$\mathcal{R}_{\phi, p_{\mathcal{A}}} =$$
 0.83, $\mathcal{R}_{\phi, p_{\mathcal{B}}} =$ 0.43, $\mathcal{R}_{\phi, p_{\mathcal{C}}} =$ 0.49

(nría)

Example on a Synthetic Toggle Switch for E. Coli

Specification: EYFP has to remain below 10^3 for at least 150 min., then exceeds 10^5 after at most 450 min., and switches from low to high levels in less than 150 min.

Specification in $FOLTL(\mathbb{R})$

The timing specifications can be formalized in temporal logic as follows:

$$egin{aligned} \phi(t_1,t_2) = & {f G}(\textit{time} < t_1 o [{\tt EYFP}] < 10^3) \ & \wedge & {f G}(\textit{time} > t_2 o [{\tt EYFP}] > 10^5) \ & \wedge & t_1 > 150 \wedge t_2 < 450 \wedge t_2 - t_1 < 150 \end{aligned}$$

which is abstracted into

$$egin{aligned} \phi(t_1,t_2,b_1,b_2,b_3) = & \mathsf{G}(\textit{time} < t_1
ightarrow [ext{EYFP}] < 10^3) \ & \wedge & \mathsf{G}(\textit{time} > t_2
ightarrow [ext{EYFP}] > 10^5) \ & \wedge & t_1 > b1 \wedge t_2 < b_2 \wedge t_2 - t_1 < b_3 \end{aligned}$$

for computing validity domains for b_1, b_2, b_3

with the objective $b_1 = 150, b_2 = 450, b_3 = 150$ for computing the satisfaction degree in a given trace.

Improving robustness

Variance-based g	obal sens	itivity indices $S_i = \frac{V}{2}$	/ar(E(R P _i) Var(R)	$(0, 1] \in [0, 1]$
S_{γ}	20.2 %	$S_{\kappa_{evfp},\gamma}$	8.7 %	
$S_{\kappa_{evfp}}$	7.4 %	$S_{\kappa_{cl},\gamma}$	6.2 %	
$S_{\kappa_{cl}}$	6.1%	$S_{\kappa^0_{cl},\gamma}$	5.0%	
$S_{\kappa_{lacl}^0}$	3.3 %	$S_{\kappa_{cl}^0,\kappa_{evfp}}$	2.8 %	
$S_{\kappa_{c'}^0}$	2.0 %	$S_{\kappa_{cl},\kappa_{eyfp}}$	1.8 %	
$S_{\kappa_{lacl}}$	1.5%	$S_{\kappa^0_{evfn},\gamma}$	1.5%	
$S_{\kappa^0_{evfp}}$	0.9%	$S_{\kappa_{cl}^0,\kappa_{cl}}$	1.1%	
$S_{u_{aTc}}$	0.4 %	$S_{\kappa_{cl}^{0},\kappa_{lacl}}$	0.5 %	
total first order	40.7 %	total second order	31.2 %	

degradation factor $\boldsymbol{\gamma}$ has the strongest impact on the cascade.

aTc variations have a very low impact

different importance of the basal κ_{eyfp}^0 and regulated κ_{eyfp} EYFP production rates

Constraints on Transitions in Piecewise Multi-affine Models

$$\begin{aligned} \dot{x}_{a} &= \kappa_{a} r_{a} (x_{b}, \theta_{b}, \theta_{b}') - \gamma_{a} x_{a} \\ \dot{x}_{b} &= \kappa_{b} r_{b} (x_{a}, \theta_{a}, \theta_{a}') - \gamma_{b} x_{b} \end{aligned}$$

FOCTL queries:

Reachability ? EF(X = 3)Enumeration of stable states: ? $X = V \land AX(X = V)$ $X = V = 1 \land \kappa_a < 8 \land \kappa_b < 16$ $X = V = 2 \land 8 < \kappa_a < 12 \land \kappa_b < 16$ $X = V = 3 \land 12 < \kappa_a$ $X = V = 4 \land \kappa_a < 8 \land 16 < \kappa_b < 24$ $X = V = 7 \land 24 < \kappa_b$

<ロ> <聞> <ヨ> <ヨ> 三田

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over $\mathbb{R}_{\mathsf{lin}}$

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $\mathsf{FOCTL}(\mathbb{R}_{\mathsf{lin}})$

Conclusion

States as Constraints

• Computation domain ${\cal D}$

► Constraint language closed by conjunction, negation, quantification (e.g. R_{lin}: finite unions of polyhedra)

States as Constraints

- Computation domain ${\cal D}$
- ► Constraint language closed by conjunction, negation, quantification (e.g. R_{lin}: finite unions of polyhedra)

