About CP and Test Generation

and also arrays and bitvectors

Sébastien Bardin
CEA LIST (Paris, France)

CP Meets CAV

Bardin, S. 1/ 54

CEA is a French large multi-disciplinary research center

nuclear power, astrophysics, quantum physics, biology /
biotechnologies, neuro-sciences, secret military activities,
nano-technologies, green energies, computer science, ...

Formal methods at CEA
m 3 labs, =~ 60 full-time researchers
m strong focus on industrial applications

m model-based engineering (design & verif.),
program verification and testing

m a few industrial success stories

» Frama-C (static analysis of safety properties, C code)
» Gatel (CP-based test generation, Scade models)
» Fluctuat (static analysis for numeric precision, C code)

Bardin, S. 2/ 54

CP used for test data generation

while our verification tools rely on Al or SMT

Three different tools at different levels

m Gatel : SCADE models
m PathCrawler : C programs

m Osmose : executable files

One common CP(FD) solver : COLIBRI [mainly B. Marre & B. Blanc]
m bounded ints, floats, bitvectors, arrays
m tailored at proving satisfiability (and produce witness)
m CP framework dedicated to software analysis
» huge domains, many unsat or hard-to-solve formulas

Bardin, S. 3/ 54

Test data generation over SCADE programs

simple high-level control structure : 1 big loop
mostly simple data types : int, bool, read-only arrays
no memory heap, pointers, dynamic allocation

reactive system : test input = (long) sequences of input values
floats commonly used

X X X NSNS

tricky synchronization mechanisms (modes, priorities, clocks)

Goal-oriented generation, global view of the program
m cf. Arnaud yesterday

m the tool can answer : yes (+ witness), no, ... or timeout

Bardin, S. 4/ 54

Technology
m COLIBRI

m + constraints dedicated to SCADE “control” operators

» overapprox. of ite / loop, lazy unrolling
» necessary to efficiently handle clocks (SCADE V6)

m + discovery of affine relationships to infer smart unrolling

> relates part of constraints to # iter
» allow to infer a lower bound on the necessary # iter

Applications

m used internally by the nuclear certification authority (IRSN)
m other uses in aeronautics

m feedback : clearly beats (at least one) commercial bmc tool on
the customer's class of problems

Bardin, S. 5/ 54

(Unit) test data generation over embedded systems

m C for PathCrawler, binary-level for Osmose
middle-size programs (up to 5000-10000 loc), loops, functions
rather simple data types

yet floats, arrays, memory heap, pointers

OSMOSE : bitvector operations, dynamic jumps

Forward path exploration, local view of the program

m output : set of (test inputs, path) + coverage measure

Bardin, S. 6/ 54

Technology

m Dynamic Symbolic Execution [Sage, Pex, Klee, Exe, Cute, etc.]

» combine concrete execution and symbolic reasoning
» advantages : prune infeasible paths asap, provide correct
underapproximations if required

» search and solving have mostly no interaction here

m Constraints : COLIBRI + arrays + memory model + BV

m Path search : dedicated search and pruning techniques

Some industrial applications

m unit testing of embedded systems
(aeronautics, automative industry)
m wcet estimation (PathCrawler)

m completion of a customer test suite (OSMOSE)

Bardin, S.

7/ 54

COLIBRI
CP and bitvectors
CP and arrays

About CP and verification

Bardin, S. 8/ 54

COLIBRI [Marre-Blanc 05] is a CP(FD) solver for large domains

Abstract domains in order to tackle huge state space

m unions of intervals (Is) + congruence (C)
[X € [0..5], [100..200] A X = 0[5]]

m propagations on the two domains deeply interwoven (Is+C)
m more precision than just Is x C

m Is useful for case-splits [and modular arith. and arrrays]

Local propagators for all standard arithmetic operations

- < < = A % [, mod, 2 |- ming max

Deductive rules for limited symbolic deduction

Global (incomplete) reasoning through difference logic

Bardin, S. 9/ 54

Domains and local propagators

arith plus(A,B,R) :- // A+B=R
(

integer(A,B)? R == eval(A+B) , success

D(R) «+ D(@®) N (D(A) + D(B)),
D(A) «+ D(A) n (D(R) - D(B)),
D(B) «+ D(B) N (D(R) - D(A)),
wait(...)

