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Model Checking

What is the problem ?

System/Program → Model (state machine)

Specification/Property = Set of behaviors

Specification → Formula (temporal logic)

Problem: Model satisfies Formula

Issues:

What kind of models for what kind of systems ?

What kind of logics for what kind of properties ?

Decidability ? Complexity ?

Efficiency, scalability ?

Under/Upper approximations ?
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Models = Various Classes of Automata

After some abstraction ...

Finite-state automata
Hardware, communication protocols, etc.

FSA + stack = pushdown systems

Boolean procedural programs

FSA + clocks = timed automata

Real-time systems

FSA + counters = counter automata, vector addition syst. (Petri nets)

Mutual exclusion protocols, cache coherence protocols,
device drivers, etc.

FSA + fifo queues = fifo channel automata

Communication protocols, distributed systems, etc.
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Properties: Behaviors

A behavioral property talks about (infinite) computations.

Safety / Invariance properties

Init ⇒ �Safe

Termination / Liveness properties

�Init ⇒ ♦Termination

�Request ⇒ ♦Response

�♦Query ⇒ �♦Grant

Specification languages: Temporal Logics (and others ...)

LTL [Pnueli 77], CTL [Clarke, Emerson 82], ...
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Properties: States

State properties talks about configurations and relations between
configurations (e.g., Input and Ouput of a procedure).

Specifying states/configurations: FO logic over data domains

Data domain D (integers, reals, words, terms, ...)

Program variables X = {x1, . . . , xn} over D

Specification logic: FO(D,Op,Rel) for some set of operations Op
and set of relations Rel .

Example: Presburger arithmetic (N, {0, 1,+}, {≤}).

Specifying a set of states: A formula f (X )

Specifying a relation between states: A formula R(X ,X ′)

Programs are annotated with assumptions and assertions (about the
set of states at particular control locations)
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Checking Safety Properties

Init ⇒ �Safe

Find and auxiliary inductive invariant Inv :

Init ⇒ Inv

Inv ⇒ Safe

post(Inv) ⇒ Inv

or alternatively
Inv ⇒ ¬pre(¬Inv)

Reachability analysis / Synthesis of strongest inductive invariant:

post∗(Init)⇒ Safe

Issues:

Representation of sets of configurations, deciding entailment,
compute post/pre-images, compute reachability sets.
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Models = Finite-State Automata

Reachability is (obviously) decidable

Model checking against temporal logics is also decidable
I Reducible to reachability queries and cycle detection problems.
I CTL : |Model | · |Formula|
I LTL : |Model | · Exp(|Formula|)

F Automata-based approach [Vardi, Wolper 96]
F Associate with a formula φ and automaton Aφ s.t. L(Aφ) = [[φ]]
F Check emptiness of L(M) ∩ L(A¬φ)

Main Problem: State-space explosion !!

Boolean variables: 2#Variables states

Concurrent systems: 2#States global states
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Partial-Order Techniques

Asynchrony ⇒ a huge number of interleavings

Several interleaving can be undistinguishable

⇒ Consider only one representative of all equivalent interleavings

Godefroid, Wolper, Valmari, Peled ... 90’s

Tools: SPIN [Holzmann, 8+,9-] ...

An alternative approach: Petri nets (compact representation of
concurrent systems)

Solve reachability/MC queries on finite unfoldings of Petri nets

Mc Millan, Esparza, ...
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Symbolic Analysis
Boolean variables X = {x1, . . . , xn}
Set of states = a boolean formula f (x1, . . . xn)

Transition relation = a boolean formula T (x1, . . . xn, x
′
1, . . . x

′
n)

post∗(S)/pre∗(S): Compute F0,F1,F2, . . . until Fi+1 ⇒ Fi

F0 = fS(X )

Fi+1 = Xi ∨ post/pre(Fi )

Where
post(f ) = ∃Y . f (Y ) ∧ T (Y ,X )

pre(f ) = ∃Y . f (Y ) ∧ T (X ,Y )

Issue: Compact representation of boolean formulas ??

Mc Millan et al. 92 : Use Bryant’s Binary Decision Diagrams.
Tool: SMV.
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Efficient Representations: BDD’s

Fix an ordering between variables

Idea: Binary decision trees + sharing + eliminating redundant tests

Can be exponentially more concise than explicit representations

Canonical representations

Similar to deterministic (acyclic) finite state automata over the
alphabet {0, 1}
Efficient implementation: one single representation of each sub-dag in
the memory

Many efficient BDD packages are available.
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Size of the BDD’s

Let X = {x1, . . . , xn}. Consider the formula:

n∧
i=1

xi = yi

x1 < y1 < x2 < y2 < . . . < xn < yn.

