

Motivations

- The CAVERN project (ANR, 2008-2010, part: ILOG, INRIA, CEA, U. of Nice): • To explore the capabilities of Constraint Programming for Automated Program Testing and Verification
- We build a unified framework (called Euclide) to perform:
 - test case generation for structural coverage
 counter-example generation to safety properties
 (partial) program proving

for safety-critical C programs

TCAS (Traffic Anti-Collision Avoidance System) software is a real-life example of safety-critical embedded system. •

Strong requirements in terms of verification.

Traffic alert and Collision Avoidance System

Embedded system on commercial aircrafts

Publicly available implementation for Test and Evaluation (from the *Siemens suite*)

http://sir.unl.edu/portal/

DO-178 Level B Statement and decision coverage is mandatory

	Safety properties in ACSL
P1a	/*@ behavior P1a : assumes Up_Separation ≥ Positive_RA_Alt_Tresh && Down_Separation < Positive_RA_Alt_Tresh; ensures \result != need_Downward_RA;
P1b	/*@ behavior P1b : assumes Up_Separation < Positive_RA_Alt_Tresh && Down_Separation ≥ Positive_RA_Alt_Tresh; ensures \result != need_Upward_RA;
P2a	/*@ behavior P2a : assumes Up_Separation < Positive_RA_Alt_Tresh && Down_Separation < Positive_RA_Alt_Tresh ; ensures \result != need_Downward_RA;
P2b	/*@ behavior P2b : assumes Up_Separation < Positive_RA_Alt_Tresh && Down_Separation < Positive_RA_Alt_Tresh && Up_Separation < Down_Separation; ensures \result != need_Upward_RA;
P3a	/*@ behavior P3a : assumes Up_Separation >= Positive_RA_Alt_Thresh && Down_Separation >= Positive_RA_Alt_Thresh && Own_Tracked_Alt > Other_Tracked_Alt; ensures \result != need_Downward_RA; @*/

Our CP approach

Constraint generation

Translate the each C function into a constraint program P Translate the property into a constraint S

Constraint solving

Try to prove that $sol(P \land \neg S) = \emptyset$

SS	A form
Each use of a varia	ble refers to a single definition
x = x + y; y = x - y; x = x - y;	$ \begin{array}{l} x_1 \ = \ x_0 \ + \ y_0; \\ y_1 \ = \ x_1 \ - \ y_0; \\ x_2 \ = \ x_1 \ - \ y_1; \end{array} $
i =; i =; else i = :	if() i1 =; else i2 =;

- Multiplication
- Logical operations (z > x+y | | z < x+y-3)
- reification (z = x > y)
- Conditionals (if then else)

→ Dynamic Linear Relaxations (DLRs)

How to implement join_poly(QPoly₁,QPoly₂) with a linear solver ?

- ☞ Convex hull computation [Benoy, King, Mesnard TPLP 2004]
- Big-M relaxation + projection
- Simplex-based weak_join operator (from the Abstract Interpretation community) [Sankaranarayanan et al. VMCAI'06]
- $\underline{\text{NB1:}}$ All these computations are exponential in the number of dimensions in the worst case

 $\underline{\text{NB2:}}$ switching to the so-called polyhedra « generator representation » is prohibitive in our context

