

Programming with
Boolean Satisfaction

Michael Codish

Department of Computer Science

Ben Gurion University
Beer-Sheva , Israel

 CP meets CAV - 2012

Joint work with: Vitaly Lagoon,
 Amit Metodi & Peter Stuckey

Its all about solving

hard problems I.

Solving hard problems
(Programming)

Problem
(hard)

Solution

d
ire

ct

• Look for approximations
• Look for easier sub-classes

• Apply heuristics
• Try to be clever

Theory tells us

Practice tells us

Theory also tells us

• It is all equivalent to SAT

Solving hard problems
via SAT encodings

Problem
(hard)

Solution

d
ire

ct

CNF

SAT ’ing
Assignment

encoding

decoding

sa
t solving

hype!

Solving hard problems
via SAT encodings

Problem
(hard)

Solution

d
ire

ct

CNF

SAT ’ing
Assignm.

encoding

decoding

sa
t solving

SAT solvers are
getting stronger
by the day

Improved
techniques

Many success
stories

Emerging tools like
“Sugar”, “Bee”, and
others

hype!

Example: encoding Sudoku

 = cell (i,j)
contains value k

cells

rows

columns

boxes

“unit clauses”

At least

At most



Example: solving Sudoku



 SAT Solver

solution

We Can Solve Also More
Interesting Problems

But, there
are also less
interesting

problems that
we cannot

solve
Eternity II: 2 million $
prize unclaimed

17 challenge: $
prize unclaimed

 3 months ago !
(Steinbach & Posthoff)

We will always have
the phase transition

H
o

w
 h

a
rd

Problem size

We seek better encodings so that our
preferred problem instances will be solvable

interesting
problem
instances

Solving hard problems
via SAT encodings

Problem
(hard)

Solution

d
ire

ct

CNF

SAT ’ing
Assignm.

encoding

decoding

sa
t solving

hype!

This was a great talk….

 (a few years ago)

 I have been doing
this for the past
few years

 Me: primarily for applications
of termination analysis

“and i have some
conclusions”

tedious; often
repetitive; generating
millions of clauses

Problem
(hard)

Solution

d
ire

ct

CNF

SAT ’ing
Assignm.

encoding

decoding

sa
t solving

hype!

Programming with Boolean

Satisfaction (CP meets CAV 2012)
II.

Problem
(hard)

CNF encoding

Programming with Boolean

Satisfaction II.

Q. What makes a

program work better?

 higher-level languages

Data Structures / algorithms

compilers & tools (p.e.)

hardware

Q. What makes a

program work better?

hardware

unit propagation
/arc consistency

default value (1 or 0)

clause / variable ordering

Choice of SAT solver

Q. What makes a

program work better?

Data Structures / algorithms

hardware

compilers & tools (p.e.)

 higher-level languages

Outline

 Introduction:

 Solving hard problems via SAT

 Focus on programming with SAT

 The need for higher-level languages

 Higher low-level Language

 (the basics for) A Compiler to CNF

 Example: Model Based Diagnosis

 Representing Finite Domain Integers

 Example: Magic Labels

 Conclusion

Problem
(hard) CNF encoding

 higher-level language ?

Problem
(hard) CNF encoding

Constraint
Model modeling

 higher-level language

Problem
(hard) CNF encoding

Constraint
Model modeling

Finite Domain &
Boolean Constraints

The compiler

Subset of
FlatZinc

Example: encoding Sudoku

Problem
(hard) CNF encoding

Constraint
Model modeling

Problem
(hard) CNF encoding

Constraint
Model modeling

user compiler

The CNF is large & we have no
context for the bits (bit-level)

The CNF per constraint is
small & gives context for
the bits (word-level)

Problem
(hard) CNF encoding

Constraint
Model modeling

user compiler

si
m
pl
if
ic
a
ti
on

smaller

CNF

Tools such: SatELite, ReVivAl
Based on Unit Propagation and Resolution.

remove redundant variable X if the
CNF implies X=Y, X= -Y, X=0, X=1

CryptoMiniSAT tries to add “xor clauses”