Define +, — over Is+-C

m easy for intervals

m a bit more tricky for congruences (involves pgcd)

Bardin, S. 10/ 54

A few deduction rules

Backup domain reasoning with simple syntactic deductions
Use a few simple rewriting rules

m local rules [e.g. identity elt.]

m or more global (FC,C), but no complete reasoning

m the main goal is to deduce some x =y

Not preprocess only, included inside the propagator

arith.minus(A,B,R) :- // A-B=R

(
integer(A,B)? R == eval(A-B) , success
B==07 R==A, success

A==B? R==0, success

:
Bardin, S. 11/ 54

Global constraints

Local reasoning is not enough : x < y and y < x

m assume D, = D, = [0..100]

m propagation, step 1 : D, = [0..99], D, = [1..100]
m propagation, step 2 : D, = [2..99], D, = [1..98]
m propagation, step 3 : D, = [2..97], D, = [3..98]
.

m UNSAT

steps linear in the size of domains = BAD !

Bardin, S. 12/ 54

Global (incomplete) reasoning through difference logic

m Axi —yi < k [reason over integers, O(n®)]

m answer : unsat, or better bounds

Lazy scheme, deep integration with local propagation

m local propagators can send new formulas to A, and query it

» x—y<z
» z becomes instantiated to 100
» send x —y <100 to A

m Can be expensive

» lots of algorithmic tuning, and probably black magic

Bardin, S. 13/ 54

A few examples

Assume Dy = Dg = [0..100]

A+ B =R :then R €[0..200] // only I
5x A= R :then R €[0..500], R = 0[5] // needs |4-C
A+ 0= R :then A= R // deduction rules

A< BANB < A: then unsat // global constraint

:
Bardin, S. 14/ 54

Floating-point arithmetic [a story for another day]

m rely on the integer domain, dedicated propagators

m high-level view of floats, no bitblasting

Bitvectors : see after

m rely on the integer domain, plus a new domain

m high-level view of bv, no bitblasting

Arrays : see after

m ongoing work

m high-level communication between a symbolic decision
procedure and CP

Bardin, S.

15/ 54

Quantifiers, UF : no

m UF not so useful in test generation

m quantifers would be nice for precond/postcond, but need
witness

V, =, < : yes, but nothing fancy there
m Gatel has its own features
m PathC & OSMOSE do not really need that

Search : not part of COLIBRI, each tool has its own

Bardin, S.

16/ 54

CP can be tuned for real-size verification problems
m at least for testing
V' rather good at proving sat, and produce a witness !

X but not very good for valid and =

Beware : forget about any propagation based on concrete
enumeration (can be hidden in learning, global constraints, etc.)

A few interesting features of CP

m approximation of disjunctive constraints

m dynamic addition of constraints, controlled from the
propagators

m easy to quickly support a new constraint : needs only a checker

Bardin, S. 17/ 54

COLIBRI
CP and bitvectors
CP and arrays

About CP and verification

Bardin, S. 18/ 54

The theory of bit-vectors

Variables range over arrays of bits

Common operations

bitwise : ~, &, |, xor

arithmetic : ®,6,®, @y, @s, %u, %os
relations : =, #, <, <y, <5, <s
shifts : <, >, >

extensions : ext,(A, k), exts(A, k)
concatenation : A:: B

extraction : A[i..j]

Bardin, S.

19/ 54

Bit-blasting : standard way to solve problems over BV

m encode BV formula into an equisatisfiable boolean formula

Overwhelming advantage : rely on the efficiency of SAT solvers
m small effort for good performance
m easy integration into SMT solvers [Stp,Boolector,MathSat,etc.]

