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Systems Biology

System-level understanding of high-level cell functions from their
biochemical basis at the molecular level [Kitano 2000]

Example: explain the cell cycle control at the molecular level of

gene transcription, protein degradation and enzymatic reactions

k
S+ESLES—kE+P

Petri nets | with reaction rates

S=—-ki*S+«E+ ky*xES
E=—k xSxE+(ky+ ks) % ES
ES = ki % S E — (ko + k3) * ES

g

Continuous-Time Markov Chain Lo
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Ordinary Differential Equations



A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
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A Logical Paradigm for Systems and Synthetic Biology

Biological Model = (Quantitative) State Transition System K
Biological Properties = Temporal Logic Formulae ¢
Automatic Verification = Model-checking K |= ¢
Model Inference = Constraint Solving K' |= ¢/

» Expression of high-level specifications
» Model-checking can be efficient on large complex systems

» Temporal logic with numerical constraints can deal with
continuous time models (ODE or CTMC, hybrid systems)

Query language for large reaction networks [Eker et al. PSB 02,
Chabrier Fages CMSB 03, Batt et al. Bi 05]

Analysis of experimental data time series [Fages Rizk CMSB 07]
Kinetic parameter search [Bernot et al. JTB 04] [Calzone et al. TCSB

06] [Rizk et al. 08 CMSB] )
Robustness analysis [Batt et al. 07] [Rizk et al. 09 ISMB] Crsia



Temporal Logic with constraints over R

(Al T
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%= f(x) ODEs —» + + ¥ +
biological observation —» + +
: 2Fcaceaaan deccecceee e

» F([A]>10) : the concentration of A eventually gets above 10.

» FG([A]>10) : the concentration of A eventually reaches and
remains above value 10.

» F(Time=t1A[A]=vl A F(.... A F(Time=tNA[A]=VN)...))
Numerical data time series (e.g. experimental curves)

» Local maxima, oscillations, period constraints, etc.
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True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
suited to several problems :

» parameter search, optimization and control of continuous
models

» quantitative estimation of robustness

> sensitivity analyses



True/False valuation of temporal logic formulae

The True/False valuation of temporal logic formulae is not well
suited to several problems :

» parameter search, optimization and control of continuous
models

» quantitative estimation of robustness

> sensitivity analyses

— need for a continuous degree of satisfaction of temporal logic
formulae

How far is the system from verifying the specification ?



From Model-Checking to TL Constraint Solving

A1 T
R
L
+ + +
+ +
+
Y P S
>time
LTL(R)
O=F([A]z7
AF([A]<0))
~

Model-checking

the formula is false
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From Model-Checking to TL Constraint Solving

[A] T
] S
L
+ + +
+ +
+
Y P L
>time
LTL(R) : QFLTL(R)
®=F([A]z7 . ®*=F([A]=x
AF([AI=0)) AF([Al=y))
/ | o
Model-checking ; Constraint solving

! the formula is true for any

the formula is false x<10 A y=2
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From Model-Checking to TL Constraint Solving

[A] T
] S
+ +
+ + +
+ +
+
3 S P
“lime :—b x
LTL(R) . QFLTL(R)
®=F([A]z7 . ®*=F([A]=x
AF([AI=0)) AF([Al=y))
~ : o~
Model-checking ; Constraint solving

! the formula is true for any

the formula is false x<10 A y=2

Validity domain for the free variables [Fages Rizk CMSB'07, TCS 11]
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From Model-Checking to TL Constraint Solving

A1 T
] S
+ +
+ + +
+ +
+
Y S RPN
‘=time (-z ﬁ‘x
LTLR)  QFLTL(R)
®=F([A]=7 . ®*=F([A]=x
AF(AIR0) | AF([AlsY)
e ! ~N
Model-checking ; Constraint solving
: i the formula is true for any
the formula is false  vd=2 sd=1/3 ! x<10 A y=2

Validity domain for the free variables [Fages Rizk CMSB'07, TCS 11]
Violation degree vd(T, ¢) = distance(val(¢), Dg-(T))

Satisfaction degree sd(T,¢) = 1++(T¢) €1[0,1]



Bifurcation Diagrams and LTL(R) Satisfaction Diagrams

Example with :
» yeast cell cycle model [Tyson PNAS 91]
» oscillation of at least 0.3
¢*: F( [A]>x A F([A]<y) ); amplitude x-y>0.3

000 Violation degree in parameter space
1000 100 ¢ v

01 10 10

kﬁ' min”!

