
IBM Labs in Haifa © Copyright IBM

Challenges in Constraint Programming for
Hardware Verification

Eyal Bin

IBM Haifa Research Lab

bin@il.ibm.com

2 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Who are we?

� Verification Technologies Department (Simulation Based verification)

� Part of IBM Research

� Center of competence for verification technologies in IBM

� Over two decades of experience in development of verification
technologies for simulation based verification

� Core level, System-level, Unit level

3 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

For this presentation, special thanks to:

Yeuda Naveh

Michal Rimon

Oz Hershkovitz

Ofer Peled

Yoav Katz

Wesam Ibraheem

4 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

The significance of functional verification

� Roughly 70% of the design effort (time, resources, …) is invested in
functional verification

� Industry practice: verification == over 90% simulation based verification

� A design re-spin may cost
many millions of $

� Masks

� Person-month

� Time-to-market

� Typically 3-4 re-spins for

complex designs (processors)

[Source: Synopsys 2004

user survey]

5 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Key Technologies for Processor Verification

� Genesys-Pro

� State-of-the-art test generator for full processor and multi-processor
verification

� Used by all IBM processors and licensed to external companies

� Adaptable to any architecture

� Applied in Power, zArch , ARM, and others

� FPGen

� Dedicated generator focused on floating point verification

� XGen

� A test generator for verification of systems

� ThreadMill

� Post-Silicon and emulation exerciser

6 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Content

� Part 1: GPro - Test generator for microprocessors

� Part 2: CSP characteristics and challenges

� Part 3: PRB – The new CSP approach

7 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Part 1

GPro:

Test generator for microprocessors

8 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Genesys-Pro: Model-Based Test Generation

� Generic architecture-independent test generation engine

� External formal and declarative architecture description

� Behavioral simulator used to predict instruction execution results

� Graphical User Interface to define generation directives

Test GeneratorTest GeneratorTest Generator

Architectural Model &
Testing Knowledge

Architectural Model &
Testing Knowledge

Architectural
simulator

Architectural
simulatorGUIGUI

Test Program

9 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Resulting test case

Resource initialization

Instruction sequence

Predicted Results

INITIALIZATIONS: DATA MEMORY

D 06FFFFA4 4ADDEB16

INITIALIZATIONS: REGISTERS

R R5 050C4340

R R6 09801460

INSTRUCTIONS

I 230DB4B4 46610FE7 * STRAL R6,[R15,-R6,ASR #0x02]

* VA=FEADAFA4 (New) RA=06FFFFA4

I 230DB4B8 B3E77FEA * BAL 0x030D538C //0x7FE7B3

* VA=030D538C (New) RA=4ECBC38C

I 4ECBC38C 0E50BDE7 * LDRAL R5,[R13,+R14]!

* VA=40BC6FA4 (Used) RA=06FFFFA4

RESULTS: REGISTERS

R R5 09801460

R R6 09801460

RESULTS: DATA MEMORY

D 06FFFFA4 60148009

bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Generation scheme – user view

1. Choose the next instruction to generate, according to:

� Test template definition (test’s specification)

2. Generate instruction

� Initialize resources as required

3. Call reference model to simulate instruction

4. Repeat until all test template statements generated

11 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Random stimuli generator
System model:

� What’s valid

� What’s interesting

User requirements

Generate N tests

N distinct tests

� Valid, interesting

� Satisfy user requirements

Random stimuli generator

Constraint

Satisfaction

Problem

CSP Solver

12 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

� Instruction as the basic building
block

� Full control over instruction
properties:

�Data, Address, Length,…

� A hierarchy of higher level
statements

�Select: weighted random
choice

�Repeat

�Sequence

GenesysPro system input: test template basics

Test template

Sequence

Repeat x10

Load word
Store

half-word
Add

Target reg: {R3,R5} Addr: 0x12?? Source data: [-2 , 2]

Select

Weight: 70 Weight: 30

13 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Test template: testing knowledge and directives

