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Who are we?

� Verification Technologies Department (Simulation Based verification)

� Part of IBM Research

� Center of competence for verification technologies in IBM

� Over two decades of experience in development of verification 
technologies for simulation based verification

� Core level, System-level, Unit level
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The significance of functional verification

� Roughly 70% of the design effort (time, resources, …) is invested in 
functional verification

� Industry practice: verification == over 90% simulation based verification

� A design re-spin may cost
many millions of $

� Masks

� Person-month

� Time-to-market

� Typically 3-4 re-spins for 

complex designs (processors)

[ Source: Synopsys 2004

user survey ]
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Key Technologies for Processor Verification

� Genesys-Pro 

� State-of-the-art test generator for full processor and multi-processor 
verification 

� Used by all IBM processors and licensed to external companies

� Adaptable to any architecture

� Applied in Power, zArch , ARM, and others

� FPGen

� Dedicated generator focused on floating point verification

� XGen

� A test generator for verification of systems

� ThreadMill

� Post-Silicon and emulation exerciser 
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Content

� Part 1: GPro - Test generator for microprocessors

� Part 2: CSP characteristics and challenges

� Part 3: PRB – The new CSP approach
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Part 1

GPro:

Test generator for microprocessors 
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Genesys-Pro: Model-Based Test Generation

� Generic architecture-independent test generation engine

� External formal and declarative architecture description

� Behavioral simulator used to predict instruction execution results

� Graphical User Interface to define generation directives

Test GeneratorTest GeneratorTest Generator

Architectural Model &
Testing Knowledge

Architectural Model &
Testing Knowledge

Architectural
simulator

Architectural
simulatorGUIGUI

Test Program
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Resulting test case

Resource initialization

Instruction sequence

Predicted Results

INITIALIZATIONS: DATA MEMORY

D 06FFFFA4  4ADDEB16

INITIALIZATIONS: REGISTERS

R R5             050C4340               

R R6             09801460

INSTRUCTIONS

I 230DB4B4 46610FE7 * STRAL R6,[R15,-R6,ASR #0x02]

* VA=FEADAFA4 (New) RA=06FFFFA4

I 230DB4B8 B3E77FEA * BAL 0x030D538C //0x7FE7B3

* VA=030D538C (New) RA=4ECBC38C

I 4ECBC38C 0E50BDE7 * LDRAL R5,[R13,+R14]!

* VA=40BC6FA4 (Used) RA=06FFFFA4

RESULTS: REGISTERS

R R5             09801460               

R R6             09801460

RESULTS: DATA MEMORY

D 06FFFFA4  60148009
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Generation scheme – user view

1. Choose the next instruction to generate, according to:

� Test template definition (test’s specification)

2. Generate instruction 

� Initialize resources as required

3. Call reference model to simulate instruction

4. Repeat until all test template statements generated
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Random stimuli generator
System model:

� What’s valid

� What’s interesting

User requirements

Generate N tests

N distinct tests

� Valid, interesting

� Satisfy user requirements

Random stimuli generator

Constraint

Satisfaction

Problem

CSP Solver
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� Instruction as the basic building 
block

� Full control over instruction 
properties:

�Data, Address, Length,…

� A hierarchy of higher level 
statements

�Select: weighted random 
choice

�Repeat

�Sequence

GenesysPro system input: test template basics

Test template

Sequence

Repeat x10

Load word
Store 

half-word
Add

Target reg: {R3,R5} Addr: 0x12?? Source data: [-2 , 2]

Select

Weight: 70 Weight: 30
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Test template: testing knowledge and directives

� Directives as 'volume knobs' 
to control TK characteristics

� Testing knowledge also 
affects the test by default

� Directives present in the test 
template take precedence 

� Scope based influence

Test template

Sequence

Repeat x10Select

Store

half-word
Load word Add

Cache hit:20

Cache miss:80

Address 

Collision: 65%

Default TK
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Instruction model