Shortcomings

m formula explosion : too large boolean formulas on some
“arithmetic-oriented” BV-formulas

m no more information about the BV-formula structure : may
miss high-level simplifications

Bardin, S. 20/ 54

Goals

m develop a decent CP-based BV solver
m no bit-blasting (word-level approach)

m see how word-level approach compare wrt. low-level approach

Word-level approach
m reason on bit-vectors rather than on their separate bits
m BV variables are encoded into bounded integer variables

m BV operators are seen as integer arithmetic operators

Bardin, S. 21/ 54

Difficulty

m word-level CP-based approaches already tried
[Diaz-Codognet 01, Ferrandi-Rendine-Sciuto 02]

m performance very far from SAT-based approaches
[Siilflow-Kiihne+ 07]

Existing works rely on standard CP(FD)
m for small domains and/or linear integer arithmetic

m does not fit the needs of word-level BV solving

Our results
m a new CP(BV) framework dedicated to BV solving
m fill the gap with the best SAT approaches
m better scaling than SAT approaches w.r.t. BV sizes

Bardin, S.

22/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value [A]
Bit-vectors operators are encoded by common integer operators

e (cheap) A< B
m becomes [A] < [B]

e (cheap) A:: B =R
m becomes [A] x 257¢(B) 1 [B] = [R]

o (cheap) ~ A =R
m becomes 2V — 1 — [A] = [R]

Bardin, S. 23/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value [A]
Bit-vectors operators are encoded by common integer operators

o (expensive) A ¢ B =R
m becomes ([A] + [B]) mod 2V = [R]

m introduce modulo

o (expensive) exts(A k) = R
m become R = ite(([A] < 2V"1)?[A] : [A] + 2k — 257z¢(A)
m introduce case-split

Bardin, S. 23/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value [A]
Bit-vectors operators are encoded by common integer operators

o (very expensive) A & B =R
m perform bit-blasting, introduce strong linear relationships
m introduce A;s, Bjs and R;s in {0, 1}
m Ry = min(A1, Bi) A ... ARy, = min(An, Br)
ASTA 2L =[AIAY B -2 = [B]ASR; - 21 = [R]

Bardin, S.

23/ 54

Bardin, S.

We tried direct encoding into COLIBRI : very bad!

Local propagation does lots of useless work because of nested operators

m typically : a congruence is propagated through +, then destroyed by
mod

Explicit ite propagations are too approximated

m we are on very particular cases
Non-linear arithmetic everywhere : difference-logic is useless
Almost nothing on bitwise operations

m do not think of bitblasting for word-level approach

With this encoding, COLIBRI performs better then most propagations are
turned off !'!

24/ 54

Dedicated propagators for Is/C domain
m no explicit case-split or modulo

m better propagation, no waste propagation

The new domain BV and its propagators
m no bit-blasting on bitwise operators

m efficient propagation on most “linear bitwise” operations

Propagators to share information between BV and Is/C

Specific deduction rules to reduce BVA to IA

m benefits from difference-logic and other COLIBRI optims

Bardin, S. 25/ 54

Dedicated propagators for Is/C domain
m no introduction of additional variables
m no introduction of “modulo” operation everywhere

m signed operations handled without explicit case-split

ForA® B =R

Define basic propagation ¢, from | x | — Is by
[ml..Ml] Dy [mQ..Mg] —
[m1+m2..M1+M2] if My + M, < oN
[m1+m2—2N..M1+/VI2—2N] if my + mp 22,\,
[my + mp.2N — 1] U [0..My + My — 2V] otherwise

Unions of intervals are required here

Bardin, S. 26/ 54

Dedicated propagators for Is/C domain
m no introduction of additional variables
m no introduction of “modulo” operation everywhere

m signed operations handled without explicit case-split

For R = SignExt(A,N") // initial size N, N’ > N
Signed Extension : | x N — Is :

// Mask is (2V — 1) — (2N — 1)
[ml../\/ll] —
[ml..l\/ll] if my, M; < oN-1
[my + Mask..My + Mask] if my, My > 2N-1
[my.2N=1 — 1] U [2N=1 + Mask..M; + Mask] ~ otherwise

Unions of intervals are required here

Bardin, S. 26/ 54

For bit-wise operations : very approximated propagation
m A& B =R: propagated like A>RAB>R

m we rely on BV-propagators for these constraints

Simplification rules

m translation into cheap integer arithmetic when possible
(AbB=Rand A<R)—> A+B=R

m goal = benefits from COLIBRI global reasoning on arith.
operators

Congruence propagation
m only parity propagation
m BL and integer translation allow more C-propagation