� Directives as 'volume knobs'
to control TK characteristics

� Testing knowledge also
affects the test by default

� Directives present in the test
template take precedence

� Scope based influence

Test template

Sequence

Repeat x10Select

Store

half-word
Load word Add

Cache hit:20

Cache miss:80

Address

Collision: 65%

Default TK

14 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Instruction model

== ++

load RA[disp] � RT

RegisterMemory

Instruction

Operands Format

Register Immediate

Address Operands

Address DataData

Object-oriented ontology language with a focus on constraint modeling

15 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

The concept of generic testing knowledge

� A set of mechanisms that aim at improving test-case quality

� Capitalize on recurring concepts

� The basic mechanism: non-uniform random choice

� Bias towards ‘interesting’ areas

� Affects all generated test-cases

� But can be controlled by users

� Examples:

� Resource collisions

� Translation table entry reuse

Space of valid tests

‘interesting’ areas

16 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Testing knowledge example - placement

� A storage partition is a contiguous piece of memory

�L2 cache line, page, word, half-word...

� Four types of events

Boundary

Crossing

Vicinity

Alignment

17 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Why CP?

� CP enables requests coming from different resources

� CP gives the option to constraint results

� CP solvers enable approximation of uniform coverage

� The microprocessor specification is written declaratively

� Easy translation into constraints

� non-linear constraints

� Mandatory and bias (not mandatory) requests

18 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Why CP?

Constraints originate from three sources

1.Validity of the stimuli: Constraints defined by the specification

2.Verification task: Constraints defined by the user

3.Bias towards interesting tests: Soft constraints defined by domain experts

Effective Address: 0x0B274FAB_0DBC0000

Real Address: 0x0002FFC5_90A4D000

User: EA aligned to 64K
RA in some corner memory space

Expert knowledge: Reuse cache row

Validity: Complex EA to RA translation

19 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Not just IBM

� Constraint satisfaction is the basis for modern
stimuli generation across the industry

� 42nd DAC:

�The largest conference of the EDA industry,
6000 participants

�A full-day tutorial about constraint satisfaction for
stimuli generation

� A typical industrial advertisement:

“ Constraint-Driven Test Generation
With Specman Elite's constraint-driven test
generation, you can now automatically generate
tests for functional verification. By specifying
constraints, you can quickly and easily target the
generator to create any test in your functional test
plan …”

20 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Part 2

CSP characteristics and challenges

See also:

E. Bin, R. Emek, G. Shurek, and A. Ziv,

Using constraint satisfaction formulations and

solution techniques for random test program generation,

IBM Systems Journal 41, 2002

21 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Random Solution

� Find many random, uniformly distributed, solutions of the same CSP

� Many different tests from the same template

� As opposed to one, all, or 'best' solution

� Motivation: Test different computation paths of the microprocessor

Requirement:

Solution:

� Uniform solution distribution is approximated by random variable
and value ordering

See also: Dechter et al., AAAI 2002

22 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Huge domains

� The domain of many variables is 2128

� Example: address space
� In conjunction with arithmetic, bit-wise, and other types of constraints
� Representation and operations on sets becomes an issue

Requirement:

Solution:

� Inaccurate representation (over approximation)

� Using also bit-vectors representation

23 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Domain (set) representation example: bit-vectors

� All the addresses such that:

� addr = base + displacement : architectural

� addr[3:6] = 01x1 : cache line

� addr ϵ [0x20000000 : 0x10FFFFF] : memory space

� 'Masks' (bits vector) representation:

� 0b01x1 � 0b0101, 0b0111

� Exponential explosion

� 01010101 + 0x0x0x0x
{10101010, 01101010, 10011010, 01011010,
10100110, 01100110, ..., 10010101}

24 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Hierarchy of constraints

� Different priority of constraints

� Mandatory: test case validity

� Non-mandatory: makes the test 'interesting‘

� Multiple levels of soft constraints – according to level of interest

Requirement:

Solution:

� Modeler specifies the constraint priority

� In each MAC, Mandatory constraints propagate first. Then one bias,
mandatory constraints again, …

