
About CP and Test Generation
and also arrays and bitvectors

Sébastien Bardin

CEA LIST (Paris, France)

CP Meets CAV

Bardin, S. 1/ 54

A few words of context

CEA is a French large multi-disciplinary research center

nuclear power, astrophysics, quantum physics, biology /
biotechnologies, neuro-sciences, secret military activities,
nano-technologies, green energies, computer science, ...

Formal methods at CEA

3 labs, ≈ 60 full-time researchers

strong focus on industrial applications

model-based engineering (design & verif.),
program verification and testing

a few industrial success stories

I Frama-C (static analysis of safety properties, C code)
I Gatel (CP-based test generation, Scade models)
I Fluctuat (static analysis for numeric precision, C code)

Bardin, S. 2/ 54

Constraint Programming at CEA LIST

CP used for test data generation

while our verification tools rely on AI or SMT

Three different tools at different levels

Gatel : SCADE models

PathCrawler : C programs

Osmose : executable files

One common CP(FD) solver : COLIBRI [mainly B. Marre & B. Blanc]

bounded ints, floats, bitvectors, arrays

tailored at proving satisfiability (and produce witness)

CP framework dedicated to software analysis

I huge domains, many unsat or hard-to-solve formulas

Bardin, S. 3/ 54

Gatel

Test data generation over SCADE programs

X simple high-level control structure : 1 big loop

X mostly simple data types : int, bool, read-only arrays

X no memory heap, pointers, dynamic allocation

× reactive system : test input = (long) sequences of input values

× floats commonly used

× tricky synchronization mechanisms (modes, priorities, clocks)

Goal-oriented generation, global view of the program

cf. Arnaud yesterday

the tool can answer : yes (+ witness), no, ... or timeout

Bardin, S. 4/ 54

Gatel (2)

Technology

COLIBRI

+ constraints dedicated to SCADE “control” operators

I overapprox. of ite / loop, lazy unrolling
I necessary to efficiently handle clocks (SCADE V6)

+ discovery of affine relationships to infer smart unrolling

I relates part of constraints to # iter
I allow to infer a lower bound on the necessary # iter

Applications

used internally by the nuclear certification authority (IRSN)

other uses in aeronautics

feedback : clearly beats (at least one) commercial bmc tool on
the customer’s class of problems

Bardin, S. 5/ 54

PathCrawler & OSMOSE

(Unit) test data generation over embedded systems

C for PathCrawler, binary-level for Osmose

middle-size programs (up to 5000-10000 loc), loops, functions

rather simple data types

yet floats, arrays, memory heap, pointers

OSMOSE : bitvector operations, dynamic jumps

Forward path exploration, local view of the program

output : set of (test inputs, path) + coverage measure

Bardin, S. 6/ 54

PathCrawler & OSMOSE (2)

Technology

Dynamic Symbolic Execution [Sage, Pex, Klee, Exe, Cute, etc.]

I combine concrete execution and symbolic reasoning
I advantages : prune infeasible paths asap, provide correct

underapproximations if required
I search and solving have mostly no interaction here

Constraints : COLIBRI + arrays + memory model + BV

Path search : dedicated search and pruning techniques

Some industrial applications

unit testing of embedded systems
(aeronautics, automative industry)

wcet estimation (PathCrawler)

completion of a customer test suite (OSMOSE)

Bardin, S. 7/ 54

Outline

COLIBRI

CP and bitvectors

CP and arrays

About CP and verification

Bardin, S. 8/ 54

COLIBRI : an efficient CP solver for large domains

COLIBRI [Marre-Blanc 05] is a CP(FD) solver for large domains

Abstract domains in order to tackle huge state space

unions of intervals (Is) + congruence (C)
[X ∈ [0..5], [100..200] ∧ X ≡ 0[5]]

propagations on the two domains deeply interwoven (Is+C)

more precision than just Is × C

Is useful for case-splits [and modular arith. and arrrays]

Local propagators for all standard arithmetic operations

+, −, ≤, <, =, 6=, ×, /, mod , 2,
√

, ‖ · ‖, min, max

Deductive rules for limited symbolic deduction

Global (incomplete) reasoning through difference logic

Bardin, S. 9/ 54

Domains and local propagators

arith plus(A,B,R) :- // A+B=R

(

integer(A,B)? R == eval(A+B) , success

;

D(R) ← D(R) ∩ (D(A) + D(B)),

D(A) ← D(A) ∩ (D(R) - D(B)),

D(B) ← D(B) ∩ (D(R) - D(A)),

wait(...)