- Finite set X of state variables: \vec{x}
- State constraint: any constraint over \vec{x} , noted $s(\vec{x})$

States as Constraints

- \blacktriangleright Computation domain ${\cal D}$
- ► Constraint language closed by conjunction, negation, quantification (e.g. R_{lin}: finite unions of polyhedra)

- Finite set X of state variables: \vec{x}
- State constraint: any constraint over \vec{x} , noted $s(\vec{x})$

▶ Set of ground states: $|s|_{\mathcal{D}} = \{\rho(\vec{x}) \mid \rho : X \longrightarrow \mathcal{D}, \ \mathcal{D} \models \rho(s)\}$

- Finite set of primed state variables: \vec{x}'
- ▶ Transition constraint: any constraint over $\vec{x} \cup \vec{x}'$, noted $r(\vec{x}, \vec{x}')$
- ► Set of ground transitions: from state $\rho(\vec{x})$ to state $\rho(\vec{x}')$ for all valuations ρ s.t. $\mathcal{D} \models \rho(r)$.

- Finite set of primed state variables: \vec{x}'
- ▶ Transition constraint: any constraint over $\vec{x} \cup \vec{x}'$, noted $r(\vec{x}, \vec{x}')$
- ► Set of ground transitions: from state $\rho(\vec{x})$ to state $\rho(\vec{x}')$ for all valuations ρ s.t. $\mathcal{D} \models \rho(r)$.
- Predecessor state constraint: $pred(r) = \exists \vec{x}' r$

- Finite set of primed state variables: \vec{x}'
- ▶ Transition constraint: any constraint over $\vec{x} \cup \vec{x}'$, noted $r(\vec{x}, \vec{x}')$
- ► Set of ground transitions: from state $\rho(\vec{x})$ to state $\rho(\vec{x}')$ for all valuations ρ s.t. $\mathcal{D} \models \rho(r)$.

-▲□▶ ▲圖▶ ▲필▶ ▲필▶

- Predecessor state constraint: $pred(r) = \exists \vec{x}' r$
- A Constrained Transition System (CTS) is a transition constraint r s.t. |succ(r)|_D ⊆ |pred(r)|_D,
 i.e. D ⊨ succ(r) ⇒ pred(r).

- Finite set of primed state variables: \vec{x}'
- ▶ Transition constraint: any constraint over $\vec{x} \cup \vec{x}'$, noted $r(\vec{x}, \vec{x}')$
- ► Set of ground transitions: from state $\rho(\vec{x})$ to state $\rho(\vec{x}')$ for all valuations ρ s.t. $\mathcal{D} \models \rho(r)$.
- Predecessor state constraint: $pred(r) = \exists \vec{x}' r$
- A Constrained Transition System (CTS) is a transition constraint r s.t. |succ(r)|_D ⊆ |pred(r)|_D,
 i.e. D ⊨ succ(r) ⇒ pred(r).
- A CTS r is finitary (resp. bounded) if for any s the set of predecessors {∃x'(rⁱ ∧ s[x'/x])}_{i≥1} is finite (bounded card.).

 $\mathbb{R}_{\mathsf{lin}}$ Linear Arithmetic over the Reals

► Atomic constraints in R_{lin} are inequalities over linear combination of variables

$$2 * x + 4 * y \le 5$$

 $\mathbb{R}_{\mathsf{lin}}$ Linear Arithmetic over the Reals

► Atomic constraints in R_{lin} are inequalities over linear combination of variables

$$2 * x + 4 * y \le 5$$

Such constraints admit for solutions sets of valuation which are (open) polyhedra in the *n*-dimensional space, where *n* is the number of variables

 $\mathbb{R}_{\mathsf{lin}}$ Linear Arithmetic over the Reals

► Atomic constraints in R_{lin} are inequalities over linear combination of variables

$$2 * x + 4 * y \le 5$$

- Such constraints admit for solutions sets of valuation which are (open) polyhedra in the *n*-dimensional space, where *n* is the number of variables
- ► The conjunction of constraints a ∧ b admits for solutions the intersection of the polyhedra solutions of a and b which is a polyhedron.

