

Constraints for
(Parameterized) Verification

Giorgio Delzanno
DIBRIS, UNIGE

CP2CAV
ITAP, June 28, 2012

Model Checking
● Ingredients of Model Checking

● Operations on sets of states:
union, intersection, etc

pre/post operator:
transformation of sets of states

● Fixpoint computation:
pre* and post*

 (transitive closure of transition relation)
:

Safety: General Framework
● Verification of safety properties can be

reduced to reachability of bad states

: Initial
Bad

pre*(Bad)?

Symbolic Model Checking
● Ingredients of Symbolic Model Checking

● Symbolic operations on sets of states:
union, intersection, etc

● pre/post operations:
Symbolic transformation of sets of states

● Fixpoint computation:
pre* and post* symbolic computations

:

Symbolic Model Checking
● For finite state systems:

● BDDs/Boolean Formulas
● For reachability in infinite-state systems

● Regions of timed automata/Zones
[Alur-Dill, Abdulla et al.]

● Finite-state automata for pushdown systems
[Bouajjani-Esparza-Maler,...]

● …

:

Constraints 4 Safety
● Metaphor of constraints to generalize the

role of BDDs in symbolic model checking
● General requirements to obtain effective and

terminating procedures to check reachability
● Focus on constraints for systems composed

of an arbitrary but finite number of
component (Parameterized Verification)

 [Fribourg,Delzanno-Podelski,Abdulla-Jonsson,...]

:

Constraints 4 Safety

Consider a system with set of states Q,

A constraint system (C,<) is such that

(denotation) [c] is a subset of Q for c in C

(entailment) c<d implies [d] is contained into [c]

 [Abdulla-Cerans-Jonsson-Tsay,Abdulla-Jonsson] :

Finite sets of constraints

:

S << S'

<
<

<

S << S' iff for each d in S' there exists c in S
s.t. c<d

Ingredients for Reachability

● Representation of initial/bad states
(I and B)

● Decidable entailment test <
● Algorithm for computing predecessors, i.e.,

 Pre(S)=S' s.t. [S']=pre([S])
● Decidable test “I intersects S”

:

Naive Backward Reachability
1. R:=B; (set of constraints x bad states)

2. O:=R; (to check stability)

3. R:=(R union Pre(R));

4. If (O << R) return (I intersects R)

5. goto 1.

:

Some Optimizations
● If d in Pre(c) first check if c < d then compare with

the remaining constraints in Old
● Eliminate redundant constraints in O, i.e., all

constraints S that are subsumed by new constraints
(and constraints that generated S)

● Specific strategies for computing Pre (e.g. always
try to compute first the “more” general constraints
perhaps using a mix dfs and bfs)

● ...

:

Ensuring Termination
● (C,<) is a well quasi ordering (wqo) iff for

every sequence of constraints c1 c2 c3 …
there exist i < j s.t. c

i
< c

j

● If (C,<) is a wqo, then every chain
S

1
S

2
... (e.g. sets computed during

backward reachability) eventually stabilizes,
i.e., there exists k s.t. [S

k
]=[S

k+1
]

Note: it only works for chains

:

Petri Nets
● k counters, ++, –-, no zero-test

● Configurations are vectors of natural numbers
● m<m' if m(p) is less or equal than m'(p) for every

place p (wqo by Dickson's lemma)
● We can solve coverability:

● Given m and m', starting from m can we reach
m'' s.t. m'<m''? :

Termination is guaranteed!

The Role of Constraint Solvers
● Constraint solvers can be used as engine for:

● Computing Pre (renaming/projection)
● Check entailment
● Check intersection with initial states

● Observation:
● In general we need sets of constraints

(disjunctions) we may work with approximations
● Termination guarantees vs practical termination

:

Some examples
● ALV: BDD+Omega [UCSB]
● CLP-based model checking: clp(R) [MPI]
● HyTech, PHaver: Polyhedra Lib, Parma Polyhedra Lib

(PPL)
● Sharing Trees, Interval Sharing Trees [ULB]
● Combined representations TREX [Liafa]
● Automata for queues and integers [Liege]
● ….

:

Parameterized Verification
 (coined by Sistla?)

Parameterized Verification
● Goal: verify safety for systems composed of an

arbitrary but finite number of components
● Petri nets (abstractions of multithreaded

programs)
● Broadcast protocols (abstractions of cache

coherence protocols)
● Skeletons of concurrent/distributed algorithms
● Network protocols with different topologies

(flooding, routing)

:

Several Approaches
● Invariants and theorem proving
● Abstractions and finite models (cut off points)
● Regular model checking

(sets of configurations=automata)
● Forward/backward reachability

: Focus: constraint-based approach

Linearly Ordered Systems
● A system is defined as an (unbounded) array of

processes
● Each process is defined by an automata with guards
● Guards have the form:

● Exists a process to the left/right with state q
● All processes to the left/right have states in S

● We also consider rendez-vous and broadcast
● Examples: mutex and coherence protocols with

atomic guards

:

Semantics
● Configurations: words over a finite alphabet
● Transitions: word2word transformation
● E.g. with 4 processes

:

forall L

Semantics
● Configurations: words over a finite alphabet
● Transitions: word2word transformation
● E.g. with 4 processes

: :

broadcast
receive

Safety
● Mutual exclusion: Reachable configuration

contains at most one occurrence of state q
(=critical section)

● Bad states: all configurations with two or
more occurrences of state q

● Bad states are upward closed w.r.t. subword
ordering (they are generated by the word qq)
As a regular expression: Q*qQ*qQ*

:

Analysis
● The use of universal quantification makes the

model Turing complete
● Precise analysis --> no termination:

automata/regular expressions as symbolic
representations of sets of states

● Approximate analysis --> termination:
upward closed sets of words:

A Simple Abstraction
● We work with upward closed sets of words
● Finitely generated because subword is a wqo
● Constraint: a set of words B

[B]= {w'| w subword of w', w in B}
● Approximation:

Starting from an upward closed set S we
compute the minimal upward closed set
that contains pre(S)

 [Monotonic Abstraction: Abdulla, Rezine,....]