Bardin, S. 27/ 54

BV : simple abstract domain designed to be combined with Is/C

BV(A) records the known bits of A
m fixed size arrays of values in {L,0,1,*} (called x-bits)
m bua[k] = 0 implies that A[k] = 0
m bvalk] = 1 implies that A[k] =1
m bvalk] = * does not imply anything

m bvalk] = L indicates a contradiction

Bardin, S. 28/ 54

Propagators : forward and backward propagation of x-bits

Propagators for non-arithmetic operators
m precise and efficient propagation

m especially when one operand is know (mix well with labelling)

Propagators for arithmetic operators
m limited form of bit-blasting inside the propagator
m very restricted propagation

m we rely on Is/C propagators for these constraints

Bardin, S. 29/ 54

Communication between Is/C and BL

Consistency propagators : designed to enforce consistency between
the different domains of a same variable

From BL to Is/C
m if blx = x1x101 then X € [21..61]
m if blx = x1 %101 then X =5 mod 8

From Is/C to BL
m (N=6) if D, = [0..15] then blx = 00 % x x %
m (N=6) if X =5 mod 8 then blx = %% %101

Bardin, S. 30/ 54

Goal : comparison of CP(BV), CP(FD) and SAT

CP(BV) vs CP(FD)
m evaluate the improvement of each new feature

m stability w.r.t. search heuristics

CP(BV) vs CP(FD) vs SAT

m evaluate the current gap between technologies

CP(BV) vs SAT, scalability
m scalability w.r.t. bit-width

Bardin, S. 31/ 54

Test bench
m 164 problems from the SMTLIB or generated by Osmose
m mostly 32-bit, up to 1,700 variables and 17,000 operators

m for scalability : 87 linear and non-linear problems
automatically extended to bit-width of 64, 128, 256 and 512

Competitors
m Eclipse/IC
m STP (win. 06), Boolector (win. 08), MathSat (win. 09)

Bardin, S. 32/ 54

‘ Tool Category ‘ Time ‘ # success ‘
Eclipse/IC CP(FD) | 1750 79/164
COLIBRI CP(FD) | 2436 | 43/164
COLIBRI-2009 | CP(FD) | 1520 89/164

\ COL-D-BL CP(BV) \ 712 | 138/164
MathSat SAT 794 128/164
STP SAT 618 144/164
Boolector SAT 291 157/164

Time out = 20s

Bardin, S.

33/ 54

Bardin, S.

[Tool | Category [Time [# success |
Eclipse/IC-min CP(FD) | 1760 78/164
Eclipse/IC-rand | CP(FD) | 2040 | 72/164
Eclipse/IC-split CP(FD) | 1750 79/164
COL-min CP(FD) | 2436 | 43/164
COL-rand CP(FD) | 2560 | 36/164
COL-split CP(FD) | 2550 | 40 /164
COL-smart CP(FD) | 2475 40/164
COL-2009-min CP(FD) 1520 89/164
COL-2009-rand | CP(FD) | 1513 | 89/164
COL-2009-split | CP(FD) | 1682 | 85/164
COL-2009-smart | CP(FD) | 1410 | 95/164
COL-D-min CP(BV) | 1453 | 94/164
COL-D-rand CP(BV) | 1392 | 96/164
COL-D-split CP(BV) | 1593 | 89/164
COL-D-smart CP(BV) | 893 | 125 /164

| SULuoLimin | Cr\BY) | akie | aU0/ivs |

34/ 54

Experiment 3 : CP(BV) vs SAT, scalability

—&- Boolector

Q
g = sp PRSI
@ |5 COLIBRI-D-BL
-0 MalhSAT
o
g |
8
8 |
2
g
[0 : Boolector
w g | o .
£ g o:STP
z
x COL-D-BL
g - o : MathSat
,-D"’_“
o — s
o e X - x
0 X -/,,—_'_ng’ O
R
T T T T T
100 200 300 400 500
number of bits
o
: :
Bardin, S. 35/ 54

CP(BV) largely outperform CP(FD)

m Results stable w.r.t. the search heuristics

m each feature brings something

Fill the gap with SAT approaches

m yet, the very best SAT approaches still ahead

CP(BV) scales better than SAT w.r.t. bitwidth

B rmk : most scaled examples are UNSAT, and MathSat scales much better
on UNSAT formulas

