Programming with
Boolean Satisfaction

Michael Codish

Department of Computer Science
Ben Gurion University
Beer-Sheva , Israel

Joint work with: Vitaly Lagoon,
Amit Metodi & Peter Stuckey

CP meets CAV - 2012

I I'ts all about solving
° hard problems

Solving hard problems

(Programming)

Theory tells us
» Look for approximations
* Look for easier sub-classes

Practice tells us
* Apply heuristics
* Try to be clever

Theory also tells us
It is all equivalent to SAT

Solving hard problems
via SAT encodings

T e [
| TR
| |

Solving hard problems
via SAT encodings

_ o Ead

1@ |
= e

Example: encoding Sudoku

5]3 7 |
- - :3_1 = Celi:> /\one A
TTLE rows /\ iok) 1
T T 2L T 1T columns > . Xojr) A
6 2|5 |
4019 5 boxes --)
- — Uit clads . UL S
’ [A’r Iew
one(by,...,b,) = (b1 Vb
Xz’jk = cell (i,j)

contains value k

Example: solving Sudoku

e ‘ SAT Solver
solution Q

We Can Solve Also More

Interesting Problems
~ "‘ —— ’ BUT , Ther'e 0000000000000000

........!!!!!!!.
are also less sesesssssssssssn
. . 00000000 00000000
Interesting sesilesnescssess

X

X §

5 sgdesssisssseses
o “oses problems thatdsssssssssssssss
K4 . we cannol’ sssesssissssssss

00000 rvvewwwwYd

SOIV 0000000000000
Eternity II: 2 million $ challenge: 172 $
prize unclaimed priz laimed

onths ago !
(Steinbach & Posthoff)

We will always have
the phase transition

Interesting N
problem
Instances

pJey MmoH

Problem size

We seek better encodings so that our
preferred problem instances will be solvable

repetitive; generating Ia SAT enCOdlngs

millions of clauses

Solving hard problems
[redious; often

This was a great talk....

“and i have some
(a few years ago) | conclusions"

Pr(?\:ﬂld?m | encoding > CNF

I have been doing
this for the past
few years

<5uy\|os }os

Me: primarily for applications
' _-leco ing SAT ing . . .
Solution | A\ fecethat | 4 ceignm. of termination analysis

------J------

l_____________l

l.

-w-

uyqos 4bs

r --------
:Pr'ogramminglwi’rh Boolean
IT, Frogemmngpe
* _-7 Satisfaction

' Q. What makes a
Il (hard) [\y
e) programz="work better?

higher-level languages
(o°"

I Problem encoding> CNF

_\“\'\—L\Y\Q)
compilers & tools (p.e.)

Data Structures / algorithms

S" O“d“\g

W)

hardware &\“‘d@v

Q. What makes a

progrs &9 'rk better?
<@
Ao

unit propagation
/arc consistency

default value (1 or 0)
00

|

Choice of SAT solver o

clause / variable ordering

A
/
/
/
\

AN

hardware c A< S

Q. What makes a

progrs &9 'rk better?
<o
N

6’\’0@

higher-level languages . &<°
g guag N

compilers & tools (p e.)

A\
Data & 2R “\5 igorithms

hardware s S°

Outline

» Introduction:
» Solving hard problems via SAT J
» Focus on programming with SAT J
» The need for higher-level languages J

» Higher low-level Language

> (the basics for) A Compiler to CNF
» Example: Model Based Diagnosis

» Representing Finite Domain Integers
» Example: Magic Labels

» Conclusion

higher-level language ?

higher-level language

Finite Domain &

Boolean Constraints Subset of

FlatZinc

The compuler'

e e e ———————————ll e ————

|
: :
: :
: :
: :
: :
L !

Example: encoding Sudoku

new_int(X;,1,9)

new_int(Xg o, 1,9)
allDiff([Xyq,...,%10])

int_eq(lel, 5)
int_eq_(Xl,g, 3)

Constraint
Model

user > compiler >

Constraint
modeling> Model encoding

]
]
]
]
L

small & gives context for

The CNF per constraint is
the bits (word-level)

The CNF is large & we have no
context for the bits (bit-level)

user > compiler

1

: Constraint

i modeling> Model encodmg>
L_-__-__-__-__-__-__-__-_

[Tools such: SatELite, ReVivAl

Based on Unit Propagation and Resolution. j/

remove redundant variable X if the
CNF implies X=Y, X= -Y, X=0, X=1

[CryptoMiniSAT fries to add "xor clauses”]% -

simplificaﬁon

user > compiler >
 __F __F B B |

(il Il I D N N D B O e . | B B B B B B B | ----------‘
I : . I
: Constraint - I
| modeling Model [}ncodmg NF :
L---------- -------- I I I . l
[
apply constraint =
[simplification (partial o
evaluation [g—
/W <0

remove redundant variable X I smaller
if the Constraint implies I

XZY, X = _yl X:O’ X=1 l COHSTI“GIHT
L Model

bit-level techniques

el
4
a3

Equi-propagation is the process
of inferring equations implied
by a "few" cgnstraints.

