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Model Checking
● Ingredients of Model Checking

● Operations on sets of states: 
union, intersection, etc

pre/post operator: 
transformation of sets of states

● Fixpoint computation: 
pre* and post* 

    (transitive closure of transition relation)
: 



  

Safety: General Framework
● Verification of safety properties can be 

reduced to reachability of bad states

    

: Initial
Bad

pre*(Bad)?



  

Symbolic Model Checking
● Ingredients of Symbolic Model Checking

● Symbolic operations on sets of states: 
union, intersection, etc

● pre/post operations: 
Symbolic transformation of sets of states

● Fixpoint computation: 
pre* and post* symbolic computations 

    
: 



  

Symbolic Model Checking
● For finite state systems:

● BDDs/Boolean Formulas 
● For reachability in infinite-state systems 

● Regions of timed automata/Zones 
[Alur-Dill, Abdulla et al. ]

● Finite-state automata for pushdown systems 
[Bouajjani-Esparza-Maler,...]

● …
    

: 



  

Constraints 4 Safety
● Metaphor of constraints to generalize the 

role of BDDs in symbolic model checking
● General requirements to obtain effective and 

terminating procedures to check reachability 
● Focus on constraints for systems composed 

of an arbitrary but finite number of 
component (Parameterized Verification)

                [Fribourg,Delzanno-Podelski,Abdulla-Jonsson,...]

    

: 



  

Constraints 4 Safety

Consider a system with set of states Q, 

A constraint system (C,<) is such that

(denotation) [c] is a subset of Q for c in C

(entailment) c<d implies [d] is contained into [c]

                      [Abdulla-Cerans-Jonsson-Tsay,Abdulla-Jonsson]   : 



  

Finite sets of constraints

 

: 

S  <<  S'

<
<

<

S << S' iff for each d in S' there exists c in S 
s.t. c<d 



  

Ingredients for Reachability

● Representation of initial/bad states 
(I and B)

● Decidable entailment test < 
● Algorithm for computing predecessors, i.e.,    

            Pre(S)=S' s.t. [S']=pre([S])
● Decidable test “I intersects S” 

: 



  

Naive Backward Reachability 
1.  R:=B; (set of constraints x bad states)

2. O:=R; (to check stability)

3. R:=(R union Pre(R));

4. If (O << R) return (I intersects R)

5. goto 1.

: 



  

Some Optimizations
● If d in Pre(c) first check if c < d then compare with 

the remaining constraints in Old
● Eliminate redundant constraints in O, i.e., all 

constraints S that are subsumed by new constraints 
(and constraints that generated S)

● Specific strategies for computing Pre (e.g.  always 
try to compute first the “more” general constraints 
perhaps using a mix dfs and bfs)

● ...

: 



  

Ensuring Termination
●  (C,<) is a well quasi ordering (wqo) iff for 

every sequence of constraints  c1 c2 c3 …
there exist i < j s.t. c

i 
< c

j

● If (C,<) is a wqo, then every chain 
S

1 
S

2   
...  (e.g. sets computed during 

backward reachability) eventually stabilizes, 
i.e., there exists k s.t. [S

k
]=[S

k+1
] 

Note: it only works for chains 

: 



  

Petri Nets
● k counters, ++, –-, no zero-test

● Configurations are vectors of natural numbers
● m<m' if m(p) is less or equal than m'(p) for every 

place p (wqo by Dickson's lemma)
● We can solve coverability:

● Given m and m', starting from m can we reach 
m'' s.t. m'<m''? : 

Termination is guaranteed!



  

The Role of Constraint Solvers
● Constraint solvers can be used as engine for:

● Computing Pre (renaming/projection)
● Check entailment
● Check intersection with initial states

● Observation: 
● In general we need sets of constraints 

(disjunctions) we may work with approximations
● Termination guarantees vs practical termination

: 



  

Some examples
● ALV: BDD+Omega [UCSB]
● CLP-based model checking: clp(R) [MPI]
● HyTech, PHaver: Polyhedra Lib, Parma Polyhedra Lib 

(PPL)
● Sharing Trees, Interval Sharing Trees [ULB] 
● Combined representations TREX [Liafa]
● Automata for queues and integers [Liege]
● ….

 

: 



  

Parameterized Verification
                (coined by Sistla?)



  

Parameterized Verification
● Goal: verify safety for systems composed of an 

arbitrary but finite number of components
● Petri nets (abstractions of multithreaded 

programs)
● Broadcast protocols (abstractions of cache 

coherence protocols)
● Skeletons of concurrent/distributed algorithms
● Network protocols with different topologies 

(flooding, routing)

: 



  

Several Approaches
● Invariants and theorem proving
● Abstractions and finite models (cut off points)
● Regular model checking 

(sets of configurations=automata)
● Forward/backward reachability

: Focus: constraint-based approach



  

Linearly Ordered Systems
● A system is defined as an (unbounded) array of 

processes
● Each process is defined by an automata with guards
● Guards have the form:

● Exists a process to the left/right with state q
● All processes to the left/right have states in S

● We also consider rendez-vous and broadcast
● Examples: mutex and coherence protocols with 

atomic guards

: 



  

Semantics
● Configurations: words over a finite alphabet
● Transitions: word2word transformation
● E.g. with 4 processes

: 

forall L 



  

Semantics
● Configurations: words over a finite alphabet
● Transitions: word2word transformation
● E.g. with 4 processes

: : 

broadcast
receive



  

Safety
● Mutual exclusion: Reachable configuration 

contains at most one occurrence of state q 
(=critical section) 

● Bad states: all configurations with two or 
more occurrences of state q

● Bad states are upward closed w.r.t. subword 
ordering (they are generated by the word qq) 
As a regular expression: Q*qQ*qQ*

: 



  

Analysis
● The use of universal quantification makes the 

model Turing complete
● Precise analysis --> no termination:  

automata/regular expressions as symbolic 
representations of sets of states

● Approximate analysis --> termination: 
upward closed sets of words: 



  

A Simple Abstraction
● We work with upward closed sets of words
● Finitely generated because subword is a wqo
● Constraint: a set of words B

[B]= {w'| w subword of w', w in B}
● Approximation:

Starting from an upward closed set S we 
compute the minimal upward closed set 
that contains pre(S) 

                      [Monotonic Abstraction: Abdulla, Rezine,....]