Bardin, S. 36/ 54

COLIBRI
CP and bitvectors
CP and arrays

About CP and verification

Bardin, S. 37/ 54

Goal : an efficient CP(FD) approach for array+FD constraints

m go beyond standard filtering-based techniques (ELEMENT)
m motivation = software verification

Approach : combine global symbolic deduction mechanisms with
local filtering in order to achieve better deductive power than both
technique taken in isolation

Results :
m an original “greybox” combination for array+FD constraints

» identify which information should be shared
» propose ways of taming communication cost

m a prototype and encouraging experiments (random instances)

» greater solving power (beats perfect blackbox combination)
» low overhead

m easy to adapt for any CP solver (small API)

Bardin, S. 38/ 54

Or : more direct approaches, and why we do not choose them

Standard combination scheme between arrays and CP(FD)
[Nelson-Oppen (NO)]

m NO is heavy on non-convex theories like arrays or integers

m FD constraints do not fit well into NO assumptions

[infinite model]

Remove all store functions by introducing V

m CP not well-adapted for handling case-splits

Simple concurrent black-box combination [first success wins]

m we want to outperform it in solving power

m while still allowing easy re-use of any CP engine

Bardin, S. 39/ 54

The theory of arrays

The standard theory of arrays is defined by

m three sorts : arrays A, elements of arrays E, indexes /
m function select(T,i): Ax | — E

m function store(T,i,e) : Ax | x E— A

m = and # over E and /

Semantics (read-over-write)
m (FC) i =, — select(T,i) = select(T,j)
m (RoW-1) i =j — select(store(T,i,e),j) =e
m (ROW-2) i # j — select(store(T,i,e),j) = select(T,;)

Bardin, S. 40/ 54

CP and arrays : local filtering

m arrays represented by pairs (index, element)
[explicit arrays of logical variables]
m constraints on domains of indexes / elements (and size)
m select : well-known constraint ELEMENT
[Van Hentenryck-Carillon 88, Brand 01]
B store : more recent work [Charreteur-Botella-Gotlieb 09]

Element (ARRAY,I,E) :-

(
integer(I)? ARRAY[I] == E, success
D(E) < D(E) N Uiepcry DCARRAY(1)),
D(I) < {i € D(I)|D(E) ND(ARRAY[i]) # 0},
wait(...)

)

Bardin, S. 41/ 54

m arrays represented by pairs (index, element)
[explicit arrays of logical variables]
constraints on domains of indexes / elements (and size)

select : well-known constraint ELEMENT
[Van Hentenryck-Carillon 88, Brand 01]
m store : more recent work [Charreteur-Botella-Gotlieb 09]

Update(A,I,E,A’) :-
(
integer(I)? A’[I]==E, V k # I do A’[k]==A[k], success
D(E) < D(E) N U,epqy DA’ (D),
D(I) + {ieD(I)|D(E) ND(A’[i]) # 0},
V k ¢ D(I) do A’[k] == A[k]
V k € D(I) do D(A’[k]) < D(A’[k]) N (D(A[k])U D(E))
)

Bardin, S. 41/ 54

CP and arrays : local filtering

m arrays represented by pairs (index, element)
[explicit arrays of logical variables]
m constraints on domains of indexes / elements (and size)
m select : well-known constraint ELEMENT
[Van Hentenryck-Carillon 88, Brand 01]
B store : more recent work [Charreteur-Botella-Gotlieb 09]

Insufficient for many array constraints from program verification

m |long chains of updates, variable indexes
[see formulas from SMT-LIB]

m symbolic reasoning required

Bardin, S. 41/ 54

CcC

input formula
Formula-Array /\ Formula-fd

FD

Bardin, S.

42/ 54

CcC

input formula
Formula-Array /\ Formula-fd

FD

Bardin, S.

42/ 54

CcC

input formula
Formula-Array /\ Formula-fd

FD

Bardin, S.

42/ 54

CcC

input formula

Formula-Array /\ Formula-fd

Formula-Array

Formula-Array)\ Formula-fd

Bardin, S.

42/ 54

1- shares what each solver

cannot see

2- see later

CcC

Formula-Array

input formula
Formula-Array /\ Formula-fd

Formula-Array)\ Formula-fd

Bardin, S.