)

Define +,− over Is+C

easy for intervals

a bit more tricky for congruences (involves pgcd)

Bardin, S. 10/ 54

A few deduction rules

Backup domain reasoning with simple syntactic deductions

Use a few simple rewriting rules

local rules [e.g. identity elt.]

or more global (FC,C), but no complete reasoning

the main goal is to deduce some x = y

Not preprocess only, included inside the propagator

arith minus(A,B,R) :- // A-B=R

(

integer(A,B)? R == eval(A-B) , success

;

B==0? R==A, success

;

A==B? R==0, success

;

...,

Bardin, S. 11/ 54

Global constraints

Local reasoning is not enough : x < y and y < x

assume Dx = Dy = [0..100]

propagation, step 1 : Dx = [0..99],Dy = [1..100]

propagation, step 2 : Dx = [2..99],Dy = [1..98]

propagation, step 3 : Dx = [2..97],Dy = [3..98]

...

UNSAT

steps linear in the size of domains = BAD !

Bardin, S. 12/ 54

Global constraints (2)

Global (incomplete) reasoning through difference logic∧
xi − yi ≤ k [reason over integers, O(n3)]

answer : unsat, or better bounds

Lazy scheme, deep integration with local propagation

local propagators can send new formulas to ∆, and query it

I x − y ≤ z
I z becomes instantiated to 100
I send x − y ≤ 100 to ∆

Can be expensive

I lots of algorithmic tuning, and probably black magic

Bardin, S. 13/ 54

A few examples

Assume DA = DB = [0..100]

A + B = R : then R ∈ [0..200] // only I

5× A = R : then R ∈ [0..500],R ≡ 0[5] // needs I+C

A + 0 = R : then A = R // deduction rules

A < B ∧ B < A : then unsat // global constraint

Bardin, S. 14/ 54

What else ?

Floating-point arithmetic [a story for another day]

rely on the integer domain, dedicated propagators

high-level view of floats, no bitblasting

Bitvectors : see after

rely on the integer domain, plus a new domain

high-level view of bv, no bitblasting

Arrays : see after

ongoing work

high-level communication between a symbolic decision
procedure and CP

Bardin, S. 15/ 54

What else ? (2)

Quantifiers, UF : no

UF not so useful in test generation

quantifers would be nice for precond/postcond, but need
witness

∨, ⇒, ⇔ : yes, but nothing fancy there

Gatel has its own features

PathC & OSMOSE do not really need that

Search : not part of COLIBRI, each tool has its own

Bardin, S. 16/ 54

Conclusion about CP and verification

CP can be tuned for real-size verification problems

at least for testing

X rather good at proving sat, and produce a witness !

× but not very good for valid and ⇒

Beware : forget about any propagation based on concrete
enumeration (can be hidden in learning, global constraints, etc.)

A few interesting features of CP

approximation of disjunctive constraints

dynamic addition of constraints, controlled from the
propagators

easy to quickly support a new constraint : needs only a checker

Bardin, S. 17/ 54

Outline

COLIBRI

CP and bitvectors

CP and arrays

About CP and verification

Bardin, S. 18/ 54

The theory of bit-vectors

Variables range over arrays of bits

Common operations

bitwise : ∼,&, |, xor
arithmetic : ⊕,	,⊗,�u,�s ,%u,%s

relations : =, 6=,≤u, <u,≤s , <s

shifts : �,�u,�s

extensions : extu(A, k), exts(A, k)

concatenation : A :: B

extraction : A[i ..j]

Bardin, S. 19/ 54

Bit-blasting

Bit-blasting : standard way to solve problems over BV

encode BV formula into an equisatisfiable boolean formula

Overwhelming advantage : rely on the efficiency of SAT solvers

small effort for good performance

easy integration into SMT solvers [Stp,Boolector,MathSat,etc.]