Mandatory constraints

25 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Coupled CSPs

� Cannot generate all instructions simultaneously

� Instructions’ semantics is not modeled

� Problem is too large

� Constraint propagation computationally hard

A challenge:

A Partial Solution:

� Instructions are generated one at a time, and then executed by an
ISS (Instruction Set Simulator)

� But … Instruction 3 may require a specific configuration

Generate Initial processor state

ISS

ISS

Generate instruction 1

ISS

Generate instruction 2

Generate Initial processor state

26 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Conditional CSP

� Parts of the problem’s variables and constraints should not exist in the
solution

A challenge:

A Solution:

� A tree representation. A node may have an ‘exists’ Boolean variable.

� Constraints within the existence node work as long as the ‘exist’
variable is not false.

� External variables have a shadow. The shadow var is synchronized
with the real one when the exists variable becomes true.

See also: F. Geller and M. Veksler,

"Assumption-based pruning in conditional CSP", CP 2005

27 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

External variables (Remote)

� Some CSP variables can not be represented as a set of discrete values

� In the solution the variable is not a single element

� The variable is shared in several CSPs

� Example: content of memory

A challenge :

A Solution:

� The engine holds a variable having no domain.

� The relations communicate with the data base during propagation

� Relations mark the propagated variables as ‘modified’, so the engine
knows which other propagators to call.

28 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Run time performance

� Generation of a test should not take more time
than its simulation time

Requirement:

A Solution:

� Instructions are generated one at a time

� Similar problems are cached and reuse

29 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Our major CSP solver

� GEC

� Systematic, based on MAC-3

� Since 1995, many person-years invested

� Finite domain set libraries: “PD” (primitive domains)

� Bool, int, bit-vector, object, string

� Generic expression propagator (ERP)

� Given a first order logic expression over variables, creates a propagator

� Interfaces for user-defined C++ propagators

� Arc-consistency on conditional problems

� Support application specific CSP variables (remote variables)

� Written in C++

� designed to be generic

� i.e., not specific for verification

See also: IAAI 2006, AI-Magazine 2007

30 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

New challenges coming from the hardware

� More complex micro-architecture

� Example: SMT (Simultaneous Multi Threaded)

� More directed scenarios required

� More requirement on inter instruction constraints

� More complex architectures

� Example: Translation

� Complex CSP, solving issues

�

� Virtualization

� Translation CSP problem replicated
� A scalability issue

31 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Status for 2010

� ERP: the declarative constraints language

� No access to generator’s internal values

� Just primitive operators

� Insufficient expressiveness

� Many constraints are written in C++:

� C++ code produces a better run-time performance

Maintenance cost and modeling new designs become an issue

32 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Why propagators C++ coding is not recommended

� Less readable

� Much more lines of code

� No reuse

� Hard to maintain

� Hard to debug (log file does not show the semantics)

� Does not enable composition of operators

� Some times written with just partial propagation

� Much more time to code it

� The CSP engine sees it as a black box

33 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Part 3

PRB:

The new CSP approach

34 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

In short

� PRB address the shortcoming ERP of the

� Allow greater expressive

� Allow seamless integration with the application

� Support random decisions in non-mandatory constraints

� Built in solving heuristics

35 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

PRB. PRopagator Builder.
Principles:
� Primitive types:

� New primitive types

� Constraints

� Constraints are written declaratively (not in C++)

� Many new operators

� Operators can be composed

� Macros

� Interface:

� PRB communicates with the application

� Application can configure PRB

� Solving:

� Generic management of representation explosion problem

� No modeling of propagation ordering

� Semantics based variable and value ordering

PRB is a generic module.

It is used also by non-verification CSPs

36 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Example: Direct access

PRB approach:

C++ propagator

PRB propagator

37 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Example: new operators, generalization
ERP propagator

PRB propagator

38 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Constraints types

� All the following types reduce values from variables.

� Propagator

� A deterministic logical / arithmetical algorithm.