 $FO(\mathbb{R}_{lin})$ through Finite Unions of Polyhedra

Disjunction \lor A disjunction of conjunctions of linear arithmetic constraints is a finite union of polyhedra and $(\bigcup_i A_i) \cap (\bigcup_j B_j) = \bigcup_{i,j} (A_i \cap B_j)$

Negation ¬ The complement of a polyhedron is a union of polyhedra The complement of a union of polyhedra is the intersection of the complements of each polyhedron

Existential \exists Projection to the subspace of the other dimensions Universal $\forall \neg \exists x(\neg c)$

Equality = double inclusion $U \cap \overline{V} = \overline{U} \cap V = \emptyset$

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over \mathbb{R}_{Iin}

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $\mathsf{FOCTL}(\mathbb{R}_{\mathsf{lin}})$

Conclusion

First-Order Computation Tree Logic FOCTL(D)

$$CTL ::= | c | \phi \land \psi | \phi \lor \psi | \neg \phi | \exists x \phi | \forall x \phi | EX(\phi) | EF(\phi) | EG(\phi) | AX(\phi) | AF(\phi) | AG(\phi)$$

First-Order Computation Tree Logic FOCTL(D)

$$CTL ::= | c | \phi \land \psi | \phi \lor \psi | \neg \phi | \exists x \phi | \forall x \phi | EX(\phi) | EF(\phi) | EG(\phi) | AX(\phi) | AF(\phi) | AG(\phi)$$

Example:

First-Order Computation Tree Logic FOCTL(D)

$$CTL ::= | c | \phi \land \psi | \phi \lor \psi | \neg \phi | \exists x \phi | \forall x \phi | EX(\phi) | EF(\phi) | EG(\phi) | AX(\phi) | AF(\phi) | AG(\phi)$$

Example:

(日) (四) (日) (日)

•
$$ex(s) = \exists \vec{x}'(r \land s[\vec{x}'/\vec{x}])$$

•
$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$$

•
$$ex(s) = \exists \vec{x}'(r \land s[\vec{x}'/\vec{x}])$$

• $ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$

$$\neg (ex(s)) = \forall \vec{x}' (\neg r \lor \neg s[\vec{x}'/\vec{x}]) \\ = ax(\neg s)$$

•
$$ex(s) = \exists \vec{x}'(r \land s[\vec{x}'/\vec{x}])$$

• $ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$

$$\neg (ex(s)) = \forall \vec{x}' (\neg r \lor \neg s[\vec{x}'/\vec{x}]) \\ = ax(\neg s)$$

►
$$ef(s) = \mu s'.s \lor ex(s'), af(s) = \mu s'.s \lor ax(s')$$

 $\simeq (s \lor ex(s \lor ex(s \lor ...)))$

•
$$ex(s) = \exists \vec{x}'(r \land s[\vec{x}'/\vec{x}])$$

• $ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$

$$\neg (ex(s)) = \forall \vec{x}' (\neg r \lor \neg s[\vec{x}'/\vec{x}]) \\ = ax(\neg s)$$

►
$$ef(s) = \mu s'.s \lor ex(s'), af(s) = \mu s'.s \lor ax(s')$$

 $\simeq (s \lor ex(s \lor ex(s \lor ...)))$

►
$$eg(s) = \nu s'.s \wedge ex(s'), ag(s) = \nu s'.s \wedge ax(s')$$

 $\simeq (s \wedge ex(s \wedge ex(s \wedge \dots)))$

Complexity

For a bounded CTS r with maximum cardinality K for the set of predecessor state constraints for any state constraint

the time complexity for deciding the $\mathcal D\text{-satisfiability}$ of ϕ in r with an oracle constraint solver for $\mathcal D$ is

 $O(|\phi| * K^2)$

(what is implemented in $\mathsf{FOCTL}(\mathbb{R}_{\mathsf{lin}}))$

 $O(|\phi| * K)$

(日) (四) (三) (三) (三)

for traces of length K without branching (what is implemented in Biocham)

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over $\mathbb{R}_{\mathsf{lin}}$

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $FOCTL(\mathbb{R}_{lin})$

Conclusion

In SWI-Prolog and Parma Polyhedra Library PPL

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

•
$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

►
$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}])$$

= $\neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}])$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$\mathsf{ax}(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) \\ = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) \\ = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}])$$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land ex(s) \land \neg s[\vec{x}'/\vec{x}])$$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land ex(s) \land \neg s[\vec{x}'/\vec{x}])$$

•
$$eg(s) = \nu s' \cdot s \wedge ex(s')$$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land ex(s) \land \neg s[\vec{x}'/\vec{x}])$$

$$\bullet eg(s) = \nu s'.s \wedge ex(s')$$

= $\nu s'.s \wedge \exists \vec{x}' (r \wedge s'[\vec{x}'/\vec{x}])$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land ex(s) \land \neg s[\vec{x}'/\vec{x}])$$

$$eg(s) = \nu s' \cdot s \wedge ex(s') = \nu s' \cdot s \wedge \exists \vec{x}' (r \wedge s'[\vec{x}'/\vec{x}]) = \nu s' \cdot \exists \vec{x}' (r \wedge s \wedge s'[\vec{x}'/\vec{x}])$$