	Weak_join operator
The disjunc	tion: $\begin{cases} g_1^i(x) \ge c_1^i \\ i \in I \end{cases} \lor \begin{cases} g_2^i(x) \ge c_2^i \\ i \in I \end{cases}$ $x = (x_1, \dots, x_n), \text{ where } x_i \in Z \end{cases}$
Weak_join:	α_1 = Minimize $g_1^1(x)$ subject to $\left\{g_2^i(x)\right\}_{i \in I}$
	$\begin{aligned} & \cdots \\ & \alpha_{p} &= \text{Minimize } g_{1}^{card(I)}(x) \text{ subject to } \left\{ g_{2}^{i}(x) \right\}_{i \in I} \\ & \alpha_{p+1} &= \text{Minimize } g_{2}^{1}(x) \text{ subject to } \left\{ g_{1}^{i}(x) \right\}_{i \in I} \\ & \cdots \\ & \alpha_{2p} &= \text{Minimize } g_{2}^{card(I)}(x) \text{ subject to } \left\{ g_{1}^{i}(x) \right\}_{i \in I} \\ & g_{1}^{1}(x) \geq Min(\alpha_{1}, c_{1}^{1}), \\ & \cdots \\ & g_{2}^{card(I)}(x) \geq Min(\alpha_{2p}, c_{2}^{card(I)}) \end{aligned}$

Num Results		Time	Mem.
P1a Property pro	ved	0.7s	4.6Mo
P1b Property pro	ved	0.7s	4.6Mo
P2a Property pro	ved	0.6s	4.6Mo
P2b Counter-exa	mple found	0.7s	4.6Mo
P3a Counter-exa	mple found	5.4s	6.3Mo
P3b Property pro	ved	1.2s	4.6Mo
P4a Counter-exa	mple found	6.8s	6.9Mo
P4b Counter-exa	mple found	2.7s	5.9Mo
P5a Property pro	ved	0.6s	4.6Mo
P5b Counter-exa	mple found	1.0s	4.6Mo

	Execution model	Property checking			
Property	assumptions	Num. of states	Num. of paths	PDL property	Num. of satisfying paths
	<pre>Up_Separation:Positive_RA_Alt_thresh and Down_Separation<positive_ra_alt_thresh< pre=""></positive_ra_alt_thresh<></pre>	4228	58	$\exists p(ASTEn \rightarrow ASTDownRA)$	0
P1	Up_Separation <positive_ra_alt_thresh and<br="">Down_Separation>Positive_RA_Alt_Thresh)</positive_ra_alt_thresh>	4228	58	$\exists p(ASTEn \rightarrow ASTUpRA)$	0
	Up_Separation <positive_ra_alt_thresh and<br="">Down_Separation<positive_ra_alt_thresh and<br="">Up_Separation>Down_Separation</positive_ra_alt_thresh></positive_ra_alt_thresh>	4100	62	$\exists p(ASTEn \rightarrow ASTDownRA)$	0
F2	Up_Separation«Positive_RA_Alt_Thresh and Down_Separation«Positive_RA_Alt_Thresh and Up_Separation«Down_Separation	4100	62	$\exists p(ASTEn \rightarrow ASTUpRA)$	0
P3	<pre>Up_Separation>=Positive_RA_Alt_Thresh and Down_Separation>=Positive_RA_Alt_Thresh and own_Tracked_Alt>Other_Tracked_Alt</pre>	2212	38	$\exists p(ASTEn \rightarrow ASTDownRA)$	•
	Up_Separations=Positive_RA_Alt_Thresh and Down_Separations=Positive_RA_Alt_Thresh and own_Tracked_Alt <other_tracked_alt< td=""><td>2212</td><td>38</td><td>$\exists p(ASTEn \rightarrow ASTUPRA)$</td><td>0</td></other_tracked_alt<>	2212	38	$\exists p(ASTEn \rightarrow ASTUPRA)$	0

« I think that your analysis of P3A is right. Recently we have redone the TCAS experiment for a workshop paper (attached for your reference) with a different symbolic executor and we found an aerror in that property too.I did not check your output in detail, but I guess that you bumped in the same error. «

Further work

· Improving our weak_join implementation - removing spurious equalities

- tmp = ..., ... = tmp +
- adds a dimension to the polyhedron !
- Replacing SICStus clpq library by a verified LP solver (Qsopt_ex for example [Applegate et al. OR Letters 2007])
- An efficient global constraint for function calls: Abstracting the relations due to function calls (replace the constraints of the callee by a polyhedral abstraction)

- Deal with modular integer computations

