
1

TCAS Software Verification using
Constraint Programming

Arnaud Gotlieb
INRIA Rennes – Bretagne Atlantique

CT for ATM/ATC workshop – Dec. 2th, 2008

Motivations

• The CAVERN project (ANR, 2008-2010, part: ILOG, INRIA, CEA, U. of Nice):

To explore the capabilities of Constraint Programming for Automated Program
Testing and Verification

• We build a unified framework (called Euclide) to perform:

- test case generation for structural coverage
- counter-example generation to safety properties
- (partial) program proving

for safety-critical C programs

• TCAS (Traffic Anti-Collision Avoidance System) software is a real-life example of
safety-critical embedded system.

Strong requirements in terms of verification.

Agenda

• Motivations

• TCAS software verification

• A Constraint Programming approach

• Experimental results

• Further work

Traffic alert and Collision Avoidance System

Embedded system on commercial aircrafts

Publicly available implementation for Test and
Evaluation (from the Siemens suite)

http://sir.unl.edu/portal/

DO-178 Level B
Statement and decision coverage is mandatory

2

Tcas.c : component that issues
Traffic Advisory and Resolution Advisory (170 LOC)

int alt_sep_test()
{

bool enabled, tcas_equipped, intent_not_known;
bool need_upward_RA, need_downward_RA;
int alt_sep;

enabled = High_Confidence && (Own_Tracked_Alt_Rate <= 600) && (Cur_Vertical_Sep > 600);
tcas_equipped = Other_Capability == 1;
intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == 0;

alt_sep = 0;

if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))
{
need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();
need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();
if (need_upward_RA && need_downward_RA)

alt_sep = 0;
else if (need_upward_RA)

alt_sep = 1;
else if (need_downward_RA)

alt_sep = 2;
else

alt_sep = 0;
}

return alt_sep;
}

The alt_sep_test function

-14 global variables

Own_Track_Alt
Other_Track_Alt
Up_Separation
Down_Separation
Positive_RA_Alt_Tresh
…

- Calls 9 distinct functions

- Nested conditionals, logical
operators, reifications, ..
But, no loops, no fp,
no pointers

Safety properties:

P1: Safe advisory selection
P2: Best advisory selection
P3: Avoid unnecessary crossing
P4: No crossing advisory selection
P5: Optimal advisory selection (subsumes P1 and P2)

A : Up_Separation
B : Down_Separation

A bit of anti-collision Theory

/*@ behavior P3a : assumes
Up_Separation >= Positive_RA_Alt_Thresh &&
Down_Separation >= Positive_RA_Alt_Thresh &&
Own_Tracked_Alt > Other_Tracked_Alt; ensures \result != need_Downward_RA;
@*/

P3a

…

/*@ behavior P2b : assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh &&
Up_Separation < Down_Separation; ensures \result != need_Upward_RA;

P2b

/*@ behavior P2a : assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh ; ensures \result != need_Downward_RA;

P2a

/*@ behavior P1b : assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation ≥ Positive_RA_Alt_Tresh; ensures \result != need_Upward_RA;

P1b

/*@ behavior P1a : assumes
Up_Separation ≥ Positive_RA_Alt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh; ensures \result != need_Downward_RA;

P1a

Safety properties in ACSL

3

How prove these properties ?

• In practice, manual code review and testing

• In Theory:

- Hoare Logic (weakest precondition computations)
- Model checking
- Abstract Interpretation-based static analysis

- Constraint-based verification and testing

Agenda

• Motivations

• TCAS software verification

• A Constraint Programming approach

• Experimental results

• Further work

Our CP approach

Translate the each C function into a constraint program P
Translate the property into a constraint S

Constraint generation

Constraint solving

Try to prove that sol(P ∧ ¬S) = ∅

Viewing an assignment statement as a relation requires to rename the variables

i++; i2 = i1 + 1

Static Single Assignment (SSA) form (Cytron et al. TOPLAS 1991)
or single assignment language