Bifurcation diagram



Parameter Inference by Local Search

» LTL(R) satisfaction degree as black-box fitness function
(computed by TL constraint solving)

» Other constraints on parameter range, inequalities,... added to
the fitness function

» Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
[Hansen Osermeier 01, Hansen 08]: probabilistic neighborhood
updated in covariance matrix at each move

et 7 tensts
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Kinetic Parameter Inference from LTL(R) Spec.

» yeast cell cycle control model [Tyson PNAS 91]

» 6 variables, 8 kinetic parameters
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Kinetic Parameter Inference from LTL(R) Spec.

» yeast cell cycle control model [Tyson PNAS 91]

» 6 variables, 8 kinetic parameters

\ —p

» Pb : find values of 8 parameters such that amplitude is > 0.3
9" F([AI>x A F([A]<y) )
amplitude z=x-y
goal : z=10.3

» — solution found after 30s (100 calls to the fitness function)

.................



Kinetic Parameter Search from Period Constraints

» Pb : find values of 8 parameters such that period is 20



Kinetic Parameter Search from Period Constraints

mer, /S ) >

P——>p*e

» Pb : find values of 8 parameters such that period is 20

» — Solution found after 60s (200 calls to the fitness function)



Kinetic Parameter Search from Period Constraints

P—p e

merr /S >

B w160 o 2 © E) 0 w0 120

v

Pb : find values of 8 parameters such that period is 20

v

— Solution found after 60s (200 calls to the fitness function)

v

Scales up to 50-100 parameters.

v

Linear speed-up on a cluster of 10000 cores. Parallelization of
parameter sets and multiconditions for mutants.

.................



Robustness Measure

Robustness defined as mean functionality with respect to :
» a biological system
» a functionality property ¢

» a set P of perturbations

Measure of robustness w.r.t. LTL(R) spec:

Rop = / 56, T(p)) prob(p) oo

where T(p) is the trace obtained by numerical integration of
the ODE for perturbation p of the parameters
— estimated by sampling



Example on Cell Cycle Control

1000

Ko min!

100

100 —

10 L

01 10 10
kg min’

o1 1

Ropa = 0.83, Ry ps = 0.43, Ry pc = 0.49

1000 Violation degree in parameter space

10



Example on a Synthetic Toggle Switch for E. Coli

Cascade of transcriptional inhibitions added to E.coli [Weiss et al

PNAS 05] input small molecule aTc output protein EYFP
aTc
i
’—D TetR. ‘ > Lacl ‘ = (I | =~ EYFP
tetll Tl g eyfp

fluorescence

L} Y
o 100 200 300 400 500 600 700 200 000
i 2 —_—
time

Specification: EYFP has to remain below 10° for at least 150

min., then exceeds 10° after at most 450 min., and switches fro%“"‘“’”‘""‘"
. . . 2l —

low to high levels in less than 150 min.



Specification in FOLTL(R)

The timing specifications can be formalized in temporal logic as
follows:

H(ty, t2) = G(time < t; — [EYFP] < 10%)
A G(time > t, — [EYFP] > 10°)
AN t1 >150Atp <450A tr — t1 < 150

which is abstracted into

gf)(tl, tr, b1, bo, b3) = G(time <t — [EYFP] < 103)
A G(time > t, — [EYFP] > 10°)
AN t1>blAty < b Aty —t] < b3

for computing validity domains for by, by, b3

with the objective by = 150, b, = 450, b3 = 150
for computing the satisfaction degree in a given trace.



Improving robustness

Variance-based global sensitivity indices S; = %

S, 202% o) 8.7%

S 7.4% . 6.2%

Ska 6.1% S s 5.0%

SR‘IJacI 3.3% K0, eyt 2.8%

5“‘3, 2.0% Kl eyt 1.8%

S 1.5% 5,9, 1.5%

Se0, 0.9% 0 e 1.1%

Suare 0.4% KO, Filaet 0.5%

total first order | 40.7 % || total second order | 31.2%

) e [0,1]

degradation factor 7 has the strongest impact on the cascade.