Shortcomings

formula explosion : too large boolean formulas on some
“arithmetic-oriented” BV-formulas

no more information about the BV-formula structure : may
miss high-level simplifications

Bardin, S. 20/ 54

Our approach : word-level CP-based BV solving

Goals

develop a decent CP-based BV solver

no bit-blasting (word-level approach)

see how word-level approach compare wrt. low-level approach

Word-level approach

reason on bit-vectors rather than on their separate bits

BV variables are encoded into bounded integer variables

BV operators are seen as integer arithmetic operators

Bardin, S. 21/ 54

Contribution

Difficulty

word-level CP-based approaches already tried
[Diaz-Codognet 01, Ferrandi-Rendine-Sciuto 02]

performance very far from SAT-based approaches
[Sülflow-Kühne+ 07]

Existing works rely on standard CP(FD)

for small domains and/or linear integer arithmetic

does not fit the needs of word-level BV solving

Our results

a new CP(BV) framework dedicated to BV solving

fill the gap with the best SAT approaches

better scaling than SAT approaches w.r.t. BV sizes

Bardin, S. 22/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value JAK
Bit-vectors operators are encoded by common integer operators

• (cheap) A ≤ B

becomes JAK ≤ JBK

• (cheap) A :: B = R

becomes JAK× 2size(B) + JBK = JRK

• (cheap) ∼ A = R

becomes 2N − 1− JAK = JRK

Bardin, S. 23/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value JAK
Bit-vectors operators are encoded by common integer operators

• (expensive) A ⊕ B = R

becomes (JAK + JBK) mod 2N = JRK
introduce modulo

• (expensive) exts(A,k) = R

become R = ite((JAK < 2N−1)? JAK : JAK + 2k − 2size(A))

introduce case-split

Bardin, S. 23/ 54

Direct word-level encoding : examples (1)

Each bit-vector A is encoded by its unsigned integer value JAK
Bit-vectors operators are encoded by common integer operators

• (very expensive) A & B = R

perform bit-blasting, introduce strong linear relationships

introduce Ai s, Bi s and Ri s in {0, 1}
R1 = min(A1,B1) ∧ . . . ∧ Rn = min(An,Bn)
∧
∑

Ai · 2i−1 = JAK ∧
∑

Bi · 2i−1 = JBK ∧
∑

Ri · 2i−1 = JRK

Bardin, S. 23/ 54

Direct encoding into CP does not work

We tried direct encoding into COLIBRI : very bad !

Local propagation does lots of useless work because of nested operators

typically : a congruence is propagated through +, then destroyed by
mod

Explicit ite propagations are too approximated

we are on very particular cases

Non-linear arithmetic everywhere : difference-logic is useless

Almost nothing on bitwise operations

do not think of bitblasting for word-level approach

With this encoding, COLIBRI performs better then most propagations are

turned off ! !

Bardin, S. 24/ 54

Dedicated features for bitvectors inside COLIBRI

Dedicated propagators for Is/C domain

no explicit case-split or modulo

better propagation, no waste propagation

The new domain BV and its propagators

no bit-blasting on bitwise operators

efficient propagation on most “linear bitwise” operations

Propagators to share information between BV and Is/C

Specific deduction rules to reduce BVA to IA

benefits from difference-logic and other COLIBRI optims

Bardin, S. 25/ 54

Dedicated Is/C propagators

Dedicated propagators for Is/C domain

no introduction of additional variables

no introduction of “modulo” operation everywhere

signed operations handled without explicit case-split

For A ⊕ B = R

Define basic propagation ⊕I from I × I 7→ Is by
[m1..M1]⊕I [m2..M2] 7→

[m1 + m2..M1 + M2] if M1 + M2 < 2N

[m1 + m2 − 2N ..M1 + M2 − 2N] if m1 + m2 ≥ 2N

[m1 + m2..2
N − 1] ∪ [0..M1 + M2 − 2N] otherwise

Unions of intervals are required here

Bardin, S. 26/ 54

Dedicated Is/C propagators

Dedicated propagators for Is/C domain

no introduction of additional variables

no introduction of “modulo” operation everywhere

signed operations handled without explicit case-split

For R = SignExt(A,N’) // initial size N, N ′ ≥ N
Signed Extension : I × N 7→ Is :

// Mask is (2N
′ − 1)− (2N − 1)

[m1..M1] 7→
[m1..M1] if m1,M1 < 2N−1

[m1 + Mask ..M1 + Mask] if m1,M1 ≥ 2N−1

[m1..2
N−1 − 1] ∪ [2N−1 + Mask ..M1 + Mask] otherwise

Unions of intervals are required here

Bardin, S. 26/ 54

Dedicated Is/C propagators (2)

