Constraint-Based Techniques for Managing Movement in Crowded Airspaces

Stephen F. Smith

The Robotics Institute Carnegie Mellon University Pittsburgh Pennsylvania USA sfs@cs.cmu.edu

Acknowledgments

Carnegie Mellon University
David W. Hildum
The Boeing Company
Patrick D. Hoy & Paul C. Parks Phantom Works
Dennis Rock

Defense and Space Group, Helicopters Division

Carnegie Mellon

Outline of Talk

- Management of Crowded Airspaces
- Dynamic Airspace Deconfliction Project
 - Building Conflict–Free Movement Schedules
 - Integrating with distributed, real-time airspace deconfliction processes
- Future directions

Carnegie Mellon

Airspace Deconfliction: Civilian Aviation

- Increasing volume of aircraft and congestion around airports
- Complexity of determining corridors and sequencing for takeoff, landing and holding

Illustration by Peter Arkle for the New York Times - 26 August 2007

Airspace Deconfliction: Military Aviation

Carnegie Mellon

- Concurrent missions
- Localized and heavily populated environment
- Dynamically generated mission routes
- Increasingly autonomous aircraft
- Pop-up threats, friendly forces
- Strict partitioning of airspace is inefficient

1944

Emerging Concepts: Dynamic Airspace Configuration

- Automated separation assurance (via ground-based or distributed airborne systems)
- User-preferred trajectories
- Dynamic traffic management (adaptive speed control, route modification)
- Adaptable airspace to meet user demand, react to changing weather, maintain safety, etc.
- "DAC allocates airspace as a resource to meet user demand ..."¹

1. P. Kopardekar, K. Bilimoria ad B. Sridhar, "Initial Concepts for Dynamic Airspace Configuration", *Proc.* 7th AIAA Aviation Technology, Integration and Operations Conference, Belfast, Sept. 2007

Carnegie Mellon

Dynamic Airspace Deconfliction

Joint Boeing-CMU research collaboration

Goal: Technology components to support planning and execution of conflict-free air operations

Technical Approach:

Carnegie Mellon

- Leverage previous work in constraint-based scheduling and task allocation
- Investigate and incorporate techniques for representing and reasoning about spatial constraints
- Couple mechanisms for centralized global mission planning with real-time distributed deconfliction processes

Starting Point: Dynamic Task Allocation and Scheduling

Core Technology: Incremental, Constraint-based Search

2. Review Aircraft

ommitmes Levels

Generate and Link Tanker Missions

Applications:

4. Identify Mission Merging Opportunities

Carnegie Mellon

 AMC Allocator - day-to-day mgnt. of airlift & tanker missions

ienerate Missia

3. Compare Alternative (Re)Allocation Options ACS (Air Campaign Scheduler)
 streaming ATO generation

 DARPA Coordinators - distributed management of high-quality joint plans

02 December 2008

Constraint-Based Search Models

Components:

Commitment Strategies/ Heuristics

Active Data Base (Current Solution)

Constraint Propagation

Conflict Handling

Properties:

Carnegie Mellon

- Modeling Generality/Expressiveness
- Incrementality
- Compositional

Building Conflict-Free Movement Schedules

Approach:

- View space as a *capacitated* resource and treat airspace deconfliction as an extended resource allocation problem
- Exploit Octree representation of air space volumes over time
- Generalize the notion of contention-based search heuristics
 - Construct and use a profile of spatial contention to make vehicle-routing and sequencing decisions

Carnegie Mellon

The Octree

- Hierarchical, threedimensional data structure (an extension of the 2D quadtree)
- Recursively subdivides

 a spatial volume into
 smaller subvolumes
 (called octants)
- Localizes common objects indexed by [x,y,z] coordinates

Carnegie Mellon

The Linear Octree

- Represents the octree as a balanced binary tree
- Locational codes computed from the [x,y,z] coordinates of each octant's origin serve as keys in the binary tree

The result is a leaner and more efficient data structure

Storage and Manipulation of Vehicle Routes

 Allocating vehicle routes to octants (a route is a sequence of 4D vectors)

 Determining conflicts using spherical MAZes (Maneuver Avoidance Zones) and the Closest Point of Approach

Allocating Vehicle Routes to Octants

- Vectors are apportioned across all intersecting octants
- A conflict is signaled by the spatial and temporal overlap of two or more vector segments within an octant