== ++

load RA[disp] � RT

RegisterMemory

Instruction

Operands Format

Register Immediate

Address Operands

Address DataData

Object-oriented ontology language with a focus on constraint modeling
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The concept of generic testing knowledge

� A set of mechanisms that aim at improving test-case quality

� Capitalize on recurring concepts

� The basic mechanism: non-uniform random choice

� Bias towards ‘interesting’ areas

� Affects all generated test-cases

� But can be controlled by users

� Examples: 

� Resource collisions

� Translation table entry reuse

Space of valid tests

‘interesting’ areas
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Testing knowledge example - placement

� A storage partition is a contiguous piece of memory

�L2 cache line, page, word, half-word...

� Four types of events

Boundary

Crossing

Vicinity

Alignment
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Why CP?

� CP enables requests coming from different resources

� CP gives the option to constraint results

� CP solvers enable approximation of uniform coverage

� The microprocessor specification is written declaratively

� Easy translation into constraints

� non-linear constraints

� Mandatory and bias (not mandatory) requests
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Why CP?

Constraints originate from three sources

1.Validity of the stimuli: Constraints defined by the specification 

2.Verification task: Constraints defined by the user

3.Bias towards interesting tests: Soft constraints defined by domain experts

Effective Address: 0x0B274FAB_0DBC0000

Real Address: 0x0002FFC5_90A4D000

User: EA aligned to 64K
RA in some corner memory space

Expert knowledge: Reuse cache row

Validity: Complex EA to RA translation
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Not just IBM

� Constraint satisfaction is the basis for modern 
stimuli generation across the industry

� 42nd DAC:

�The largest conference of the EDA industry, 
6000 participants

�A full-day tutorial about constraint satisfaction for 
stimuli generation

� A typical industrial advertisement:

“ Constraint-Driven Test Generation
With Specman Elite's constraint-driven test 
generation, you can now automatically generate 
tests for functional verification. By specifying 
constraints, you can quickly and easily target the 
generator to create any test in your functional test 
plan …”
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Part 2

CSP characteristics and challenges

See also:

E. Bin, R. Emek, G. Shurek, and A. Ziv,  

Using constraint satisfaction formulations and 

solution techniques for random test program generation, 

IBM Systems Journal 41, 2002
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Random Solution

� Find many random, uniformly distributed, solutions of the same CSP

� Many different tests from the same template

� As opposed to one, all, or 'best' solution

� Motivation: Test different computation paths of the microprocessor

Requirement:

Solution:

� Uniform solution distribution is approximated by random variable
and value ordering

See also: Dechter et al., AAAI 2002
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Huge domains 

� The domain of many variables is 2128

� Example: address space
� In conjunction with arithmetic, bit-wise, and other types of constraints
� Representation and operations on sets becomes an issue

Requirement:

Solution:

� Inaccurate representation (over approximation)

� Using also bit-vectors representation
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Domain (set) representation example: bit-vectors

� All the addresses such that:

� addr = base + displacement : architectural

� addr[3:6] = 01x1 : cache line

� addr ϵ [0x20000000 : 0x10FFFFF] : memory space 

� 'Masks' (bits vector) representation:

� 0b01x1 � 0b0101, 0b0111

� Exponential explosion

� 01010101 + 0x0x0x0x 
{10101010, 01101010, 10011010, 01011010, 
10100110, 01100110, ..., 10010101}
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Hierarchy of constraints

� Different priority of constraints

� Mandatory: test case validity

� Non-mandatory: makes the test 'interesting‘

� Multiple levels of soft constraints – according to level of interest

Requirement:

Solution:

� Modeler specifies the constraint priority

� In each MAC, Mandatory constraints propagate first. Then one bias, 
mandatory constraints again, …

Mandatory constraints
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Coupled CSPs

� Cannot generate all instructions simultaneously

� Instructions’ semantics is not modeled

� Problem is too large

� Constraint propagation computationally hard

A challenge:

A Partial Solution:

� Instructions are generated one at a time, and then executed by an 
ISS (Instruction Set Simulator)

� But … Instruction 3 may require a specific configuration

Generate Initial processor state

ISS

ISS

Generate instruction 1

ISS

Generate instruction 2

Generate Initial processor state
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Conditional CSP

� Parts of the problem’s variables and constraints should not exist in the 
solution

A challenge:

A Solution:

� A tree representation. A node may have an ‘exists’ Boolean variable.