For bit-wise operations : very approximated propagation

A & B = R : propagated like A ≥ R ∧ B ≥ R

we rely on BV-propagators for these constraints

Simplification rules

translation into cheap integer arithmetic when possible
(A⊕ B = R and A ≤ R) ↪→ A + B = R

goal = benefits from COLIBRI global reasoning on arith.
operators

Congruence propagation

only parity propagation

BL and integer translation allow more C-propagation

Bardin, S. 27/ 54

BV domain

BV : simple abstract domain designed to be combined with Is/C

BV(A) records the known bits of A

fixed size arrays of values in {⊥, 0, 1, ?} (called ?-bits)

bvA[k] = 0 implies that A[k] = 0

bvA[k] = 1 implies that A[k] = 1

bvA[k] = ? does not imply anything

bvA[k] = ⊥ indicates a contradiction

Bardin, S. 28/ 54

BV propagators

Propagators : forward and backward propagation of ?-bits

Propagators for non-arithmetic operators

precise and efficient propagation

especially when one operand is know (mix well with labelling)

Propagators for arithmetic operators

limited form of bit-blasting inside the propagator

very restricted propagation

we rely on Is/C propagators for these constraints

Bardin, S. 29/ 54

Communication between Is/C and BL

Consistency propagators : designed to enforce consistency between
the different domains of a same variable

From BL to Is/C

if blX = ?1 ? 101 then X ∈ [21..61]

if blX = ?1 ? 101 then X ≡ 5 mod 8

From Is/C to BL

(N=6) if Dx = [0..15] then blX = 00 ? ? ? ?

(N=6) if X ≡ 5 mod 8 then blX = ? ? ?101

Bardin, S. 30/ 54

Experiments

Goal : comparison of CP(BV), CP(FD) and SAT

CP(BV) vs CP(FD)

evaluate the improvement of each new feature

stability w.r.t. search heuristics

CP(BV) vs CP(FD) vs SAT

evaluate the current gap between technologies

CP(BV) vs SAT, scalability

scalability w.r.t. bit-width

Bardin, S. 31/ 54

Experiments (2)

Test bench

164 problems from the SMTLIB or generated by Osmose

mostly 32-bit, up to 1,700 variables and 17,000 operators

for scalability : 87 linear and non-linear problems
automatically extended to bit-width of 64, 128, 256 and 512

Competitors

Eclipse/IC

STP (win. 06), Boolector (win. 08), MathSat (win. 09)

Bardin, S. 32/ 54

Experiment 1 : CP(BV) vs CP(FD) vs SAT

Tool Category Time # success

Eclipse/IC CP(FD) 1750 79/164

COLIBRI CP(FD) 2436 43/164

COLIBRI-2009 CP(FD) 1520 89/164

COL-D-BL CP(BV) 712 138/164

MathSat SAT 794 128/164

STP SAT 618 144/164

Boolector SAT 291 157/164

Time out = 20s

Bardin, S. 33/ 54

Experiment 2 : CP(BV) vs CP(FD)

Tool Category Time # success

Eclipse/IC-min CP(FD) 1760 78/164

Eclipse/IC-rand CP(FD) 2040 72/164

Eclipse/IC-split CP(FD) 1750 79/164

COL-min CP(FD) 2436 43/164

COL-rand CP(FD) 2560 36/164

COL-split CP(FD) 2550 40 /164

COL-smart CP(FD) 2475 40/164

COL-2009-min CP(FD) 1520 89/164

COL-2009-rand CP(FD) 1513 89/164

COL-2009-split CP(FD) 1682 85/164

COL-2009-smart CP(FD) 1410 95/164

COL-D-min CP(BV) 1453 94/164

COL-D-rand CP(BV) 1392 96/164

COL-D-split CP(BV) 1593 89/164

COL-D-smart CP(BV) 893 125 /164

COL-D-BL-min CP(BV) 1174 108/164

COL-D-BL-rand CP(BV) 1116 111/164

COL-D-BL-split CP(BV) 1349 103/164

COL-D-BL-smart CP(BV) 712 138/164

Time out = 20s

Bardin, S. 34/ 54

Experiment 3 : CP(BV) vs SAT, scalability

� : Boolector
◦ : STP
× COL-D-BL
� : MathSat

Bardin, S. 35/ 54

Results

CP(BV) largely outperform CP(FD)