aTc variations have a very low impact

different importance of the basal

production rates

0
eyfp

and regulated K¢y g, EYFP



Constraints on Transitions in Piecewise Multi-affine Models

l A ]=3 ] Xy = Hara(Xb)ebae?a) — YaXa
| ——— — | Xp = /ﬁbl’b(Xaa 02, 9/3) — TbXb
a b
y FOCTL queries:
Reachability
? EF(X =3)

Enumeration of stable states:

?X = VAAX(X = V)
X=V=1AK; <8AKp<16
X=V=2A8<r,<12AKp<16
X=V =3AN12< Kk,
X=V=4ANk, <8AN16 < Kkp <24
X=V=7TN24 <Ky o

.................
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Outline

States and Transitions as Constraints over Rj;,
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States as Constraints

» Computation domain D

» Constraint language closed by conjunction, negation,
quantification (e.g. Ryi,: finite unions of polyhedra)



States

v

v

v

v

as Constraints

Computation domain D

Constraint language closed by conjunction, negation,
quantification (e.g. Ryi,: finite unions of polyhedra)

Finite set X of state variables: X

State constraint: any constraint over X, noted s(X)
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States as Constraints

v

Computation domain D

v

Constraint language closed by conjunction, negation,
quantification (e.g. Ryi,: finite unions of polyhedra)

v

Finite set X of state variables: X

v

State constraint: any constraint over X, noted s(X)

v

Set of ground states: |s|p = {p(X) | p: X — D, D = p(s)}

-



Transitions as Constraints

» Finite set of primed state variables: X’

» Transition constraint: any constraint over X UX’, noted r(X, X)

» Set of ground transitions: from state p(X) to state p(X’) for all
valuations p s.t. D = p(r).
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Transitions as Constraints

» Finite set of primed state variables: X’

» Transition constraint: any constraint over X UX’, noted r(X, X)

» Set of ground transitions: from state p(X) to state p(X’) for all
valuations p s.t. D = p(r).

» Predecessor state constraint: pred(r) = 3xX’ r

» A Constrained Transition System (CTS) is a transition
constraint r s.t. |succ(r)|p C |pred(r)|p,
i.e. D = succ(r) = pred(r).

» A CTS r is finitary (resp. bounded) if for any s the set of
predecessors {3X'(r' A s[¥'/X])}i>1 is finite (bounded card.).

-
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Rjin Linear Arithmetic over the Reals
» Atomic constraints in Ry, are inequalities over linear
combination of variables

2xx+4xy <5H

» Such constraints admit for solutions sets of valuation which
are (open) polyhedra in the n-dimensional space, where n is
the number of variables

» The conjunction of constraints a A b admits for solutions the
intersection of the polyhedra solutions of a and b which is a
polyhedron.

.................



FO(Rji,) through Finite Unions of Polyhedra

Disjunction VA disjunction of conjunctions of linear arithmetic
constraints is a finite union of polyhedra and

(U;A) 1 (U; 8) = Ui(Ain 8)

Negation — The complement of a polyhedron is a union of
polyhedra
The complement of a union of polyhedra is the
intersection of the complements of each polyhedron

Existential 3 Projection to the subspace of the other dimensions
Universal V —3x(—c)

Equality = double inclusion UNV =UNV =0



Outline

Temporal Logic Constraints over R,
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First-Order Computation Tree Logic FOCTL(D)

CTL:= |c
oA | oV | =g |IxP | Vxd
| EX(0) | EF(¢) | EG(9)
| AX(0) [ AF(0) | AG(0)

hwﬂ.m winemets



First-Order Computation Tree Logic FOCTL(D)

CTL:= |c

| oA [ @V Y[ =9 | x| VX
| EX(0) | EF(¢) | EG(9)

| AX(9) [ AF(0) [ AG(9)

Example:

A<l
o0
xX=5

x=1 x=2 x=3 x=4

EG(x< V)7

.................



First-Order Computation Tree Logic FOCTL(D)

CTL:= |c

| oA [ @V Y[ =9 | x| VX
| EX(0) | EF(¢) | EG(9)

| AX(9) [ AF(0) [ AG(9)

Example:

m
.—>.—>Q.—>.
x=5

x=1 x=2 x=3 x=4

EG(x< V)7
(V>5)V(I<x<4AV>4NA<])

.................