Octant Subdivision in Response to a Conflict

Determining Conflicts

- A conflict between two vehicles is centered around the time of its closest point of approach (CPA)
- The duration of a conflict is measured from the beginning to the end of the spatial overlap

Carnegie Mellon

7th INO Workshop

02 December 2008

Searching for Conflicts Among Neighboring Octants

 Neighboring octants must be searched for conflicting vectors whenever a vector is too close to an octant boundary

Generating Conflict-Free Schedules

• Approach:

- start with a base scheduling algorithm for computing a resource-feasible schedule for a set of itineraries
- incorporate a route-planning component
- extend algorithm to allocate space in the octree
- Two phase schedule generation procedure:
 - priming phase build a resource-feasible schedule that ignores spatial capacity constraints
 - scheduling phase use spatial contention profile to build extended solution that enforces spatial constraints

Air Vehicle Mission Routes

Phase One: Priming the Octree

Carnegie Mellon

- The octree is populated by scheduling all expected missions
- Airspace is allocated without consideration of spatial constraints
- Red octants indicate resulting areas of contention

Phase One: Priming the Octree

- The octree is populated by scheduling all expected missions
- Airspace is allocated without consideration of spatial constraints
- Red octants indicate resulting areas of contention

Phase One: Priming the Octree

- The octree is populated by scheduling all expected missions
- Airspace is allocated without consideration of spatial constraints
- Red octants indicate resulting areas of contention

Phase Two: Deconfliction Scheduling

- The primed octree is used to guide the construction of a conflict-free schedule
- Traffic is directed to uncongested areas
- Routes are modified as necessary to avoid conflicts with other vehicles

Carnegie Mellon

Phase Two: Deconfliction Scheduling

- The primed octree is used to guide the construction of a conflict-free schedule
- Traffic is directed to uncongested areas
- Routes are modified as necessary to avoid conflicts with other vehicles

Carnegie Mellon

Evaluation: The Problem Set

✤ 20 data sets

- 50 to 1000 randomly generated targets (in increments of 50)
- Two 700-milessquare target areas
- 10 identically equipped bases

Evaluation: Two Deconfliction Strategies

Baseline Approach

arnegie Mellon

 No primed octree (myopic): if a conflict is detected, an attempt is made – based on the current partial state – to deconflict through route modification

Profile-based Approach

- Create and utilize the primed octree to guide route modification in response to conflicts

Evaluation: Results

 Additional overhead for building the spatial contention profile is compensated for by an improvement in overall scheduling performance for sufficiently sized runs

Multi-Level Airspace Deconfliction Framework

Integrating with Real-Time Deconfliction Processes

- Use globally computed information to drive local deconfliction processes
 - Routes

 (i.e., sequences of waypoints)
 - Potential Conflicts (time and location)
 - Airspace Volume (given a 3D/4D region, where is the traffic?)
 - Airspace Corridor (are there sequences of under-populated 3D regions over time?)

An example query: given a route, determine its traversed octants and all conflicting vectors (in green)

Carnegie Mellon

Operating Concept

- Distributed airborne processes assume responsibility for local deconfliction at execution time
- Global guidance is computed to provide an appropriate envelope of operations
- When any local route change is made, a query is made to the global scheduler to determine downstream impact and recompute guidance

Computing Potential Conflicts

- Neighborhood size the number of aircraft allowed to simultaneously violate separation constraints within an octant before a conflict is signaled
- Encounter region the sum of the separation constraint and the distance a vehicle is allowed to deviate from its path to avoid a conflict
- Encounter list for a given neighborhood size >1, the set of other air vehicles falling within the encounter region of a given aircraft's itinerary. This list constitutes the set of potential conflicts.

7th INO Workshop

Encounter Lists

Status

- Initial, distributed deconfliction process operational (running in simulation)
 - Formulated as a distributed constraint satisfaction problem
 - Protocol for conflict resolution via cooperative partial centralization
 - Encounter lists determine who to interact with
- XML API in place for requesting and communicating global guidance

Future Directions

- Expansion of the spatial constraint model
- Consideration of more real-world constraints (e.g., maneuverability, fuel)
- Strategic analysis of conflict trajectories
- More sophisticated search and optimization procedures

Reference

 D. W. Hildum and S. F. Smith, "Constructing Conflict-Free Schedules in Space and Time", *Proceedings 17th International Conference on Automated Planning and Scheduling (ICAPS-07)"*, Providence RI, September, 2007.