Results stable w.r.t. the search heuristics

each feature brings something

Fill the gap with SAT approaches

yet, the very best SAT approaches still ahead

CP(BV) scales better than SAT w.r.t. bitwidth

rmk : most scaled examples are UNSAT, and MathSat scales much better

on UNSAT formulas

Bardin, S. 36/ 54

Outline

COLIBRI

CP and bitvectors

CP and arrays

About CP and verification

Bardin, S. 37/ 54

Overview

Goal : an efficient CP(FD) approach for array+FD constraints

go beyond standard filtering-based techniques (element)

motivation = software verification

Approach : combine global symbolic deduction mechanisms with
local filtering in order to achieve better deductive power than both
technique taken in isolation

Results :

an original “greybox” combination for array+FD constraints
I identify which information should be shared
I propose ways of taming communication cost

a prototype and encouraging experiments (random instances)
I greater solving power (beats perfect blackbox combination)
I low overhead

easy to adapt for any CP solver (small API)

Bardin, S. 38/ 54

Why a dedicated combination framework ?

Or : more direct approaches, and why we do not choose them

Standard combination scheme between arrays and CP(FD)
[Nelson-Oppen (NO)]

NO is heavy on non-convex theories like arrays or integers

FD constraints do not fit well into NO assumptions
[infinite model]

Remove all store functions by introducing ∨

CP not well-adapted for handling case-splits

Simple concurrent black-box combination [first success wins]

we want to outperform it in solving power

while still allowing easy re-use of any CP engine

Bardin, S. 39/ 54

The theory of arrays

The standard theory of arrays is defined by

three sorts : arrays A, elements of arrays E , indexes I

function select(T , i) : A× I 7→ E

function store(T , i , e) : A× I × E 7→ A

= and 6= over E and I

Semantics (read-over-write)

(FC) i = j −→ select(T , i) = select(T , j)

(RoW-1) i = j −→ select(store(T , i , e), j) = e

(RoW-2) i 6= j −→ select(store(T , i , e), j) = select(T , j)

Bardin, S. 40/ 54

CP and arrays : local filtering

arrays represented by pairs (index , element)
[explicit arrays of logical variables]

constraints on domains of indexes / elements (and size)

select : well-known constraint element
[Van Hentenryck-Carillon 88, Brand 01]

store : more recent work [Charreteur-Botella-Gotlieb 09]

Element(ARRAY,I,E) :-

(

integer(I)? ARRAY[I] == E, success

;

D(E) ← D(E) ∩
⋃

i∈D(I) D(ARRAY(i)),
D(I) ← {i ∈ D(I)|D(E) ∩ D(ARRAY[i]) 6= ∅},
wait(...)

)

Bardin, S. 41/ 54

CP and arrays : local filtering

arrays represented by pairs (index , element)
[explicit arrays of logical variables]

constraints on domains of indexes / elements (and size)

select : well-known constraint element
[Van Hentenryck-Carillon 88, Brand 01]

store : more recent work [Charreteur-Botella-Gotlieb 09]

Update(A,I,E,A’) :-

(

integer(I)? A’[I]==E, ∀ k 6= I do A’[k]==A[k], success

;

D(E) ← D(E) ∩
⋃

i∈D(I) D(A’(i)),
D(I) ← {i ∈ D(I)|D(E) ∩ D(A’[i]) 6= ∅},
∀ k 6∈ D(I) do A’[k] == A[k]

∀ k ∈ D(I) do D(A’[k]) ← D(A’[k]) ∩ (D(A[k])∪ D(E))

...)

Bardin, S. 41/ 54

CP and arrays : local filtering

arrays represented by pairs (index , element)
[explicit arrays of logical variables]

constraints on domains of indexes / elements (and size)

select : well-known constraint element
[Van Hentenryck-Carillon 88, Brand 01]

store : more recent work [Charreteur-Botella-Gotlieb 09]

Insufficient for many array constraints from program verification

long chains of updates, variable indexes
[see formulas from SMT-LIB]

symbolic reasoning required

Bardin, S. 41/ 54

Our approach

Bardin, S. 42/ 54

Our approach

Bardin, S. 42/ 54

Our approach

Bardin, S. 42/ 54

Our approach

Bardin, S. 42/ 54

Our approach

Bardin, S. 42/ 54

Our approach

Bardin, S. 42/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ e 6= f ∧ i = j

T array of size 100
Domains : 0..100

X cc : unsat quickly (axiom FC)

× fd : needs labelling [no answer in 60 min in COMET]

X fdcc : unsat quickly through cc

Bardin, S. 43/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ e 6= f ∧ i = j

T array of size 100
Domains : 0..100

X cc : unsat quickly (axiom FC)