-

o

such x can be
removed from all
constraints.

\

J

|

of the form X=L where L
is a constant or a literal:
X=Y, X=-Y, X=0, X=1

Implemented: complete / adhoc
equi-propagation

-

Constraint
Model

éimplification

smaller
Constraint
Model

=

Simplify

=

constraint simplification is
word-level (looking at the bits)

ConsTram’r Cons‘rram’r Constraint
(Cl (pl (CZ ‘-pZ an (pn)

CSP ’rechmques Boolean techniques
(partial evaluation) (equi-propagation)

Constraint | 1 Constraint Cons’rram‘r Constraint
(C1,¢P1) (szﬂpz) (Cs (P:-; (C (P)

Constraint
C3 Q3)

Equi-propagation for Optimized SAT
Encoding;

Amit Metodi, Michael Codish, Vitaly Lagoon
and Peter Stuckey; CP 2011

Outline

» Introduction:
» Solving hard problems via SAT J
» Focus on programming with SAT J
» The need for higher-level languages J

» Higher low-level Language J

» (the basics for) A Compiler to CNF J
» Example: Model Based Diagnosis

» Representing Finite Domain Integers

» Example: Magic Labels

» Conclusion

Example: Model Based Diagnosis

Obg
erva+;
FuII

_Ea}
Diagnoses:
{X1, X5}, {O; Ast, {A1,011}, ...
min-cardi nali’r)>

Modeling MBD: introduce health variables

sum([-Hy, -H,, -Hs, -H4, -H5 1) < K

L~ \

Modeling MBD: introduce health variables

green means
“healthy”

I~

sum([-Hy, -H,, -Hs, -Ha, -Hs 1) < 1

encoding to SAT is

straighforward

/ "8 \(\.\m

standard:
Smith 2005

Not competitive
with other MBD
tools

Simplify the encoding

—Eo

partial evaluation

gray means
"melted”

Simplify the encoding - T

—Eo

partial evaluation

gray means
"melted”

Simplify the encoding - T

H3

—Eo

partial evaluation

1 -H3 —
0

gray means
"melted”

Simplify the encoding - II

=P
N

dominator

claim: A minimal cardinality diagnosis will
always indicate at most one unhealthy
gate per "cone”. And wlog it is the "dominator”

Simplify the encoding - II

Simplify the encoding - II

No SAT solving;
Diagnostics (min-cardinality) found by:

preprocessing(cones)
partial evaluation
equi-propagation

Compiling Model-Based Diagnosis to
Boolean Satisfaction;

Amit Metodi, Roni Stern, Meir Kalech,
Michael Codish; AAAT 2012 (to appear)

very good experimental results.
overtakes all current MBD systems
finds (for the first time) minimal

cardinality diagnosis for the entire
standard benchmarks

Outline

» Introduction:
» Solving hard problems via SAT J
» Focus on programming with SAT J
» The need for higher-level languages J

» Higher low-level Language J

» (the basics for) A Compiler to CNF J
» Example: Model Based Diagnosis

» Representing Finite Domain Integers

» Example: Magic Labels

» Conclusion

Modeliﬁg%ini’re Domain CSP

representing numbers (integers)

Bmar'y Unqry
integer variable X integer variable X
with domain {O,...,d} with domain {O,...,d}
is represented in is represented in

b = O(log(d)) b= 0(d)
bits bits

~ /Order encoding

> .
Q&g}zgfw /‘(i > (X 2 l)
v S

(X=3)=[0,0,0,1,0,0] (X=3)=[111,0,0]

Why Order Encoding ?

v'good for representing ranges (Sugar)

) 4K 11 10} >]
Xsi 40 IEX <

v'good for arbitrary sets (Bee)

X ulv
b=c e:f:g @X%Z@u:?}

|a|bic|d|eifi§| X €1{0,1,3,4,7}

Why Order Encoding ?

v'Lots of equi-propagation

. (£$1,$27$3l+@1592;y3l=3)

Y Y

X Y

= —Ys NIy = —Ya N }

1
—
SRS
W
|
|
Ny
p—d

The Encoding to SAT needs NO
Clauses. It is obtained by unification

[order encoding

X
Y

[_y37 —Y2, _yl]
[yla Y2, 93]

v'Lots of equi-propagation

X =
Y =

Why Order Encoding ?