42/ 54

CcC

Formula-Array

input formula
Formula-Array /\ Formula-fd

Formula-Array)\ Formula-fd

Bardin, S.

42/ 54

e =select(T,i) N\ f =select(T,j)Ne#fANi=]

T array of size 100
Domains : 0..100

Bardin, S. 43/ 54

e =select(T,i)\Nf =select(T,j)Ne#fNi=]

T array of size 100
Domains : 0..100

v’ cc : unsat quickly (axiom FC)

Bardin, S. 43/ 54

e =select(T,i)\Nf =select(T,j)Ne#fNi=]

T array of size 100
Domains : 0..100

v’ cc : unsat quickly (axiom FC)
X FD : needs labelling [no answer in 60 min in COMET]

Bardin, S. 43/ 54

e =select(T,i)\Nf =select(T,j)Ne#fNi=]

T array of size 100
Domains : 0..100

v’ cc : unsat quickly (axiom FC)
X FD : needs labelling [no answer in 60 min in COMET]
v FDCC : unsat quickly through cc

Bardin, S. 43/ 54

i€1.5ANj€6..10 A a # select(store(store(T,j,a),i,b),j)

Bardin, S. 43/ 54

i€1.5ANj€6..10 A a # select(store(store(T,j,a),i,b),j)

X ¢C : no deduction since i # j cannot be inferred

Bardin, S. 43/ 54

i€1.5ANj€6..10 A a # select(store(store(T,j,a),i,b),j)

X ¢C : no deduction since i # j cannot be inferred

X FD : needs labelling, cannot established
select(store(T,j,a),j) =a

Bardin, S. 43/ 54

i€1.5ANj€6..10 A a # select(store(store(T,j,a),i,b),j)

X ¢C : no deduction since i # j cannot be inferred
X FD : needs labelling, cannot established
select(store(T,j,a),j) =a

V" FDCC : FD deduces i # j (domain-check), cC can then deduce
a # select(store(T,j,a),j) then a # a and unsat

Bardin, S. 43/ 54

e = select(T,i) N f = select(T,j) N g = select(T, k)
Ne#FfNhNe#gNhNf#g

T array of size 2, domain of indexes 1..2

Bardin, S. 43/ 54

e = select(T,i) N f = select(T,j) N g = select(T, k)
Ne#FfNhNe#gNhNf#g

T array of size 2, domain of indexes 1..2

N X

cC : deduces ALLDIFFERENT(/,j, k), does not output unsat
(domains not taken into account)

FD : needs labelling [labels indexes first ! !]

FDCC : CC deduces ALLDIFFERENT(/,j, k), then FD deduces
unsat

Bardin, S.

43/ 54

Communication between FD and CC can be costly

m especially, checking (dis-)equalitites of variables through their
domains, |V/|? pairs to be checked

How to tame communication costs ?

® a communication policy allowing tight control over
expensive communications

m a reduction of the number of pairs of variables to consider
(critical pairs)

Other

m labelling is only transmitted to FD

Bardin, S.

44/ 54

Communication policy

m cheap communications (CC +— FD) made asynchronously

m expensive ones (FD — CC) made on request (supervisor)

Critical pairs
m focus on pairs whose (dis-)equality will surely lead to new
deductions in CC [see axioms]
m focus on critical pairs, involved in RoW-* rules
» e.g. for vZselect(store(T,i,€),j) : pairs (i,j) and (e, v)
m linear in #select, capture the specificity of array axioms
®m manageable in practise, still brings interesting deductions

m incremental computation of critical paires by cC

Bardin, S.

45/ 54

query answers

asynchronous deduction m
afnput f la)e

L

X=y, xt=y

Supervisor

internal state
- association fd <-> cf
- critical paires

N x=k, x!=k
labelling

is_fd_eq(x,y)

CC

| dispatch formulla

FA /\ F

is_fd_diff(x,y’

=

Bardin, S.

FD

46/ 54

Bardin, S.