× fd : needs labelling [no answer in 60 min in COMET]

X fdcc : unsat quickly through cc

Bardin, S. 43/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ e 6= f ∧ i = j

T array of size 100
Domains : 0..100

X cc : unsat quickly (axiom FC)

× fd : needs labelling [no answer in 60 min in COMET]

X fdcc : unsat quickly through cc

Bardin, S. 43/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ e 6= f ∧ i = j

T array of size 100
Domains : 0..100

X cc : unsat quickly (axiom FC)

× fd : needs labelling [no answer in 60 min in COMET]

X fdcc : unsat quickly through cc

Bardin, S. 43/ 54

Examples

i ∈ 1..5 ∧ j ∈ 6..10 ∧ a 6= select(store(store(T , j , a), i , b), j)

× cc : no deduction since i 6= j cannot be inferred

× fd : needs labelling, cannot established
select(store(T , j , a), j) = a

X fdcc : fd deduces i 6= j (domain-check), cc can then deduce
a 6= select(store(T , j , a), j) then a 6= a and unsat

Bardin, S. 43/ 54

Examples

i ∈ 1..5 ∧ j ∈ 6..10 ∧ a 6= select(store(store(T , j , a), i , b), j)

× cc : no deduction since i 6= j cannot be inferred

× fd : needs labelling, cannot established
select(store(T , j , a), j) = a

X fdcc : fd deduces i 6= j (domain-check), cc can then deduce
a 6= select(store(T , j , a), j) then a 6= a and unsat

Bardin, S. 43/ 54

Examples

i ∈ 1..5 ∧ j ∈ 6..10 ∧ a 6= select(store(store(T , j , a), i , b), j)

× cc : no deduction since i 6= j cannot be inferred

× fd : needs labelling, cannot established
select(store(T , j , a), j) = a

X fdcc : fd deduces i 6= j (domain-check), cc can then deduce
a 6= select(store(T , j , a), j) then a 6= a and unsat

Bardin, S. 43/ 54

Examples

i ∈ 1..5 ∧ j ∈ 6..10 ∧ a 6= select(store(store(T , j , a), i , b), j)

× cc : no deduction since i 6= j cannot be inferred

× fd : needs labelling, cannot established
select(store(T , j , a), j) = a

X fdcc : fd deduces i 6= j (domain-check), cc can then deduce
a 6= select(store(T , j , a), j) then a 6= a and unsat

Bardin, S. 43/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ g = select(T , k)
∧e 6= f ∧ e 6= g ∧ f 6= g

T array of size 2, domain of indexes 1..2

× cc : deduces allDifferent(i ,j ,k), does not output unsat
(domains not taken into account)

× fd : needs labelling [labels indexes first ! !]

X fdcc : cc deduces allDifferent(i ,j ,k), then fd deduces
unsat

Bardin, S. 43/ 54

Examples

e = select(T , i) ∧ f = select(T , j) ∧ g = select(T , k)
∧e 6= f ∧ e 6= g ∧ f 6= g

T array of size 2, domain of indexes 1..2

× cc : deduces allDifferent(i ,j ,k), does not output unsat
(domains not taken into account)

× fd : needs labelling [labels indexes first ! !]

X fdcc : cc deduces allDifferent(i ,j ,k), then fd deduces
unsat

Bardin, S. 43/ 54

Communication framework

Communication between fd and cc can be costly

especially, checking (dis-)equalitites of variables through their
domains, |V |2 pairs to be checked

How to tame communication costs ?

a communication policy allowing tight control over
expensive communications

a reduction of the number of pairs of variables to consider
(critical pairs)

Other

labelling is only transmitted to fd

Bardin, S. 44/ 54

Communication framework (2)

Communication policy

cheap communications (cc 7→ fd) made asynchronously

expensive ones (fd 7→ cc) made on request (supervisor)

Critical pairs

focus on pairs whose (dis-)equality will surely lead to new
deductions in cc [see axioms]

focus on critical pairs, involved in RoW-* rules

I e.g. for v=̂select(store(T , i , e), j) : pairs (i , j) and (e, v)

linear in #select, capture the specificity of array axioms

manageable in practise, still brings interesting deductions

incremental computation of critical paires by cc

Bardin, S. 45/ 54

Communication framework (3)