� Constraints within the existence node work as long as the ‘exist’
variable is not false.

� External variables have a shadow. The shadow var is synchronized 
with the real one when the exists variable becomes true.

See also: F. Geller and M. Veksler,

"Assumption-based pruning in conditional CSP", CP 2005
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External variables (Remote)

� Some CSP variables can not be represented as a set of discrete values 

� In the solution the variable is not a single element

� The variable is shared in several CSPs

� Example: content of memory

A challenge :

A Solution:

� The engine holds a variable having no domain.

� The relations communicate with the data base during propagation

� Relations mark the propagated variables as ‘modified’, so the engine 
knows which other propagators to call.  
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Run time performance

� Generation of a test should not take more time
than its simulation time

Requirement:

A Solution:

� Instructions are generated one at a time

� Similar problems are cached and reuse
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Our major CSP solver

� GEC

� Systematic, based on MAC-3

� Since 1995, many person-years invested

� Finite domain set libraries: “PD” (primitive domains)

� Bool, int, bit-vector, object, string

� Generic expression propagator (ERP)

� Given a first order logic expression over variables, creates a propagator 

� Interfaces for user-defined C++ propagators

� Arc-consistency on conditional problems

� Support application specific CSP variables (remote variables)

� Written in C++

� designed to be generic

� i.e., not specific for verification

See also: IAAI 2006, AI-Magazine 2007
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New challenges coming from the hardware

� More complex micro-architecture

� Example: SMT (Simultaneous Multi Threaded) 

� More directed scenarios required

� More requirement on inter instruction constraints

� More complex architectures

� Example: Translation

� Complex CSP, solving issues

�

� Virtualization

� Translation CSP problem replicated
� A scalability issue
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Status for 2010

� ERP: the declarative constraints language

� No access to generator’s internal values

� Just primitive operators

� Insufficient expressiveness

� Many constraints are written in C++:

� C++ code produces a better run-time performance

Maintenance cost and modeling new designs become an issue
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Why propagators C++ coding is not recommended

� Less readable

� Much more lines of code

� No reuse

� Hard to maintain

� Hard to debug (log file does not show the semantics)

� Does not enable composition of operators

� Some times written with just partial propagation

� Much more time to code it

� The CSP engine sees it as a black box
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Part 3

PRB:

The new CSP approach
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In short

� PRB address the shortcoming ERP of the 

� Allow greater expressive

� Allow seamless integration with the application

� Support random decisions in non-mandatory constraints

� Built in solving heuristics
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PRB. PRopagator Builder. 
Principles: 
� Primitive types:

� New primitive types

� Constraints

� Constraints are written declaratively (not in C++)

� Many new operators

� Operators can be composed

� Macros

� Interface:

� PRB communicates with the application

� Application can configure PRB

� Solving:

� Generic management of representation explosion problem

� No modeling of propagation ordering

� Semantics based variable and value ordering

PRB is a generic module.

It is used also by non-verification CSPs
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Example: Direct access 

PRB approach:

C++ propagator

PRB propagator
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Example: new operators, generalization
ERP propagator

PRB propagator



38 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Constraints types

� All the following types reduce values from variables.

� Propagator

� A deterministic logical / arithmetical algorithm. 

� Reduce values that do not have a support.

� Used within MAC algorithm 

� Restrictor

� A non-deterministic logical / arithmetical algorithm.