� Reduce values that do not have a support.

� Used within MAC algorithm

� Restrictor

� A non-deterministic logical / arithmetical algorithm.

� It draw values

� Used within MAC algorithm

� In addition to the priority of the constraint (mandatory / bias)

39 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Operators wealth

� The more operators in the language

� The modeling is shorter

� More readable

� Better propagation

� Better run-time

40 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Better propagation for higher level operators

Var a

Var b

Bits vector

Option 1: b = concat(subField(a, y+1, 63), subField(a, 0, x-1))

Option 2: b = pullOutSubField(a, x, y)

Option 1 produces weaker propagation:

1. A delay: When x, y are not a single element

2. Tightness: ‘concat’ collect too many elements

xy 063

a = { 00 11 11,

01 00 00}

option 1: b = {0011,

0000,

0111,

0100}

option 2: b= {0011,

0100}

41 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Old primitive set types

� Integers

� Boolean

� String

� Enums

� Bits vector

42 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

New primitive types

� Bits vector now have different formats

� Plain bits

� Unsigned integers

� Signed integers *

� Decimal representation

� Floating point representation *

� Interval

� Each interval holds two primitive sets for ‘start’ and ‘length’

� Dates

* Not done yet

43 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Operators

� To have a feel of the operator library, we will see different operators

� Just examples (there are more)

� We will not understand the semantics of all of them (a quick session)

� The syntax is not the issue

44 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Intervals geometric operators: examples

� x before y

� x conscutivesTo y

� x adjacent y

� x crossesBeyond y

� x crosses y

� x sameBoundary y

� x overlaps y

� x contains y

� x shorterThan y

45 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Global constraints: examples

� allDiff

� sumOf

� numOf

� exist

� collect

� select

� forAll

� forEach

� minOf

� maxOf

46 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Properties of global constraints

� Similar syntax for all global constraints

� Formats:

� Using vectors: forAll(i, 0, 7, vec[i].size > 0)

� Using objects: forAll(i, homes({employes}), i.salary > 20000)

� Using items: forAll(i, items({from, to}), shape.i < 100)

� Conditions: Optional

� allDiff(i, homes({roads}), i.city != NY, i.name)

italic represents a PRB reserved word

47 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Fields operators: examples

� carry

� concat

� subField

� extend

� maskField

� setField

� overflow

� pullOutSubField

� sameLsb

� numLsbBits

� Bitwise operations

48 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Square Parentheses [] operators

� Direct access to a field of a known register

� resources.MSR[TR]
is equivalent to

subField(resources.MSR, 4, 6)

� The application informs PRB about all the known register fields

� The indirect operator

� vec[x+3] = y
both x and y are CSP variables

49 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

The triple operator

� x = (condExp ? thenExp : elseExp)

This operator was found essential.

� x = (cond1 ? then1,
cond2 ? then2,
cond3 ? then3,
….
condN ? thenN : else)

50 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Boolean Operators

� memberOf

� table

� positive

� negative

� zero

� find

b = table(x, y, z,

{

(<< 0b0 >>, UBool, UBool) : false,

(<< 0b1 >>, UBool, false) : false,

//(<< 0b1 >>, false, true) : illegal

(<< 0b1 >>, true, true) : true

});

The tupels of the table can be generated in run time.

51 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Restrictors Operators

� choose

� maxValue

� minValue

� randomBool

� randomMSBValues

� randomWeightedNumber

� randomWeightedValue

� randomNumber

� randomValue

These operators are legal just in non-deterministic constraints

52 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Homes: background

� An application’s class. Inherits from PRB_Home.