Problem
(hard) CNF encoding

Constraint
Model modeling

user compiler

si
m
pl
if
ic
a
ti
on

smaller

CNF

apply constraint
simplification (partial

evaluation

remove redundant variable X
if the Constraint implies
X=Y, X= -Y, X=0, X=1

smaller
Constraint

Model

even
smaller

CNF
bit-level techniques

of the form X=L where L
is a constant or a literal:
X=Y, X= -Y, X=0, X=1

Constraint
Model

si
m
pl
if
ic
a
ti
on

smaller
Constraint

Model

Equi-propagation is the process
of inferring equations implied
by a “few” constraints.

Implemented: complete / adhoc
equi-propagation

such x can be
removed from all

constraints.

 constraint simplification is
word-level (looking at the bits)

Constraint
(C1, φ1) … M =

Constraint
(C1, φ1)

Constraint
(C’3, φ‘3)

Constraint
(C’n, φ’n) … M’ =

S
im

pl
if

y

CSP techniques
(partial evaluation)

Boolean techniques
(equi-propagation)

Constraint
(C2, φ2)

Constraint
(C3, φ3)

Constraint
(Cn, φn)

Constraint
(C2, φ2)

Equi-propagation for Optimized SAT
Encoding;

Amit Metodi, Michael Codish, Vitaly Lagoon
and Peter Stuckey; CP 2011

Outline

 Introduction:

 Solving hard problems via SAT

 Focus on programming with SAT

 The need for higher-level languages

 Higher low-level Language

 (the basics for) A Compiler to CNF

 Example: Model Based Diagnosis

 Representing Finite Domain Integers

 Example: Magic Labels

 Conclusion

1
Diagnoses:

A
B

C

D

E

Z1

Z2

Z3

1

0

0 0
1

Full Adder

Example: Model Based Diagnosis

min-cardinality

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z1

Z2

Z3

0 0
1

 Modeling MBD: introduce health variables

H1
H2

H3

H4

H5

sum([-H1, -H2, -H3, -H4, -H5]) ≤ K

H

-H

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z1

Z2

Z3

0 0
1

 Modeling MBD: introduce health variables

H1
H2

H3

H4

H5

sum([-H1, -H2, -H3, -H4, -H5]) ≤ 1

green means

“healthy”

encoding to SAT is
straighforward

standard:
 Smith 2005

Not competitive
with other MBD
tools

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z1

Z2

Z3

0 0
1

 Simplify the encoding

H1
H2

H3

H4

H5

H3

1

0

1

0

0
1

0

-H3

gray means

"melted”

Z2

partial evaluation

equi-propagation
Z2=-H3

A1

-H3

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z3

0 0
1

 Simplify the encoding - I

H1
H2

H3

H4

H5

H3

1

0

1

0

0
1

0

-H3

gray means

"melted”

Z2

partial evaluation

equi-propagation
Z2=-H

A1

-H3

-H3

H1

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z3

0 0
1

 Simplify the encoding - I

H1
H2

H3

H4

H5

H3

1

0

1

0

0
1

0

-H3

gray means

"melted”

Z2

partial evaluation

equi-propagation
Z2=-H

A1

-H3

-H3

H1

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z3

0 0
1

 Simplify the encoding - II

H1
H2

H3

H4

H5

-H3

H1

claim: A minimal cardinality diagnosis will
always indicate at most one unhealthy
gate per “cone”. And wlog it is the “dominator”

dominator

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

Z3

0 0
1

 Simplify the encoding - II

H1
H2

H3

H4

H5

-H3=0

H1

green means

“healthy”

sum([-H1, -H2, 0, 0, -H5]) ≤ K

1

0

A
B

C

D

E

X1
X2

A2

A1
O1

0 0
1

 Simplify the encoding - II

H1
H2

H3

H4

H5

-H3=0

H1

sum([-H1, -H2, -H5]) ≤ K

H1 H1=-H5

sum([-H1, -H2, H1]) ≤ K

H1=H2

sum([-H1, -H1, H1]) ≤ K

No SAT solving;
Diagnostics (min-cardinality) found by:

 preprocessing(cones)
 partial evaluation
 equi-propagation

Compiling Model-Based Diagnosis to
Boolean Satisfaction;