Bardin, S. 46/ 54

Experiments

Random formulas

four kind of formulas (easy / hard array, arith / no arith)

length 10-60

Properties to be evaluated

ability to solve as many formulas as possible

comparison with fd and cc [including overhead]

comparison with blackbox combinations (hybrid and best)

Experiment 1 : evaluates on 369 formulas, balanced in the 4
classes and sat / unsat

Experiment 2 : evaluates on 100 formulas for each length between
10 and 60 [performance w.r.t. complexity threshold]

Bardin, S. 47/ 54

Results

First experiment

solving power : solves > than fd, cc, or best

I 22 formulas (out of 369) solved only by fdcc
I 5x less TO than fd and 3x less TO than best

affordable overhead over cc and fd [when they succeed]

I at worst 4x slower, on average 1.1x - 1.5x slower

robustness : results hold for all 4 classes and sat / unsat

Second experiment

fdcc again better than fd and cc

maximal benefits on hard-to-solve formulas
[closed to complexity threshold]

Bardin, S. 48/ 54

Results (2)

Total
(369)

S U TO T

cc 29 115 225 13545

fd 154 151 64 3995

fdcc 181 175 13 957
best 154 175 40 2492

hybrid 154 175 40 2609

S : # sat answer, U : # unsat answer,
TO : # time-out (60 sec), T : time in sec.

Bardin, S. 49/ 54

Results (2)

AEUF-I AEUF-II
(79) (90)

S U TO T S U TO T
cc 26 37 16 987 2 30 58 3485
fd 39 26 14 875 35 18 37 2299

fdcc 40 37 2 144 51 30 9 635
best 39 37 3 202 35 30 25 1529

hybrid 39 37 3 242 35 30 25 1561

AEUF+LIA-I AEUF+LIA-II
(100) (100)

S U TO T S U TO T
cc 1 21 78 4689 0 27 73 4384
fd 50 47 3 199 30 60 10 622

fdcc 52 48 0 24 38 60 2 154
best 50 48 2 139 30 60 10 622

hybrid 50 48 2 159 30 60 10 647

S : # sat answer, U : # unsat answer,
TO : # time-out (60 sec), T : time in sec.

Bardin, S. 49/ 54

Results (2)

1
7 8

11 12

3

35

69 70

56

18

4 5

25

34

48

40

16

10 20 30 40 50 60

#(unsolved formulas)

TO_CCFD TO_CC TO_FD

4

11 10

21

5
0

39

81

88
83

36

15

10 20 30 40 50 60

Gain with FDCC

Miracle Gain

99
93 92 89 88

97

65

31 30

44

82

96 95

75
66

52
60

84

10 20 30 40 50 60

#(solved formulas)

CCFD CC FD

Bardin, S. 49/ 54

Conclusion

Results

an original decision procedure for arrays that combines ideas
from symbolic reasoning and finite-domain constraint solving

I identify which information should be shared
I propose ways of taming communication cost

a prototype and encouraging experiments (random instances)

I greater solving power (beats even best)
I low overhead

easy to adapt for any CP solver

Future work

experiments on real-life problems

extend the approach to handle memory heaps (new, delete)

Bardin, S. 50/ 54

Outline

COLIBRI

CP and bitvectors

CP and arrays

About CP and verification

Bardin, S. 51/ 54

About CP and verification

CP can be tuned for real-size verification problems

at least for testing

X rather good at proving sat, and produce a witness !

× but not very good for valid and ⇒

Beware : forget about any propagation based on concrete
enumeration (can be hidden in learning, global constraints, etc.)

A few interesting features of CP

approximation of disjunctive constraints

dynamic addition of constraints, controlled from the
propagators

easy to quickly support a new constraint : needs only a checker

Bardin, S. 52/ 54

CP and Abstract Interpretation (AI)

Clearly the same kind of domains and computations

non-relational domains in AI ↔ local domain in CP

relational domain in AI ↔ global constraint in CP

CP borrowed the widening and t approach

maybe AI could borrow the domain-split trick / lazy unrolling

Bardin, S. 53/ 54

CP & SMT

Clearly, complementary strengths

Two very different ways of exploring a complex formula

SMT : learning from previous mistakes (past of exploration)

CP : overapproximation of disjunctions (future of exploration)

About enumeration

CP : D |V | valuations

SMT, convex theories : 2|atoms| queries

SMT, non-convex theories : 2|atoms|+|V |2 queries

Bardin, S. 54/ 54

	Introduction
	Colibri
	Bitvectors
	Arrays
	Conclusion