FOCTL Constraint Solving Fixpoint Algorithm

» ex(s) = 3X(r A s[X'/X])
> ax(s) = VX'(r = s[x'/X])
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> ax(s) = VX'(r = s[x'/X])

» —(ex(s)) = VX' (—r Vv —s[X'/X])
= ax(—s)
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FOCTL Constraint Solving Fixpoint Algorithm

» ex(s) = 3X(r A s[X'/X])
> ax(s) = VX'(r = s[x'/X])

» —(ex(s)) = VX' (—r Vv —s[X'/X])
= ax(—s)

> ef(s) = ps’.s Vex(s'), af(s) = us’.s v ax(s’)
~(sVex(sVex(sV...)))
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FOCTL Constraint Solving Fixpoint Algorithm

» ex(s) = 3X(r A s[X'/X])
> ax(s) = VX'(r = s[x'/X])

> —(ex(s)) = VX' (—r V —s[x'/X])
= ax(—s)

> ef(s) = ps’.s Vex(s'), af(s) = us’.s v ax(s’)
~(sVex(sVex(sV...)))

> eg(s) =vs'.sANex(s), ag(s) = vs'.s A ax(s')
~(sAhex(sANex(sA...)))

.................



Complexity

For a bounded CTS r with maximum cardinality K for the set of
predecessor state constraints for any state constraint

the time complexity for deciding the D-satisfiability of ¢ in r with
an oracle constraint solver for D is

O(|¢|  K?)

(what is implemented in FOCTL(RRy;,))

O(l¢] * K)

for traces of length K without branching
(what is implemented in Biocham)
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Implementation of FOCTL(Ry;,)
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Implementation and Optimizations

» In SWI-Prolog and Parma Polyhedra Library PPL
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» Results are projected to pred(r) = 3x'(r): all intermediate
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» ax(s)=VX'(r = s[X'/X])
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Implementation and Optimizations

» In SWI-Prolog and Parma Polyhedra Library PPL

» Results are projected to pred(r) = 3x'(r): all intermediate
results (in particular for AX) can be intersected with pred(r).
» ax(s)=VX'(r = s[X'/X])
= —3X'=(—r V s[X'/X])
= —3X(r A —s[X'/X])
= —3X'(r A ex(s) A —s[X'/X])
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Implementation and Optimizations

» In SWI-Prolog and Parma Polyhedra Library PPL

» Results are projected to pred(r) = 3x'(r): all intermediate
results (in particular for AX) can be intersected with pred(r).
» ax(s)=VX'(r = s[X'/X])
= —3X'=(—r V s[X'/X])
= —3X(r A —s[X'/X])
= —3X'(r A ex(s) A —s[X'/X])

> eg(s) =vs' s A ex(s’)
=wvs'.s AN3IX'(r ANS'[X'/X])
=vs' X (r Ns AS'[X'/X])

> idem for ag(s)
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Optimizing representation

» Remove any subsumed P; from a union of polyhedra | J; P;,
But subsumption test quadratic in the size of the union...

» Convex hull computation and maintenance for subsumption
test between unions and for intersections.

» partitionning of discrete dimensions where the variable x
always appears in the form x = constant.

.................



Computation Results

Comparison to Delzanno and Podelski's CLP(R) implementation on

an Intel(R) Core(TM)2 CPU at 1.86GHz with 2GB of RAM.

bakery
bakery3
bakery4
ticket
bbufferl
bbuffer2
ubuffer
insertion
selection
mesi
matrix-mul 0
csm

CLP(R)
0.69
12.47
47.73
0.64
4.09
0.67
4.49
0.02
0.02
1.03
.02
3.81

FOCTL(Ryp)
2.29

3.15

421

2.76 (widening)
3.70

6.80

2.93 (widening)
4.43 (widening)
10.21

5.56

16.07

7.88
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» computes validity domains for free variables in the formula

» computes continuous satisfaction degree for the formula
» computes validity domains for parameters in transition system
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Conclusion

» FOCTL(RR};,) provides an expressive modeling and querying
language for infinite-state transition systems:
» computes validity domains for free variables in the formula

» computes continuous satisfaction degree for the formula
» computes validity domains for parameters in transition system

» Potential blow-up with large unions of polyhedra
» from V, -, =
» from fixpoint computation

Implementated in Prolog + PPL

» More efficient implementation for boxes and for non-branching
traces in Biocham: successful for parameter inference problems
in high dimension

» Hybrid computation domains 7 (FO)CTL(Ry;,,f,Graph,FD) 7,

.................
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