Linear size representation:
Check successively xi = yi equalities

x1 < . . . < xn < y1 < . . . < yn.

Exponential size representation:
Must memorize values of all the xi ’s
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Bounded Model Checking

Biere, Clarke, ...

Fix a bound K .

Detect bugs using path of length at most K

Encode as a boolean formula and submit to a SAT solver.

Reachability:

Init(X0) ∧ T (X0,X1) ∧ · · · ∧ T (Xk−1,Xk) ∧
k∨

i=0

BAD(Xi )

Fair cycle detection:

Init(X0) ∧ T (X0,X1) ∧ · · · ∧ T (Xk−1,Xk) ∧
k∨

i=0

REP(Xi ) ∧ T (Xk ,Xi )

Performs better than BDD-based methods for bug detection.

Completeness: K ≤ the longest cycle-free path in the state graph
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Infinite-State Systems

Real-time systems

Programs with integer/real variables

Recursive procedure calls

Dynamic creation of threads/processes

Arrays, dynamic data structures

Question: How to reason about infinite state spaces ?

A. Bouajjani (LIAFA, UP7) Model Checking: An Overview June 25, 2012 13 / 36



Symbolic Reachability Analysis

Data domain D (integers, reals, words, terms, ...)

Variables X = {x1, . . . , xn} over D

Set of states = a formula f (X ) of FO(D,Op,Rel)

Transition relation = a formula T (X ,X ′) of FO(D,Op,Rel)

post∗(S)/pre∗(S): Compute F0,F1,F2, . . . until Fi+1 ⇒ Fi

F0 = fS(X )

Fi+1 = Xi ∨ post/pre(Fi )

Where
post(f ) = ∃Y . f (Y ) ∧ T (Y ,X )

pre(f ) = ∃Y . f (Y ) ∧ T (X ,Y )

Issue: Compact representations ? Termination ??!!
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Termination of Backward Analysis: Monotonic Systems

Abdulla et al., Finkel et al.

Well-quasi ordering � on states: ∀c0, c1, c2, . . . , ∃i < j , ci � cj

⇒ Each set has a finite number of minimals

⇒ Upward-closed sets are definable by their minimals

Monotonicity: � is a simulation relation

∀c1, c
′
1, c2.

(
(c1 −→ c ′1 and c1 � c2)⇒ ∃c ′2. c2 −→ c ′2 and c ′1 � c ′2

)
⇒ pre and pre∗ -images of �-upward closed sets are �-upward closed

Reachability of upward-closed sets (coverability) is decidable:

Given an UC U, the backward reachability analysis
terminates:
Collect iteratively all minimals of pre∗(U)
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Monotonic Systems: Examples

Vector addition systems with states (Petri nets)

I Operations: c := c + 1, c > 0/c := c − 1
I WQO: usual order on natural numbers

Lossy fifo channel systems

I Operations: send, receive to a channel + lossyness
I WQO: substring relation

Other examples

I Broadcast protocol
I Timed Petri nets
I etc
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Finite Bisimulations

S a set of states.

R ⊆ S × S is a bisimulation iff R is symmetrical and (s1, s2) ∈ R iff

∀a. s1
a−→ s ′1 ⇒ ∃s ′2. s2

a−→ s ′2 and (s ′1, s
′
2) ∈ R

Preserves all usual properties.

Symbolic minimal model generation (partition refinement algorithm)
[B., Fernandez, Halbwachs 90]

Ingredients: Pre-image, Intersection, Complementation

Finite bisimulation ⇒ Termination ⇒ Decidability of MC

Backward reachability analysis terminates.

Used in many contexts, e.g., timed systems [Alur, Halbwachs, ...],
hybrid systems [Henzinger et al., 9+]
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Timed Automata

Alur & Dill 90

FSA + real-valued clocks

Dynamic:

Time progress in control states +
Instantaneous jumps between states

Constraints on clocks:
Conjunctions of x ≤ c or x − y ≤ c, c is an integer constant.

Type of constraints:

Invariants associated with states + transition guards.

Clocks can be reseted on transitions.
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Regions

Let C be the maximal constant in the constraint of the automaton.
Let ~x = (x1, . . . , xn) ∈ R≥0, the equivalence class [~x ] is characterized by

Integer bounds: (bx1c, . . . , bxnc)
Partition according to the integer grid.

Time progress: (fract(xi1),#1, fract(xi2),#2, . . . , fract(xin))

Add diagonals.

where i1, . . . , in is a permutation of 1, . . . , n, and #i ∈ {<,=}.

