Air-traffic Flow Management with ILOG CP Optimizer

Ulrich Junker ILOG

Outline

- Eurocontrol's Air Traffic Flow Management Problem
- How to develop a precise and accurate optimization model?
- How to find good and precise solutions quickly?
- Experimental results with ILOG CP Optimizer

Air-traffic Flow Management

(as of 1997)

- flight traffic over Europe is increasing rapidly (70 % in 10 years)
 - \Rightarrow congestion of air traffic control sectors
- central management of European air traffic by Eurocontrol since 1995.
 - \Rightarrow more than 20000 flights to treat each day

Objectives of ATFM

assign a take-off delay (slot!) to each flight such that

- 1. the capacities of sectors are respected
- 2. the flight delay is minimized
- 3. security is ensured
- 4. equity principles are respected

Reducing Congestion

Local Equity Principles

• First-come first served (FCFS)

- the flights will enter a sector in the expected order
- FCFS achieves minimal delay and optimal fairness if no fight enters multiple congested sectors
- FCFS is infeasible in the general case

• FCFS for most-penalizing regulation

- relaxed version that considers only the most-penalizing regulation for each fight
- the principle is not optimal as delaying an earlier fight may reduce the total delay if it traverses multiple congested sectors
- meaning of this relaxed principle?

Questions

- How much can the total flight delay be reduced if the FCFS principle is not applied?
- Can such an allocation be done online as frequent replannings (e.g. each 5 min.) are necessary during the day of operation?
 study on innovative slot allocation algorithms (1995-97)

Outline

- Eurocontrol's Air Traffic Flow Management Problem
- How to develop a precise and accurate optimization model?
- How to find good and precise solutions quickly?
- Experimental results with ILOG CP Optimizer

European ATFM Problem (1997)

- $\bullet m$ sectors and n flights
- flights F_j entering sector j
- expected-time over $eto_{i,j}$ for each $i \in F_j$
- capacity $c_{j,k}$ limits the number of flights that enter sector j during $[s_{j,k}, e_{j,k})$
 - contractual constraints: capacity per hour
 - smoothing constraints: capacity per intervals of $5 \mbox{ or } 10 \mbox{ min.}$
- maximal delay d_{max}

Constraint Programming for ATFM

• Integer Variables:

delay $d_i \in [0, d_{max}]$ of fight i

• Capacity Constraints:

a limited number $c_{j,k}$ of fights can enter sector jduring $[s_{j,k}, e_{j,k})$: $card \{i \in F_j \mid s_{j,k} \le d_i + eto_{i,j} < e_{j,k}\} \le c_{j,k}$ • Objective:

minimize the total delay $D = \sum_{i=1}^{n} d_i$

Integer Programming for ATFM

• approach:

adapted from [Bertsimas and Stock, 1994]

• time representation:

- all times $s_{j,k}, e_{j,k}, eto_{j,k}$ are rounded to multiples of a given Δ (e.g. 5 minutes)
- the binary variable $d_{i,t}$ has the value 1 iff the fight i has at least the delay t

• structural constraints

if the delay of flight i is at least $t+\Delta$ then it is at least t

$$d_{i,t} \ge d_{i,t+\Delta}$$

Integer Programming (cnrd)

capacity constraints

$$\sum_{i \in F_j} (d_{i,round(s_{j,k}-eto_{j,k})} - d_{i,round(e_{j,k}-eto_{j,k})}) \leq c_{j,k}$$

• objective:

minimize the total delay $D = \sum_{i=1}^{n} \sum_{t} \Delta \cdot d_{i,t}$

- problems
 - large size (48000 variables for 2000 fights)
 - no exact results: extra delay caused by rounding operations

Outline

- Eurocontrol's Air Traffic Flow Management Problem
- How to develop a precise and accurate optimization model?
- How to find good and precise solutions quickly?
- Experimental results with ILOG CP Optimizer

Problem Solving Methods

- chronological scheduling:
 - achieves first-come, first-served on a global basis
 - fi rst solutions are clearly non-optimal
- decomposition by time periods: not possible
 - decisions about a period influence past and future periods
- heuristic repair: good reduction of delay
 - repair violations of capacity constraints (overloads)
 - minimizes violations by delaying fights that traverse several overloaded sectors.

Heuristic Repair [Minton]

• Search state

- variables have a current value
- constraints have a degree of violation

• Repair action:

- choose a violated constraint C
- choose a variable x of C and a new value v' of x such that *violations* are minimized by changing the value of x from v to v'
- assign v^\prime to x
- Properties:
 - a variable can be repaired several times
 - search can enter cycles

Heuristic Repair & Tree Search

• Search state

- variables have a current value and a domain
- constraints have a degree of violation

• Repair action:

- choose a violated constraint C
- choose a variable x of C and a new value v' from the domain of x such that *violations* are minimized by changing the value of x from v to v'
- branch: assign v' to x or remove v' from x's domain

• Properties:

- a variable can be repaired only once on a branch
- dead-ends can be encountered frequently

Least-commitment strategy

• Search state

- variables have a current value and a domain
- constraints have a degree of violation

• Repair action:

- choose a violated constraint C, a variable x with current value v and new value v' as before
- left branch: remove v from x's domain and use v' as new current value
- right branch: assign v to x and keep it as current value

• Properties:

 a variable can be repaired several times on a left descent

Heuristic Repair for ATFM

• current values:

lower bounds $lb(d_i)$ of variables d_i

• violations:

overloads of capacity constraints

$$\begin{array}{l} L_{j,k} \,=\, \{i \in F_j \mid s_{j,k} \leq lb(d_i) + eto_{i,j} < e_{j,k} \} \\ O_{j,k} \,=\, max(card(L_{j,k}) - c_{j,k}, 0) \end{array}$$

• repair action:

- **1.** choose j, k with highest $O_{j,k}$
- 2. choose a fight $i \in L_{j,k}$ s.t. setting $lb(d_i)$ to $e_{j,k} eto_{i,j}$ leads to the highest reduction of the sum of overloads
- **3.** left branch: set $lb(d_i)$ to $e_{j,k} eto_{i,j}$
- 4. right branch: set $ub(d_i)$ to $e_{j,k} eto_{i,j} 1$

Outline

- Eurocontrol's Air Traffic Flow Management Problem
- How to develop a precise and accurate optimization model?
- How to find good and precise solutions quickly?
- Experimental results with ILOG CP Optimizer

Experimental Results

example with 1989 flights and 16 sectors (= 1 day of traffic over France)

Constraints	Strategy	Total delay	CPU time
contractual +	chronological	32401 min	0.17 sec.
10 min-smoothing	heuristic repair	21267 min	0.69 sec.
only	chronological	19441 min	0.15 sec.
contractual	heuristic repair	12492 min	0.26 sec.
only	chronological	16887 min	0.15 sec.
10-min-smoothing	heuristic repair	11537 min	0.5 sec.

heuristic repair reduces the delay by about 30%

Conclusion

• Modelling:

CP allows ATFM models of precise time granularity and avoids rounding errors of IP models that use time steps of 5 minutes

• Solving:

Heuristic repair strategy (with least-commitment branching) achieves a good delay minimization for the ATFM problem while allowing online allocation during the day of operation.

Open Questions

• Explanations:

- stakeholders need explanations to accept a solution
- explanation of optimality is a new research topic
 see IJCAI-09 Tutorial on Explanations in Problem
 Solving
- Decision Theory:
 - what is the theoretically well-founded formalization of objectives such as equity?
 - interesting topic for Algorithmic Decision Theory as studied by European COST Action IC0602 + ADT Conference in Venice, Oct 2009