A constraint model of C functions

4

SSA form

x = x + y;
y = x – y;
x = x – y;

Each use of a variable refers to a single definition

x1 = x0 + y0;
y1 = x1 – y0;
x2 = x1 – y1;

if(…)
i =… ;

else
i =… ;

… = i + …

if(…)
i1 =… ;

else
i2 =… ;

i3 = Φ(i1,i2) ;
… = i3 + …

Variable declaration Domain constraint

unsigned short i; I0 ∈ 0 .. 216-1

Assignment, decision Arithmetical constraints {=, <,..}

j2 = j1 * i J2 = J1 * I0
i < j I < J

Conditionnal (SSA)
If d then c1; else c2; v3=φ(v1,v2) ITE(D, C1 /\ v3=v1, C2 /\ v3=v2)

Function call (SSA)
r = f(a) ; SP_CALL(f, A, G1, …, Gn, R)

SSA form Constraint Program

Implemented as global constraints

/*@ behavior P1b :

assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation ≥ Positive_RA_Alt_Tresh; ensures \result != need_Upward_RA;

Translating a property into constraints

Up_Separation < Positive_RA_Alt_Tresh ∧
Down_Separation ≥ Positive_RA_Alt_Tresh ∧

R = need_Upward_RA

S = Preconditions Post-relations

Then, ¬S = Preconditions ∧ ¬Post-relations

Constraint solving
sol(P ∧¬S) ?

• P ∧¬S is a non-linear FD constraint problem with global constraints

• We develop our own constraint solver based on:

- Constraint propagation + bound-consistency filtering
- Linear Programming techniques over Q

• Why LP ? : capturing linear global behaviour

• Why Q ? : preserving correctness is essential for program verification !

• Property: If the LP relaxed problem does not contain integer points then the
original problem is unsatisfiable (but, the converse is false!)

• synchronous cooperation of constraint propagation and simplex over Q
through the usage of Dynamic Linear Relaxations

5

Non-linear expressions in tcas.c

• Multiplication
• Logical operations (z > x+y || z < x+y–3)
• reification (z = x > y)
• Conditionals (if then else)

Dynamic Linear Relaxations (DLRs)

DLR of multiplication [McCormick 76]

{ Z - Ya – Xc +ac ≥ 0,
Xd – Z –ad + aY ≥ 0,
bY – bc – Z + Xc ≥ 0,
bd – bY – Xd + Z ≥ 0,
a ≤ X ≤ b,
c ≤ Y ≤ d,
e ≤ Z ≤ f

} a b

c

d

A consequence of (X – a)(Y – c) ≥ 0
(X – a)(d – Y) ≥ 0

…

Z = X * Y, X in a..b, Y in c..d, Z in e..f

DLR of reification

• Reification associates a boolean var. to an expression
Z = (X ≤ Y) where X in a..b, Y in c..d and Z in 0..1

{ 1 – (X – Y) – (1 - a – d)*Z ≤ 0, (X – Y) – (b – c)*(1-Z) ≤ 0}

F(X,Y)

Z = (F(X,Y) ≤ 0)

Min(F(X,Y)) Max(F(X,Y))≤ ≤

DLR of ITE(Dec, C1 ,C2)

- Global constraint is considered iterativelly in the constraint store

- Variables of the relation = input-output variables of the conditional
- Awaked when a bound of at least one variable has been pruned
- Filtering algorithm (perfomed when awaked):

if post(Dec ∧ C1) fails

then DLR(¬Dec ∧ C2) and remove ITE

else if post(¬Dec ∧ C2) fails

then DLR(Dec & C1) and remove ITE

else join_dom(Dom1, Dom2) and join_poly(Qpoly1,Qpoly2)

6

How to implement join_poly(QPoly1,QPoly2)
with a linear solver ?