� It draw values 

� Used within MAC algorithm

� In addition to the priority of the constraint (mandatory / bias)
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Operators wealth

� The more operators in the language

� The modeling is shorter

� More readable

� Better propagation

� Better run-time 
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Better propagation for higher level operators

Var a

Var b

Bits vector

Option 1: b = concat(subField(a, y+1, 63), subField(a, 0, x-1))

Option 2: b = pullOutSubField(a, x, y)

Option 1 produces weaker propagation:

1. A delay: When x, y are not a single element 

2. Tightness: ‘concat’ collect too many elements 

xy 063

a = { 00 11 11,

01 00 00}

option 1: b = {0011,

0000,

0111,

0100}

option 2: b= {0011,

0100}
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Old primitive set types

� Integers

� Boolean

� String

� Enums

� Bits vector
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New primitive types

� Bits vector now have different formats

� Plain bits

� Unsigned integers

� Signed integers *

� Decimal representation

� Floating point representation *

� Interval

� Each interval holds two primitive sets for ‘start’ and ‘length’

� Dates

* Not done yet
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Operators

� To have a feel of the operator library, we will see different operators

� Just examples (there are more)

� We will not understand the semantics of all of them (a quick session)

� The syntax is not the issue
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Intervals geometric operators: examples 

� x before y

� x conscutivesTo y 

� x adjacent y 

� x crossesBeyond y 

� x crosses y 

� x sameBoundary y 

� x overlaps y 

� x contains y

� x shorterThan y 
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Global constraints: examples

� allDiff

� sumOf

� numOf

� exist

� collect

� select

� forAll

� forEach

� minOf

� maxOf
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Properties of global constraints

� Similar syntax for all global constraints

� Formats:

� Using vectors: forAll(i, 0, 7, vec[i].size > 0)

� Using objects: forAll(i, homes({employes}), i.salary > 20000)

� Using items: forAll(i, items({from, to}), shape.i < 100)

� Conditions: Optional

� allDiff(i, homes({roads}), i.city != NY, i.name)

italic represents a PRB reserved word
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Fields operators: examples

� carry

� concat

� subField

� extend

� maskField

� setField

� overflow

� pullOutSubField

� sameLsb

� numLsbBits

� Bitwise operations
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Square Parentheses [ ] operators  

� Direct access to a field of a known register

� resources.MSR[TR]
is equivalent to

subField(resources.MSR, 4, 6)

� The application informs PRB about all the known register fields

� The indirect operator

� vec[x+3] = y
both x and y are CSP variables  
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The triple operator

� x = (condExp ? thenExp : elseExp)

This operator was found essential.

� x = (cond1 ? then1,
cond2 ? then2,
cond3 ? then3,
….
condN ? thenN : else)
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Boolean Operators

� memberOf

� table

� positive

� negative

� zero

� find

b = table(x, y, z,

{

( << 0b0 >>, UBool, UBool) : false,

( << 0b1 >>, UBool, false) : false,

//( << 0b1 >>, false, true ) : illegal

( << 0b1 >>, true,  true)  : true

});

The tupels of the table can be generated in run time. 
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Restrictors Operators

� choose

� maxValue

� minValue

� randomBool

� randomMSBValues

� randomWeightedNumber

� randomWeightedValue

� randomNumber

� randomValue

These operators are legal just in non-deterministic constraints 
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Homes: background

� An application’s class. Inherits from PRB_Home.