-

£$1;$275U3l+£y1792;y3l =3

Y

X

[_y39 —Y2, _yl]
[yla Y2, y?)]

Y

Y

)

Implementing Equi-propagation

1. Using BDD's.

Can be prohibitive for global constraints.
Complete
2. Ad-Hoc rules (per constraint type)

Fast, precise in practice
Incomplete
3. Using SAT (on small groups of constraints)

Not too slow

Complete

Ben-Gurion

Equi-propagation

Encoder

BEE compller

Constraint
Model

Constraint
Model

Cons’rram’r
(Cl, ;)

Example: Magic Labels (VMTL)

new_int(vy,1,8)...new_int(vy, 1, 8)
new_int(eir, 1,8)...new_int(ezq, 1, 8)

new_int(k, 14, 14)
allDiff(vy,vs,vs, vy, €12, €13, €23, €34)

k

U1 T €12 T €13
U2 T €12 T €23 k
v3 +e13+e3t+ey = kK
Vg T €34 k

simplifying sum constraints

int_plus(

N

14 times

/bound propagation ?

A & B take values {6,7,8)}
\

1, A5, A3, Ay, A5, Ag, A7, Ag),
1,Bs,Bs, Bs, Bs, Bg, B7, Bs],
1, .. ,1,0,0]

/

[is it a CSP thing?

|

{no. it is equi-propagation }

)

14 times

simplifying sum constraints

int_plus(

1, A5, A3, Ay, As, Ag, Ay, Ag),
1,Bo, B3, B4, Bs, Bg, B7, Bs|,
1 11,0,0]

N

14 times

-

binding :

B7 — -Ag, B8 — -A7)

[A77 A8]7 [_A8a _A'T]a

1nt-p 1,1,0,0]

int_plus(
:17 1: 17 17 17 17 AT) A8
:17 1a 19 13 17 17 B?a B8:
1, ,1,0,0]
14 ;:\irmes
)

h

~

back to the VMTL example

new_int(vy, 1,8) ... new_int(vy, 1, 8)
new_int(eis, 1,8) ... new_int(esq, 1, 8)

c
-
I

I
®
ok
V)
I

I
™
p—t
v

(V)
[@\@
IS WO
| |
| |
[V ()
w
1N)
|
|
f
[\ W)
Ao
|
|
&
|
\7:&:@;@

VMTL: Simplifying Constraints

(1) int_array_plus([Vs, Es], 14)
(2) alIDiff([V,,V,, Vs, Vs, Ey, By, Es, Ey

Lcould take

Vg = |1 1,Va7,Vas
values 6,7,8 _[7 S ’]

1.1.1.1
E4 — [17 17 17 17 17 17_V4,87_V4,7]

[2) allDiff([Vy,V,,Vs, Vs, Eq,Eo, Es, E4]))

could take
values 6,8

Example: Magic Labels (VMTL)

new_int(vy, 1,8) ... new_int(vy, 1, 8)
new_int(ei2,1,8)...new_int(esq, 1, 8) -
new_int(k, 14, 14) "

allDiff(vl, V2, V3, V4, €12, €13, €23, 634) ‘S%\f.

U1 T €12 T €13 = k
= Lk
k

V3 + €13 + €23 + €34
U4 T €34

55555

W

N-Queens

30|32/48| 1 |10{19|28
38|47\ 7 | 9 |18|27|29
46| 6 | 8 |17|26/35|37
5(14/16/25|34/36/45
13|15|24|33|42|44| 4
21|23/32(|41|43| 3 |12
22|31/40(|49| 2 |11|20

Magic Square

5|3 7

6 1/9|5

9|8 6

8 6 3

- 8 3 1

7 2 6

6 2|8
4(119 5
8 719

QCP / Sudoku

- . -= S _"
O oy
. P
| B)

Y -
®"
X

Graph Crossing

Nonograms

SCM/MCM

Protein
folding

System

Diagnostic

Compiling Finite Domain Constraints to
SAT with Bee (tool paper & release):

Amit Metodi and Michael Codish; ICLP 2012

Implementation

Currently we use CryptoMiniSAT (or MiniSAT)

The compiler is written in Prolog (SWI)
(equating Boolean variables using unification)

SAT, BDD and Adhoc rules to implement E.P.

Where now?

- applications

* implementation

 complete equi-propagation (on chunks)
* how to implement it
* how to decide where to apply it

Conclusions

New Emerging Paradigm where we program
with SAT (or SMT) solvers;

High"er-level (constraint based) language to aid in the
encoding lets us focus on the modeling

The notion of E.P. captures many standard CSP techniques
and more.

Making the CNF smaller is not the real goal.
It is more about restricting the search space by identifying
equalities that must hold