: 



  

A Simple Abstraction
● Operationally the abstraction corresponds to 

cancellation of processes that do not satisfy 
the guard:

: : 

forall R 
4 processes

3 processes



  

Properties
● Backward reachability is guaranteed to 

terminate (subword is a wqo)
● Simple but it verifies safety on most of the 

examples of linearly ordered systems with 
atomic guards in the literature of 
parameterized systems 

: 



  

Spurious Traces
● It fails on 

● Ordered systems where processes in certain 
states act as sentinels (e.g. Szymanski's alg.)

● Unordered systems (counter systems) in which 
there are variables that keep track of processes 
(e.g. readers/writers)

● In this examples upward closed sets are too 
rough : 



  

Patch for Ordered Systems
● We need to keep information coming from 

universal quantification 
● We use r.e. (a1...an,P) = P* a1 P* … P*an P* 

P is contained in Q, a1,...,an in P
● New wqo:  (w,P) < (w',P') iff 

    w subword of w', P' is contained into P
● Idea: when computing Pre for a rule with 

guard forall S, (w,P)  (w', P intersect S)→
                                       [Delzanno-Rezine] 

: 



  

Cegar for Unordered Systems
● For unordered systems we have defined an 

automatic refinement of the ordering 
● The refinement computes interpolants for a 

pair of constraints in an abstract trace for 
which there exists no concrete transition 
connecting them

● Ordered case still open ...: 



  

Infinite-state processes
● Each process has a finite number of local 

variables ranging over integers
● Existential and universal global conditions 

where we compare variables of different 
processes

● Examples, e.g., Lamport's mutex (every 
process has local integer variables) 

● Goal: try to verify mutual exclusion for any 
number of processes

: 



  

Infinite-state processes
● Models = automata with data variables and 

global guards

: 

forall other. (other.x > x)
x,y x,y'

y'=0



  

Constraints? 
We can use formulas over processes and 
relation over data
        c = p(think,X),p(wait,Y),X<Y

Denotation: Upward closure w.r.t. multiset 
inclusion of all possible instances of 
p(think,X),p(wait,Y) obtained by taking 
solutions of X<Y

   p(think,1),p(wait,2),p(think,2) belongs to [c]
: 



  

Constraint solving? 
● Satisfiability:  

we check satisfiability of numerical 
constraint

● Entailment: 
● injection of processes, 
● entailment of terms,
● unification, projection and constraint entailment

     

: 



  

Entailment 
     c = p(S,X),p(wait,Y),X<Y

 d = p(think,X'),p(wait,Y'),p(use,T'),X'<T',T'<Y'

●  S subsumes think
●  X<Y subsumes 

      Exists T'.  X'<T',T'<Y',X=X',Y=Y'
● [d] is contained into [c]

: 



  

Non atomic Guards? 
Non atomic guards are modelled via marking 
subprotocols (keep track of checked 
processes)

      forall other. other.X > self.X

becomes

     Pi: Send req(X) to every other process

     Pj: Receive req(V) from Pi;
          if X>V send(ack,Pi)

   

 

: 



  

Constraints for non atomic guards 
= graphs 

   

  p(think,Y) 

                                                 p(wait,Y)

            p(think,Y) 

                                              X<Y

   

 

: 

req

req

ack
req



  

Abstractions and Termination
● We can still apply monotonic abstraction to 

work with upward closed sets (i.e. represent 
Pre as a finite sets of our constraints) 

● Termination guarantees for special cases:
● Guards are gap-order constraints
● Each processes has at most 1 local variable

   

 

: 

Gap order: x+c<y  where c is a natural number



  

Implementation/results 
●  We have implemented ad hoc solvers in 

CLP(R) (to exploit unification and constraint 
solving) and PPL (Parma Polyhedra Lib) (to 
combine different symbolic representations 
like BDDs and constraints)

● We could verify safety for classical 
algorithms like Lamport's dist mutex, and 
Ricart Agrawala

● Non atomic Szymanski is still open 

   

 

: 



  

Other approaches  
● Invariant checking with rich theories
● Forward + accelerations for counter 

systems and well-structured transition 
systems

● Static and dynamic cut-off points 
(try 2,3,4 processes + generalization)

● SMT solvers as constraint engine
● Program Transformations
● Theorem proving (Finite model generators)

 

: 



  

Current work  
● Non atomic case  use of graphs→
● Graph-based tools for network protocols 

(routing, broadcast)
● We are studying the properties of models: 

for which operations/classes of graphs we 
can solve problems like coverability

 

: 



  

Some other applications  
● Parameterized verification for biological 

systems 
● Bioambients and P-systems (tree structures 

and petri nets)
● Conformon P-systems (petri nets + energy)
● Kappa calculus (graph-based rules)

: 
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