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Its all about solving  

hard problems I. 



Solving hard problems 
(Programming)  

Problem 
(hard) 

Solution 

d
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ct
 

• Look for approximations 
• Look for easier sub-classes 

• Apply heuristics 
• Try to be clever 

Theory tells us 

Practice tells us 

Theory also tells us 

• It is all equivalent to SAT 



Solving hard problems 
via SAT encodings  
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decoding 
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hype! 



Solving hard problems 
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SAT solvers are 
getting stronger 
by the day 

Improved 
techniques 

Many success 
stories 

Emerging  tools like 
“Sugar”, “Bee”, and 
others 

hype! 



Example: encoding Sudoku 

        = cell (i,j)   
contains value k 

 
 
 

cells 

rows 

columns 

boxes 

“unit clauses” 

At least 

At most 

 



Example: solving  Sudoku 

 

 

 SAT  Solver 
 

 
solution 
 



We Can Solve Also More  
Interesting Problems 

But, there  
are also less 
interesting  

problems that 
we cannot 

solve 
Eternity II:  2 million $  
prize unclaimed 

17 challenge:            $  
prize unclaimed 

 3 months ago ! 
(Steinbach & Posthoff) 



We will always have  
the phase transition 

H
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Problem size 

We seek better encodings so that our 
preferred problem instances will be solvable 

interesting 
problem 
instances 



Solving hard problems 
via SAT encodings  
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CNF 

SAT ’ing 
Assignm. 

encoding 

decoding 
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t solving

 

hype! 

This was a great talk…. 

 (a few years ago) 

   I have been doing 
this for the past 
few years 

   Me: primarily for applications 
of termination analysis 

“and i have some 
conclusions” 

tedious; often 
repetitive;  generating 
millions of clauses 
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hype! 

Programming with Boolean 

Satisfaction (CP meets CAV 2012) 
II. 



Problem 
(hard) 

CNF encoding 

Programming with Boolean 

Satisfaction II. 

Q. What makes a  

program    work better? 

 higher-level languages 

Data Structures / algorithms 

compilers & tools (p.e.) 

hardware 



Q. What makes a  

program    work better? 

hardware 

unit propagation 
/arc consistency 

default value (1 or 0) 

clause / variable ordering 

Choice of SAT solver 



Q. What makes a  

program    work better? 

Data Structures / algorithms 

hardware 

compilers & tools (p.e.) 

 higher-level languages 



Outline  
 

 Introduction:  

 Solving hard problems via SAT 

 Focus on  programming with SAT 

 The need for higher-level languages 

 

 Higher low-level Language 

 (the basics for) A Compiler to CNF 

 Example: Model Based Diagnosis 

 Representing Finite Domain Integers 

 Example: Magic Labels 

 Conclusion 

 



Problem 
(hard) CNF encoding 

 higher-level language ? 

Problem 
(hard) CNF encoding 

Constraint 
Model modeling 



 higher-level language 

Problem 
(hard) CNF encoding 

Constraint 
Model modeling 

Finite Domain & 
Boolean Constraints 

The compiler 

Subset of 
FlatZinc 



Example: encoding Sudoku 

Problem 
(hard) CNF encoding 

Constraint 
Model modeling 



Problem 
(hard) CNF encoding 

Constraint 
Model modeling 

user compiler 

The CNF is large & we have no 
context for the bits  (bit-level) 

The CNF per constraint is 
small & gives context for 
the bits  (word-level) 



Problem 
(hard) CNF encoding 

Constraint 
Model modeling 

user compiler 

si
m
pl
if
ic
a
ti
on

 

smaller 

CNF 

Tools such: SatELite, ReVivAl 
Based on Unit Propagation and Resolution. 

remove redundant variable X if the 
CNF implies X=Y, X= -Y, X=0, X=1 

CryptoMiniSAT tries to add  “xor clauses” 



Problem 
(hard) CNF encoding 

Constraint 
Model modeling 

user compiler 
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smaller 

CNF 

apply constraint 
simplification (partial 

evaluation 

remove redundant variable X 
if the Constraint implies  
X=Y, X= -Y, X=0, X=1 

smaller 
Constraint 

Model 

even 
smaller 

CNF 
bit-level techniques 



of the form  X=L  where L 
is a constant or a literal: 
X=Y, X= -Y, X=0, X=1 

Constraint 
Model 
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smaller 
Constraint 

Model 

Equi-propagation is the process  
of inferring equations implied 
by a “few” constraints. 