Amit Metodi, Roni Stern, Meir Kalech,
Michael Codish; AAAI 2012 (to appear)

very good experimental results.

overtakes all current MBD systems

finds (for the first time) minimal
cardinality diagnosis for the entire
standard benchmarks

Outline

 Introduction:

 Solving hard problems via SAT

 Focus on programming with SAT

 The need for higher-level languages

 Higher low-level Language

 (the basics for) A Compiler to CNF

 Example: Model Based Diagnosis

 Representing Finite Domain Integers

 Example: Magic Labels

 Conclusion

Modeling Finite Domain CSP
 representing numbers (integers)

Binary

Unary

Order encoding
 xi ↔ (X ≥ i)

(X = 3) = [1,1,1,0,0]

Direct encoding
 xi ↔ (X = i)

(X = 3) = [0,0,0,1,0,0]

integer variable X
with domain {0,…,d}
is represented in

bits

integer variable X
with domain {0,…,d}
is represented in

bits

Why Order Encoding ?

X
i j X ≥ i X < j
1 0

 good for representing ranges (Sugar)

X u v

i

 good for arbitrary sets (Bee)

a b c d e f g

b=c e=f=g

order encoding

Why Order Encoding ?
  Lots of equi-propagation

The Encoding to SAT needs NO
Clauses. It is obtained by unification

Why Order Encoding ?
  Lots of equi-propagation

Implementing Equi-propagation

1. Using BDD’s.

• Can be prohibitive for global constraints.

• Complete

2. Ad-Hoc rules (per constraint type)

• Fast, precise in practice

• Incomplete

3. Using SAT (on small groups of constraints)

• Not too slow

• Complete

Ben-Gurion

Equi-propagation

Encoder

Problem
(hard) CNF encoding

Constraint
Model modeling

BEE compiler

CNF Constraint
Model

encoding

bit-blasting

constraint
simplification

choice of representation
(default is order encoding)

Constraint
(C1, φ1)

partial evaluation
equi-propagation
decomposition

standard techniques
(but encoding technique
may differ after
simplification)

 Example: Magic Labels (VMTL)

v1 v2

v3

v4

e12

e23 e13

e34

v1 v2

v3

v4

7

2 3

8

4 5

1

6

 simplifying sum constraints

bound propagation ?

A & B take values {6,7,8}

is it a CSP thing?

no. it is equi-propagation

 simplifying sum constraints

e.p.

p.e.

e.p
.

 back to the VMTL example

v1 v2

v3

v4

e12

e23 e13

e34

v1 v2

v3

v4

7

2 3

8

4 5

1

6

could take
values 6,8

could take
values 6,7,8

 VMTL: Simplifying Constraints

 Example: Magic Labels (VMTL)

909 clauses

136 Bits

298 clauses

49 Bits

Kakuro

QCP / Sudoku

BIBD

Nonograms

Graph Crossing

N-Queens

Magic Square

MAS

SCM / MCM

System

Diagnostic

Protein

folding

Compiling Finite Domain Constraints to
SAT with Bee (tool paper & release);

Amit Metodi and Michael Codish; ICLP 2012

Implementation

Currently we use CryptoMiniSAT (or MiniSAT)

The compiler is written in Prolog (SWI)
(equating Boolean variables using unification)

SAT, BDD and Adhoc rules to implement E.P.

Where now?

• applications
• implementation
• complete equi-propagation (on chunks)

• how to implement it
• how to decide where to apply it

Conclusions

New Emerging Paradigm where we program
with SAT (or SMT) solvers;

High”er-level (constraint based) language to aid in the
encoding lets us focus on the modeling

The notion of E.P. captures many standard CSP techniques
and more.

Making the CNF smaller is not the real goal;
It is more about restricting the search space by identifying
equalities that must hold