� Includes (optionally):

� Variables (inherits from PRB_Variable)

� Constraints

� Sub homes

� The application can add any data members / methods

� The home serves PRB during constraint hatching:

� FindVar()

� GetImmediateValue()

� GetHomesGivenType()

53 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Interface: PRB <-> Application
Propagators creation

� The application creates a tree of ‘home’s

� Each home holds CSP variables, Constraints and sub homes

� Propagators creation

� This interface enables sending expressions with unknown number
of variables

Application

(home)
PRB

Hatch

Returns propagator(s)

FindVar, GetImmediate, …

54 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

� Reserved words

� Max number of masks per variable

� Register fields

� Table’s tuples

� Macros

� Depth of conflict detection

� … and many more

Interface: PRB <-> Application
Configuration

55 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Over approximation

� PRB over approximates the variable’s content

� Requirements:

� Reduce the number of masks to the requested level

� Do not insert values that were not in the variable’s domain when
entering the propagator

� Insert as few values as can

� Partial solution

� While the number of masks is too many

� Find two similar masks (heuristics)

� Combine the masks

� Reduce other masks that contained in the new one

0bxxxx1

0bxxx1x

0bxxxxx

56 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Conflict Detection

� Constraints contradiction should be handle specifically since regular
MAC with large domains does not cope with it efficiently.

� Our solution: instrumentation

� Insert an auxiliary variable v

� convert the constraints

� a > b

� a < b

57 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Conflict Detection: examples

Original:

(a > b) and ((x=1) → (a < b))

Instrumented:

(va,b > 0) and ((x=1) -> (va,b < 0)) and (va,b > 0 ↔ a > b) and (va,b < 0 ↔ a < b)

Original:

(a > b) and (b > a)

Instrumented:

(va,b > 0) and (va,b < 0) and (va,b > 0 ↔ a > b) and (va,b < 0 ↔ a < b)

58 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Semantics Variable and Value ordering (heuristics)

� When the semantics of the constraint is not a
black box, it can be used for variable and value
ordering

� Two methods:

� Static – partial ordering is defined before
solving starts

� Dynamic – ordering is defined during solving
time

� Both methods neither use the number of values in
a domain nor the constraints graph.

59 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Static Semantics Variable Ordering

1. Variable V is selected randomly as a candidate to be instantiated

2. If all the variables Vs that V depends on have a single value, return V
otherwise, choose randomly a variable from Vs and go to 2.

Comments:

1. If variables’ cycle is exposed, the variables in the cycle do not returned.

2. Work on fields granularity.

� Characteristics:
� Automatic
� Sensitive to the way the user writes the constraints
� Works in causal CSP networks

60 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Static Semantics Variable Ordering: examples

� Equal operator at the constraint’s tree root:
a = b + c a depends on b, c

� ‘imply’ operator at the constraint’s tree root:
(a>7) -> (b > c) b, c depends on a

� Fields granularity
subField(a, 2, 3) = … just the two bits of a are depended

61 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Dynamic Semantics Variable and Value Ordering
Motivation

The domain of v[i] is [0, 100]

numOf(i, 0, 9, v[i] = 0) > 0

numOf(i, 0, 9, v[i] = 1) > 0

numOf(i, 0, 9, v[i] = 2) > 0

numOf(i, 0, 9, v[i] = 3) > 0

numOf(i, 0, 9, v[i] = 4) > 0

numOf(i, 0, 9, v[i] = 5) > 0

9 12 74 3 52 84 77 53

14 23 12 56 83 94 22 22 92

62 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Dynamic Semantics Variable and Value Ordering

� During regular propagation, when a propagator has multiple ways to be
satisfied, it registers itself

� During variable ordering:

� Choose one of the registered propagators
� Last one

� Random one

� Invoke the propagator in ‘ordering’ mode

� When the propagator has multiple ways, it chooses one of them and
satisfies it.
� Last way

� Random one

� A variable does not change the real domain, but works on a copy

� The variables that were copied (and their new domain) are the
suggestion.

63 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Wrap up

� Simulation is still the main platform for hardware verification

� Biased random test generation is widely used in the industry

� CSP is the major technique used for generating tests

� Architectures and micro-architectures enforce new CSP techniques

� Modeling languages

� Domain representation

� Variable and value ordering

� CSP debug methods

64 bin@il.ibm.comCP meets CAV 2012 © 2012 IBM Corporation

Thank you