Implemented: complete / adhoc 
equi-propagation 

such x can be 
removed from all 

constraints. 
 
 



   constraint simplification is 
word-level (looking at the bits) 

Constraint 
( C1, φ1 ) … M = 

Constraint 
( C1, φ1 ) 

Constraint 
( C’3, φ‘3 ) 

Constraint 
( C’n, φ’n ) … M’ = 

S
im

pl
if

y
 

CSP techniques 
(partial evaluation) 

Boolean techniques 
(equi-propagation) 

Constraint 
( C2, φ2 ) 

Constraint 
( C3, φ3 ) 

Constraint 
( Cn, φn ) 

Constraint 
( C2, φ2 ) 



Equi-propagation for Optimized SAT 
Encoding; 
 
Amit Metodi, Michael Codish, Vitaly Lagoon  
and Peter Stuckey;     CP 2011 
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 Introduction:  

 Solving hard problems via SAT 

 Focus on  programming with SAT 

 The need for higher-level languages 

 

 Higher low-level Language 

 (the basics for) A Compiler to CNF 

 Example: Model Based Diagnosis 

 Representing Finite Domain Integers 

 Example: Magic Labels 

 Conclusion 

 



1 
Diagnoses: 

A 
B 

C 

D 

E 

Z1 

Z2 

Z3 

1 

0 

0 0 
1 

Full Adder 

Example: Model Based Diagnosis 

min-cardinality 
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 Modeling MBD: introduce health variables 

H1 
H2 

H3 

H4 

H5 

sum( [ -H1, -H2, -H3, -H4, -H5 ] ) ≤ K 

H 

-H 
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 Modeling MBD: introduce health variables 

H1 
H2 

H3 

H4 

H5 

sum( [ -H1, -H2, -H3, -H4, -H5 ] ) ≤ 1 

green means 

“healthy” 

encoding to SAT is 
straighforward 

standard:  
    Smith 2005 

Not competitive 
with other MBD  
tools 
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 Simplify the encoding 

H1 
H2 

H3 

H4 

H5 

H3 

1 

0 

1 

0 

0 
1 

0 

-H3 

gray means 

"melted” 

Z2 

partial evaluation 

equi-propagation 
Z2=-H3 

A1 

-H3 
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 Simplify the encoding - I 
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partial evaluation 

equi-propagation 
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H1 
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 Simplify the encoding - I 
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Z2 

partial evaluation 

equi-propagation 
Z2=-H 

A1 

-H3 
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 Simplify the encoding - II 

H1 
H2 

H3 

H4 

H5 

-H3 

H1 

claim:  A minimal cardinality diagnosis will 
always indicate at most one unhealthy 
gate per “cone”.  And wlog it is the “dominator” 

dominator 
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 Simplify the encoding - II 

H1 
H2 

H3 

H4 

H5 

-H3=0 

H1 

green means 

“healthy” 

sum( [ -H1, -H2, 0, 0, -H5 ] ) ≤ K 
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 Simplify the encoding - II 

H1 
H2 

H3 

H4 

H5 

-H3=0 

H1 

sum( [ -H1, -H2, -H5 ] ) ≤ K 

H1 H1=-H5 

sum( [ -H1, -H2, H1 ] ) ≤ K 

H1=H2 

sum( [ -H1, -H1, H1 ] ) ≤ K 

No SAT solving; 
Diagnostics (min-cardinality) found by: 
  
   preprocessing(cones) 
   partial evaluation 
   equi-propagation 



Compiling Model-Based Diagnosis to 
Boolean Satisfaction;  
 
Amit Metodi, Roni Stern,  Meir Kalech,  
Michael Codish;   AAAI 2012 (to appear) 

very good experimental results. 
 
overtakes all current MBD systems 
 
finds (for the first time) minimal 
cardinality diagnosis for the entire 
standard benchmarks 