� Includes (optionally):

� Variables (inherits from PRB_Variable) 

� Constraints

� Sub homes

� The application can add any data members / methods

� The home serves PRB during constraint hatching:

� FindVar()

� GetImmediateValue()

� GetHomesGivenType()
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Interface: PRB <-> Application
Propagators creation

� The application creates a tree of ‘home’s

� Each home holds CSP variables, Constraints and sub homes

� Propagators creation

� This interface enables sending expressions with unknown number 
of variables 

Application

(home)
PRB

Hatch

Returns propagator(s)

FindVar, GetImmediate, …
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� Reserved words

� Max number of masks per variable 

� Register fields

� Table’s tuples

� Macros

� Depth of conflict detection

� … and many more

Interface: PRB <-> Application
Configuration
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Over approximation

� PRB over approximates the variable’s content

� Requirements:

� Reduce the number of masks to the requested level

� Do not insert values that were not in the variable’s domain when 
entering the propagator

� Insert as few values as can

� Partial solution

� While the number of masks is too many

� Find two similar masks (heuristics)

� Combine the masks

� Reduce other masks that contained in the new one

0bxxxx1

0bxxx1x

0bxxxxx
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Conflict Detection

� Constraints contradiction should be handle specifically since regular 
MAC with large domains does not cope with it efficiently.

� Our solution: instrumentation

� Insert an auxiliary variable v 

� convert the constraints

� a > b

� a < b
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Conflict Detection: examples

Original: 

(a > b) and ( (x=1) → (a < b))

Instrumented:

(va,b > 0) and ( (x=1) -> (va,b < 0)) and (va,b > 0 ↔ a > b) and (va,b < 0 ↔ a < b)

Original: 

(a > b) and (b > a)

Instrumented:

(va,b > 0) and (va,b < 0) and (va,b > 0 ↔ a > b) and (va,b < 0 ↔ a < b) 
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Semantics Variable and Value ordering (heuristics) 

� When the semantics of the constraint is not a 
black box, it can be used for variable and value 
ordering

� Two methods:

� Static – partial ordering is defined before 
solving starts

� Dynamic – ordering is defined during solving 
time

� Both methods neither use the number of values in 
a domain nor the constraints graph.
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Static Semantics Variable Ordering

1. Variable V is selected randomly as a candidate to be instantiated

2. If all the variables Vs that V depends on have a single value, return V
otherwise, choose randomly a variable from Vs and go to 2.

Comments:

1. If variables’ cycle is exposed, the variables in the cycle do not returned.

2. Work on fields granularity.

� Characteristics:
� Automatic
� Sensitive to the way the user writes the constraints
� Works in causal CSP networks  
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Static Semantics Variable Ordering: examples

� Equal operator at the constraint’s tree root:
a = b + c a depends on b, c 

� ‘imply’ operator at the constraint’s tree root:
(a>7) -> (b > c) b, c depends on a

� Fields granularity
subField(a, 2, 3) = … just the two bits of a are depended
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Dynamic Semantics Variable and Value Ordering
Motivation

The domain of v[i] is [0, 100]

numOf(i, 0, 9, v[i] = 0) > 0

numOf(i, 0, 9, v[i] = 1) > 0

numOf(i, 0, 9, v[i] = 2) > 0

numOf(i, 0, 9, v[i] = 3) > 0

numOf(i, 0, 9, v[i] = 4) > 0

numOf(i, 0, 9, v[i] = 5) > 0

9          12            74                     3           52  84                     77            53    

14 23      12      56     83            94       22     22 92   
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Dynamic Semantics Variable and Value Ordering

� During regular propagation, when a propagator has multiple ways to be 
satisfied, it registers itself

� During variable ordering:

� Choose one of the registered propagators
� Last one

� Random one

� Invoke the propagator in ‘ordering’ mode

� When the propagator has multiple ways, it chooses one of them and 
satisfies it.
� Last way

� Random one

� A variable does not change the real domain, but works on a copy

� The variables that were copied (and their new domain) are the 
suggestion.
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Wrap up

� Simulation is still the main platform for hardware verification

� Biased random test generation is widely used in the industry

� CSP is the major technique used for generating tests

� Architectures and micro-architectures enforce new CSP techniques

� Modeling languages

� Domain representation

� Variable and value ordering

� CSP debug methods
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Thank you