- In SWI-Prolog and Parma Polyhedra Library PPL
- ► Results are projected to pred(r) = ∃x'(r): all intermediate results (in particular for AX) can be intersected with pred(r).

$$ax(s) = \forall \vec{x}'(r \Rightarrow s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}' \neg (\neg r \lor s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land \neg s[\vec{x}'/\vec{x}]) = \neg \exists \vec{x}'(r \land ex(s) \land \neg s[\vec{x}'/\vec{x}])$$

$$eg(s) = \nu s' \cdot s \wedge ex(s') = \nu s' \cdot s \wedge \exists \vec{x}' (r \wedge s'[\vec{x}'/\vec{x}]) = \nu s' \cdot \exists \vec{x}' (r \wedge s \wedge s'[\vec{x}'/\vec{x}])$$

▶ idem for ag(s)

Optimizing representation

Remove any subsumed P_i from a union of polyhedra U_i P_i, But subsumption test quadratic in the size of the union...

Optimizing representation

Remove any subsumed P_i from a union of polyhedra U_i P_i, But subsumption test quadratic in the size of the union...

 Convex hull computation and maintenance for subsumption test between unions and for intersections.

Optimizing representation

Remove any subsumed P_i from a union of polyhedra U_i P_i, But subsumption test quadratic in the size of the union...

 Convex hull computation and maintenance for subsumption test between unions and for intersections.

partitionning of discrete dimensions where the variable x always appears in the form x = constant.

Computation Results

Comparison to Delzanno and Podelski's $CLP(\mathbb{R})$ implementation on an Intel(R) Core(TM)2 CPU at 1.86GHz with 2GB of RAM.

	$(D \square)$	
	$CLP(\mathbb{K})$	$FOCTL(\mathbb{K}_{lin})$
bakery	0.69	2.29
bakery3	12.47	3.15
bakery4	47.73	4.21
ticket	0.64	2.76 (widening)
bbuffer1	4.09	3.70
bbuffer2	0.67	6.80
ubuffer	4.49	2.93 (widening)
insertion	0.02	4.43 (widening)
selection	0.02	10.21
mesi	1.03	5.56
matrix-mul 0	.02	16.07
csm	3.81	7.88

(□) (□) (□) (□) (□) (□)

Outline

Motivation: Analysis/Synthesis of Gene/Protein Networks

States and Transitions as Constraints over \mathbb{R}_{lin}

Temporal Logic Constraints over $\mathbb{R}_{\mathsf{lin}}$

Implementation of $\mathsf{FOCTL}(\mathbb{R}_{\mathsf{lin}})$

Conclusion

Conclusion

- ► FOCTL(R_{lin}) provides an expressive modeling and querying language for infinite-state transition systems:
 - computes validity domains for free variables in the formula
 - computes continuous satisfaction degree for the formula
 - computes validity domains for parameters in transition system

Conclusion

- ► FOCTL(R_{lin}) provides an expressive modeling and querying language for infinite-state transition systems:
 - computes validity domains for free variables in the formula
 - computes continuous satisfaction degree for the formula
 - computes validity domains for parameters in transition system
- Potential blow-up with large unions of polyhedra
 - ▶ from \lor , \neg , \Rightarrow
 - from fixpoint computation

Implementated in Prolog + PPL

Conclusion

- ► FOCTL(R_{lin}) provides an expressive modeling and querying language for infinite-state transition systems:
 - computes validity domains for free variables in the formula
 - computes continuous satisfaction degree for the formula
 - computes validity domains for parameters in transition system
- Potential blow-up with large unions of polyhedra
 - ▶ from \lor , \neg , \Rightarrow
 - from fixpoint computation

Implementated in Prolog + PPL

 More efficient implementation for boxes and for non-branching traces in Biocham: successful for parameter inference problems in high dimension

Conclusion

- ► FOCTL(R_{lin}) provides an expressive modeling and querying language for infinite-state transition systems:
 - computes validity domains for free variables in the formula
 - computes continuous satisfaction degree for the formula
 - computes validity domains for parameters in transition system
- Potential blow-up with large unions of polyhedra
 - ▶ from \lor , \neg , \Rightarrow
 - from fixpoint computation

Implementated in Prolog + PPL

- More efficient implementation for boxes and for non-branching traces in Biocham: successful for parameter inference problems in high dimension
- ► Hybrid computation domains ? (FO)CTL(ℝ_{lin},f,Graph,FD) ?