Random formulas
m four kind of formulas (easy / hard array, arith / no arith)
m length 10-60

Properties to be evaluated
m ability to solve as many formulas as possible
m comparison with FD and CC [including overhead]

m comparison with blackbox combinations (HYBRID and BEST)

Experiment 1 : evaluates on 369 formulas, balanced in the 4
classes and sat / unsat

Experiment 2 : evaluates on 100 formulas for each length between
10 and 60 [performance w.r.t. complexity threshold]

47/ 54

First experiment

m solving power : solves > than FD, CC, or BEST

» 22 formulas (out of 369) solved only by FDCC
> 5x less TO than FD and 3x less TO than BEST

m affordable overhead over CC and FD [when they succeed]

> at worst 4x slower, on average 1.1x - 1.5x slower

m robustness : results hold for all 4 classes and sat / unsat

Second experiment
B FDCC again better than FD and ccC

m maximal benefits on hard-to-solve formulas

[closed to complexity threshold]

Bardin, S.

48/ 54

Results (2)

S : # sat answer, U : # unsat answetr,

Total
(369)
S u | TO T
cC 29 | 115 | 225 | 13545
FD 154 | 151 | 64 | 3995
FDCC 181 | 175 | 13 957

BEST 154 | 175 | 40 2492
HYBRID || 154 | 175 | 40 | 2609

TO : # time-out (60 sec), T : time in sec.

Bardin, S.

49/ 54

AEUF-I| AEUF-II
(79) (90)
S U TO T S U TO T
cc 26 | 37 16 987 2 30 58 3485
FD 39 | 26 14 875 35 | 18 37 2299
FDCC 40 | 37 2 144 51 | 30 9 635
BEST 39 | 37 3 202 35 | 30 25 1529
HYBRID 39 | 37 3 242 35 | 30 25 1561
AEUF+LIA-I AEUF+-LIA-II
(100) (100)
S U TO T S U TO T
cc 1 21 78 4689 0 27 73 4384
FD 50 | 47 3 199 30 | 60 10 622
FDCC 52 | 48 0 24 38 | 60 2 154
BEST 50 | 48 2 139 30 | 60 10 622
HYBRID 50 | 48 2 159 30 | 60 10 647

S : # sat answer, U : # unsat answer,
TO : # time-out (60 sec), T : time in sec.

Bardin, S.

49/ 54

Results (2)

#(solved formulas) #(unsolved formulas)
e CCFD e CC e FD. —TO_CCFD ==meTO_CC =TO_FD
0
98
84 56
65 % 40
35
44
8 16
)
10 20 30 40 50 60 10 20 30 40 50 60
Gain with FDCC

=——Miracle == Gain

83
39 6
1
15

10 20 30 40 50 60

Bardin, S. 49/ 54

Results

m an original decision procedure for arrays that combines ideas
from symbolic reasoning and finite-domain constraint solving

» identify which information should be shared
» propose ways of taming communication cost

m a prototype and encouraging experiments (random instances)

» greater solving power (beats even BEST)
» low overhead

m easy to adapt for any CP solver

Future work
m experiments on real-life problems

m extend the approach to handle memory heaps (new, delete)

Bardin, S. 50/ 54

COLIBRI
CP and bitvectors
CP and arrays

About CP and verification

Bardin, S. 51/ 54

CP can be tuned for real-size verification problems
m at least for testing
V' rather good at proving sat, and produce a witness !

X but not very good for valid and =

Beware : forget about any propagation based on concrete
enumeration (can be hidden in learning, global constraints, etc.)

A few interesting features of CP

m approximation of disjunctive constraints

m dynamic addition of constraints, controlled from the
propagators

m easy to quickly support a new constraint : needs only a checker

Bardin, S. 52/ 54

CP and Abstract Interpretation (Al)

Clearly the same kind of domains and computations

m non-relational domains in Al < local domain in CP

m relational domain in Al < global constraint in CP

CP borrowed the widening and L approach

m maybe Al could borrow the domain-split trick / lazy unrolling

Bardin, S. 53/ 54

Clearly, complementary strengths

Two very different ways of exploring a complex formula

m SMT : learning from previous mistakes (past of exploration)

m CP : overapproximation of disjunctions (future of exploration)

About enumeration

m CP : DIV valuations
m SMT, convex theories : 212275l queries

. 2 .
m SMT, non-convex theories : 2latoms|+|V| queries

Bardin, S.

54/ 54

	Introduction
	Colibri
	Bitvectors
	Arrays
	Conclusion