Outline  
 

 Introduction:  

 Solving hard problems via SAT 

 Focus on  programming with SAT 

 The need for higher-level languages 

 

 Higher low-level Language 

 (the basics for) A Compiler to CNF 

 Example: Model Based Diagnosis 

 Representing Finite Domain Integers 

 Example: Magic Labels 

 Conclusion 

 



Modeling   Finite Domain CSP 
 representing numbers (integers) 

Binary 
 

Unary 
 

Order encoding 
 xi ↔ (X ≥ i) 
 
(X = 3) = [1,1,1,0,0] 

Direct encoding 
 xi ↔ (X = i) 
 
(X = 3) = [0,0,0,1,0,0] 

integer variable X 
with domain {0,…,d} 
is represented in  
 
bits 

integer variable X 
with domain {0,…,d} 
is represented in  
 
bits 



Why Order Encoding ? 
 

X 
i j X ≥ i  X < j  
1 0 

 good for representing ranges (Sugar) 

X u v 

i 

 good for arbitrary sets (Bee) 

a b c d e f g 

b=c e=f=g 



order encoding 

Why Order Encoding ? 
  Lots of equi-propagation 

The Encoding to SAT needs NO 
Clauses. It is obtained by unification 



Why Order Encoding ? 
  Lots of equi-propagation 



Implementing Equi-propagation 

1. Using BDD’s.   

• Can be prohibitive for global constraints. 

• Complete 

2. Ad-Hoc rules (per constraint type) 

• Fast, precise in practice 

• Incomplete 

3. Using SAT (on small groups of constraints) 

• Not  too  slow 

• Complete 



Ben-Gurion 

Equi-propagation 

Encoder 

Problem 
(hard) CNF encoding 

Constraint 
Model modeling 

BEE compiler 



CNF Constraint 
Model 

encoding 

bit-blasting 

constraint 
simplification 

choice of representation 
(default is order encoding) 

Constraint 
( C1, φ1 ) 

partial evaluation 
equi-propagation 
decomposition 

standard techniques 
(but encoding technique 
may differ after 
simplification) 



 Example: Magic Labels (VMTL) 

v1 v2 

v3 

v4 

e12 

e23 e13 

e34 

v1 v2 

v3 

v4 

7 

2 3 

8 

4 5 

1 

6 



 simplifying sum constraints 

bound propagation ? 
 
A & B take values {6,7,8} 

is it a CSP thing? 
 

no. it is equi-propagation 



 simplifying sum constraints 

e.p. 

p.e. 

e.p
. 



 back to the VMTL example 

v1 v2 

v3 

v4 

e12 

e23 e13 

e34 

v1 v2 

v3 

v4 

7 

2 3 

8 

4 5 

1 

6 



could take 
values 6,8 

could take 
values 6,7,8 

 VMTL: Simplifying Constraints 



 Example: Magic Labels (VMTL) 

909 clauses 

136 Bits 

298 clauses 

49 Bits 



Kakuro 

QCP / Sudoku 

BIBD 

Nonograms 

Graph Crossing 

N-Queens 

Magic Square 

MAS 

SCM / MCM 

System 

Diagnostic 

Protein 

folding 



Compiling Finite Domain Constraints to  
SAT  with Bee  (tool paper & release); 
 
Amit Metodi and Michael Codish;  ICLP 2012 



Implementation 

Currently we use CryptoMiniSAT (or MiniSAT) 
 
The compiler is written in Prolog  (SWI) 
(equating Boolean variables using unification) 
 
SAT, BDD  and Adhoc rules to implement E.P. 



Where now? 

• applications  
• implementation 
• complete equi-propagation (on chunks) 

• how to implement it 
• how to decide where to apply it 

 



Conclusions 

New Emerging Paradigm where we program  
with SAT (or SMT) solvers; 
 
High”er-level (constraint based) language to aid in the  
encoding lets us focus on the modeling 
 
The notion of E.P. captures many standard CSP techniques 
and more.  
 
Making the CNF smaller is not the real goal; 
It is more about restricting the search space by identifying  
equalities that must hold 
 
 