Beyond C all bxic can be abstracted to one value (> C ).

Finite partition: bounded integer grid.

Finite Region Graph: Decidable MC

Exponential number of regions !!
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Symbolic Analysis of Timed Automata: Zones and DBM’s

Let x1, . . . , xn be the clocks of the automaton

Let x0 be an additional variable always equal to 0

Constraints:
n∧

i=0

xi − xj #(i ,j) c(i ,j)

DBM (Difference Bound Matrices):

M(i , j) = (#(i ,j), c(i ,j))

where #(i ,j) ∈ {≤, <} and c(i ,j) ∈ Z

Efficient representations for symbolic computations:
I Canonicity: Compute strongest bounds = shortest paths
I Emptiness: existence of a negative cycle
I Inclusion: ≤ — Intersection: min + can.
I Time progress: remove upper bounds + can.
I Reset: impose equality with x0 + can.

Tools: Uppaal, Kronos, ...
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Acceleration

Boigelot, Wolper, B., Abdulla, Finkel, Leroux, etc.

Let R be the transition relation of the system

Assume that R = R1 ∪ · · · ∪ Rn ∪ R ′

Assume we know how, given S , to compute R∗i (S), for each Ri

Accelerated computation of reachable states:

Compute R∗(S) = X0 ∪ X1 ∪ · · · where

X0 = S

Xi+1 = Xi ∪ R∗1 (Xi ) ∪ · · · ∪ R∗n(Xi ) ∪ T ′(Xi )

until Xi+1 ⊆ Xi

I R∗1 , . . . ,R
∗
n are meta-transitions

I Termination is not guaranteed in general, but exact computation,
I Can be used for under-approximate analysis.
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Counter Automata

Operations T (X ,X ′) : X ′ = AX + B

Is T n(X ,X ′) representable in Presburger arithmetic ?

No in general: T : x ′ = 2x , T n : x ′ = 2nx

Conditions on A : There is a finite number of Ak , for any k.

Example: A = Id , T n : X ′ = X + nB
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Abstract Analysis of Infinite-State Systems

Abstract interpretation [Cousot, Cousot, 77]

α = abstraction function, i.e., S ⊆ α(S).

Upper-approximate computation of the set of reachable states:
Compute the sequence X0 ∪ X1 ∪ · · · where

X0 = S

Xi+1 = Xi t α(post(Xi ))

until Xi+1 ⊆ Xi

Termination if no infinite increasing sequence of abstract sets
I α has a finite image
I α is the upward closure operation wrt a WQO
I t is a widening operator (extrapolation, jumps to the limit)
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Numerical Abstract Domains

Intervals
l ≤ x ≤ u

Octagons
l ≤ x ≤ u, l ≤ x − y ≤ u, l ≤ x + y ≤ u

Polyhedra
n∑

i=1

aixi ≤ b

...

Tools: e.g., APRON [Jeannet, Miné, 09]
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Non Numerical Domains

Shape analysis [Sagiv, Reps, Willems, 96] ...

Graphs abstracting heaps

Shapes + Data constraints

see for instance talk of Constantin Enea

I will talk later about something called Abstract Regular MC
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State-Space Partitioning

[Clarke, Grumberg, Long 92], [Bensalem, B., Loiseaux, Sifakis, 92]

Let M be a infinite-state model

Let ∼ be a partition of the set of states, and et [s] be the
∼-equivalence class of s.

M/∼ = quotient of M w.r.t. ∼.

M/ ∼ simulates M:

∀s. (M, s) v (M/∼, [s])

⇒ Preservation of universally path-quantified properties. (e.g.,
linear-time properties.)

e.g., if ∼ is bisimulation, then preservation of all properties.
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Predicate Abstraction

Graf & Saidi 97, ...

Let P = {P1, . . . ,Pn} be a finite set of predicates.

Let ∼P be the equivalence induced by P.

⇒ Consider M/∼P : finite abstract model.

Constructing the abstract model:
I A ∼P -class can be represented a boolean formula b,

I Given a bit vector b, let

γb =
∧

b(i)=1

Pi (X ) ∧
∧

b(j)=0

¬Pj(X )

I Given two formulas b and b′,

(b,b′) ∈ T/∼P iff ∃X ,X ′. γb(X ) ∧ γb′(X ′) ∧ T (X ,X ′)
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Counter-Example Guided Abstraction Refinement

Abstract counter-example

S0
t1−−→ S1

t2−−→ S2 . . .
tn−−→ Sn with Sn ∩ BAD 6= ∅

Compute

Xn = Sn ∩ BAD

Xk = Sk ∩ pre(Xk+1)

until
I either X0 6= ∅ : real counter-example
I or, there is i > 0 such that Xi = ∅ : Spurious counter-example

Si+1 \ Xi+1 and Xi+1 must be distinguished :
⇒ Add Xi+1 to the set of predicates
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Craig Interpolation

Let A and B be two formulas such as A ∧ B = false

An interpolant for (A,B) is a formula Â such that

A⇒ Â

Â ∧ B = false

Â refers to common variables of A and B.