Convex hull computation [Benoy, King, Mesnard TPLP 2004]

Big-M relaxation + projection

Simplex-based weak_join operator
(from the Abstract Interpretation community)
[Sankaranarayanan et al. VMCAI’06]

NB1: All these computations are exponential in the number of dimensions
in the worst case

NB2: switching to the so-called polyhedra « generator representation »
is prohibitive in our context

Weak_join operator

The disjunction:

Weak_join: { }

{ }
{ }

{ }

),()(
...

),,()(

)(subject to)(Minimize
...

)(subject to)(Minimize

)(subject to)(Minimize
...

)(subject to)(Minimize

)(
22

)(
2

1
11

1
1

1
)(

2p2

1
1
21

2
)(

1p

2
1
11

Icard
p

Icard

Ii
iIcard

Ii
i

p

Ii
iIcard

Ii
i

cMinxg

cMinxg

xgxg

xgxg

xgxg

xgxg

α

α

α

α

α

α

≥

≥

=

=

=

=

∈

∈+

∈

∈

{ } { } Ii
ii

Ii
ii cxgcxg ∈∈ ≥∨≥ 2211)()(

Ζ= ∈in xxxx where),,..,(1

Weak_join operator
convex hull computation

Weak join (Sankaranarayanan et al. VMCAI’06)

A B

A B

convex hull computation

Weak join (Sankaranarayanan et al. VMCAI’06)

A B

A B

Weak_join operator

7

convex hull computation

Weak join (Sankaranarayanan et al. VMCAI’06)

A B

A B

Weak_join operator
convex hull computation

Weak join (Sankaranarayanan et al. VMCAI’06)

A B

A B

Weak_join operator

Weak_join operator
- Doesn’t require any Fourier’s Elimination step !

Very good running time on tcas.c , acceptable loss of precision

- But, doesn’t commute with Join_dom

Join_dom(Q1,Q2)Join_poly(Q1,Q2)

- Doesn’t « discover » new linear relations among the two disjuncts

Agenda

• Motivations

• TCAS software verification

• A Constraint Programming approach

• Experimental results

• Further work

8

Euclide’s architecture

-test data

Negated property

- fail
- ?

Implemented in SICStus Prolog, SSA form generated by an single-pass
algorithm [Brandis & Mössenbock 94], clpfd and clpq libraries.

• Use of the clpfd library for Constraint Propagation over Finite Domains
• Use of the clpq library for Linear Programming over Q

C program

SSA form

Euclide Program

Preprocessed file

Normalized code

Symbol table

Points-to analysis

A simple collaboration principle

Euclide

clpfdclpq

post(X in Min..Max),

post(C)

post(Min ≤ X, X ≤ Max)

post(relax(C))

Simplex calls
cutting planes

Maintains coherence
throughs DLRs

Propagation/Search
+ alarms

FixpointsSolved form of the polyhedron

Solution, fail or timeout

First experimental results

Intel Core Duo 2.4GHz clocked PC with 2Go of RAM

And in the Literature !!!

Fig. Extracted from « Using Symbolic Execution for Verifying Safety-Critical Systems » ESEC-FSE 2001

???
Author said :

« I think that your analysis of P3A is right.
Recently we have redone the TCAS experiment for a workshop paper (attached for your reference) with a
difefrent symbolic executor and we found an aerror in that property too.I did not check your output in detail,
but I guess that you bumped in the same error. «

9

???

Fig. Extracted from « Modular Verification of Software Components in C »

Agenda

• Motivations

• TCAS software verification

• A Constraint Programming approach

• Experimental results

• Further work

Further work

• Improving our weak_join implementation
- removing spurious equalities

tmp = … ,
… = tmp + …

adds a dimension to the polyhedron !
- Replacing SICStus clpq library by a verified LP solver (Qsopt_ex for

example [Applegate et al. OR Letters 2007])

• An efficient global constraint for function calls:
Abstracting the relations due to function calls (replace the constraints of the
callee by a polyhedral abstraction)

- Deal with modular integer computations

Thanks you !