:

A Simple Abstraction
● Operationally the abstraction corresponds to

cancellation of processes that do not satisfy
the guard:

: :

forall R
4 processes

3 processes

Properties
● Backward reachability is guaranteed to

terminate (subword is a wqo)
● Simple but it verifies safety on most of the

examples of linearly ordered systems with
atomic guards in the literature of
parameterized systems

:

Spurious Traces
● It fails on

● Ordered systems where processes in certain
states act as sentinels (e.g. Szymanski's alg.)

● Unordered systems (counter systems) in which
there are variables that keep track of processes
(e.g. readers/writers)

● In this examples upward closed sets are too
rough :

Patch for Ordered Systems
● We need to keep information coming from

universal quantification
● We use r.e. (a1...an,P) = P* a1 P* … P*an P*

P is contained in Q, a1,...,an in P
● New wqo: (w,P) < (w',P') iff

 w subword of w', P' is contained into P
● Idea: when computing Pre for a rule with

guard forall S, (w,P) (w', P intersect S)→
 [Delzanno-Rezine]

:

Cegar for Unordered Systems
● For unordered systems we have defined an

automatic refinement of the ordering
● The refinement computes interpolants for a

pair of constraints in an abstract trace for
which there exists no concrete transition
connecting them

● Ordered case still open ...:

Infinite-state processes
● Each process has a finite number of local

variables ranging over integers
● Existential and universal global conditions

where we compare variables of different
processes

● Examples, e.g., Lamport's mutex (every
process has local integer variables)

● Goal: try to verify mutual exclusion for any
number of processes

:

Infinite-state processes
● Models = automata with data variables and

global guards

:

forall other. (other.x > x)
x,y x,y'

y'=0

Constraints?
We can use formulas over processes and
relation over data
 c = p(think,X),p(wait,Y),X<Y

Denotation: Upward closure w.r.t. multiset
inclusion of all possible instances of
p(think,X),p(wait,Y) obtained by taking
solutions of X<Y

 p(think,1),p(wait,2),p(think,2) belongs to [c]
:

Constraint solving?
● Satisfiability:

we check satisfiability of numerical
constraint

● Entailment:
● injection of processes,
● entailment of terms,
● unification, projection and constraint entailment

:

Entailment
 c = p(S,X),p(wait,Y),X<Y

 d = p(think,X'),p(wait,Y'),p(use,T'),X'<T',T'<Y'

● S subsumes think
● X<Y subsumes

 Exists T'. X'<T',T'<Y',X=X',Y=Y'
● [d] is contained into [c]

:

Non atomic Guards?
Non atomic guards are modelled via marking
subprotocols (keep track of checked
processes)

 forall other. other.X > self.X

becomes

 Pi: Send req(X) to every other process

 Pj: Receive req(V) from Pi;
 if X>V send(ack,Pi)

:

Constraints for non atomic guards
= graphs

 p(think,Y)

 p(wait,Y)

 p(think,Y)

 X<Y

:

req

req

ack
req

Abstractions and Termination
● We can still apply monotonic abstraction to

work with upward closed sets (i.e. represent
Pre as a finite sets of our constraints)

● Termination guarantees for special cases:
● Guards are gap-order constraints
● Each processes has at most 1 local variable

:

Gap order: x+c<y where c is a natural number

Implementation/results
● We have implemented ad hoc solvers in

CLP(R) (to exploit unification and constraint
solving) and PPL (Parma Polyhedra Lib) (to
combine different symbolic representations
like BDDs and constraints)

● We could verify safety for classical
algorithms like Lamport's dist mutex, and
Ricart Agrawala

● Non atomic Szymanski is still open

:

Other approaches
● Invariant checking with rich theories
● Forward + accelerations for counter

systems and well-structured transition
systems

● Static and dynamic cut-off points
(try 2,3,4 processes + generalization)

● SMT solvers as constraint engine
● Program Transformations
● Theorem proving (Finite model generators)

:

Current work
● Non atomic case use of graphs→
● Graph-based tools for network protocols

(routing, broadcast)
● We are studying the properties of models:

for which operations/classes of graphs we
can solve problems like coverability

:

Some other applications
● Parameterized verification for biological

systems
● Bioambients and P-systems (tree structures

and petri nets)
● Conformon P-systems (petri nets + energy)
● Kappa calculus (graph-based rules)

:

	Pagina 1
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21
	Pagina 22
	Pagina 23
	Pagina 24
	Pagina 25
	Pagina 26
	Pagina 27
	Pagina 28
	Pagina 29
	Pagina 30
	Pagina 31
	Pagina 32
	Pagina 33
	Pagina 34
	Pagina 35
	Pagina 36
	Pagina 37
	Pagina 38
	Pagina 39
	Pagina 40
	Pagina 41