Interpolants can be extracted from falsification proofs
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CEGAR using Interpolation

McMillan, Jhala, ...

Abstract counter-example

INIT t1−−→ S1
t2−−→ S2 . . .

tn−−→ Sn with Sn ∩ BAD 6= ∅

Check, using an SMT solver, satisfiability of

fINIT (X0) ∧ t1(X0,X1) ∧ t2(X1,X2) ∧ . . . tn(Xn−1,Xn) ∧ fBAD(Xn)

If satisfiable, then real counter-example

If not satisfiable, then for every i ∈ {1, . . . , n}, consider the
interpolant Ii of(

fINIT (X0) ∧ . . . ∧ ti (Xi−1,Xi ), ti (Xi ,Xi+1) ∧ . . . ∧ fBAD(Xn)
)

Add all the Ii ’s in the set of predicates.
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Procedural Programs: Recursive State Machines

N a set of nodes. Ent ⊆ N entry nodes, Exit ⊆ N exit nodes.

G a set of globals, and L a set of locals.

Transitions:

n
op−−→ n′ where op is an operation on globals and locals,

and n
call(P,en,`0)−−−−−−−−−→ n′

Semantics: RSM  Pushdown system

n
op−−→ n′  〈g , (n, `)〉−→〈g ′, (n′, `′)〉 where (g ′, n′) = op(g , n)

n
call(P,en,`0)−−−−−−−−−→ n′  〈g , (n, `)〉−→〈g , (en, `0)(n′, `)〉

〈g , (ex , `)〉−→〈g , ε〉
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Procedure Summarization

Compute ReachP ⊆ (Ent × G )× (Exit × G )

Needs the relations RP,Q ⊆ (Ent × G × L)× (N × G × L)

Relations defined inductively (based on program recursive schema)

Least fixpoint computation

Terminates if finite-state domain. BDD-based symbolic computation.

In general: Abstract summaries (abstract domains, widening).
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Automata-based Symbolic Approach
Let P be a pushdown system

Compute the set of backward/forward reachable configurations

A configuration is a word pa1a2 · · · an, p is a control state of the
PDS, and a1a2 · · · an is the stack content.

Use a finite-state automaton AC to represent a regular set of
configurations C .

For every regular set of configurations C , post∗(C ) and pre∗(C ) are
regular and effectively constructible.

Computing pre∗-image [B. Esparza, Maler 97]

AC has a state sp for each control state p of P

Compute a sequence of automata A0 = AC , A1, ...

〈p1, a〉 → 〈p2,w〉 a transition of P, if sp1
w−−→ q in Ai , then add

sp2
a−→ q to it.

Termination: fixed number of states.
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Regular Model Checking

Abdulla, B., Jonsson, Pnueli, Saksena, Touili, Hebermehl, Vojnar, ...

A configuration encoded as a word/tree

Set of configurations  finite-state automaton

An action is encoded as finite-state transducer (I/O automaton)

Reachability problem  

Given automata A and B, and a transducer T , check if

T ∗(A) ∩ B = ∅

Application to:

I Networks of processes: Configuration = sequence/tree of local states
I Counter automata: Encode integers as finite words over {0, 1}
I Dynamic linked structures: Encode heaps as word / trees
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RMC based verification

Generic techniques for computing (exactly/approximatively) T ∗(A) (or T ∗)

Acceleration techniques for some classes of regular relations

Exact abstractions on transducers for transitive closure computations

Abdulla, Nilsson, Jonsson, Saksena ... 0+

Abstractions on automata with counter-example guided refinement

B., Habermehl, Rogalewich, Vojnar 06

I Define equivalence relations on state of automata
I Example: Accept the same words of length ≤ k .
I Predicate abstraction + CEGAR: A predicate = automaton
I Applied to the analysis of complex heap-manipulating programs

Heaps  Tree + navigation expressions
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Challenges

Complex theories: structures + data constraints

Composition in procedure decisions (split according to various
domains, and combine)

Abstraction in procedure decisions (soundness + scalability)

Complex behavior (e.g., concurrency)

Probabilistic verification (how likely the model is correct)

Quantitative verification (measure the quality of the implementation)

Synthesis (program repair)
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