TCAS Software Verification using
Constraint Programming

Arnaud Gotlieb
INRIA Rennes — Bretagne Atlantique

CT for ATM/ATC workshop — Dec. 2th, 2008

Motivations

The CAVERN project (ANR, 2008-2010, part: ILOG, INRIA, CEA, U. of Nice):

To explore the capabilities of Constraint Programming for Automated Program
Testing and Verification

We build a unified framework (called Euclide) to perform:
- test case generation for structural coverage
- counter-example generation to safety properties
- (partial) program proving
for safety-critical C programs
TCAS (Traffic Anti-Collision Avoidance System) software is a real-life example of
safety-critical embedded system.

Strong requirements in terms of verification.

Agenda

* Motivations
==p « TCAS software verification
< A Constraint Programming approach

« Experimental results

« Further work

Traffic alert and Collision Avoidance System

Introduction to

Embedded system on commercial aircrafts TCA S l’

Version 7

Publicly available implementation for Test and
Evaluation (from the Siemens suite)

http://sir.unl.edu/portal/

DO-178 Level B
Statement and decision coverage is mandatory

Tcas.c : component that issues

Traffic Advisory and Resolution Advisory (170 LOC)

: — . — H

e 7l Pl RATuazed
e 3tmmi ‘H]il::nnd} C
o —» Suvallesc Rangs

The alt sep test function

-14 global variables

int alt_sep_test()

bool enabled, tcas_equipped, intent_not_known;

Own_Track_Alt bool need_upward_RA, need_downward_RA;

int alt_sep;
Other_Track_Alt
T oy enabled = High_Confidence && (Own_Tracked_Alt_Rate <= 600) && (Cur_Vertical_Sep > 600);
Up_Separation tcas_equipped = Other_Capabilty == 1;
Downiseparatlon intent_not_known = Two_of_Three_Reports_Valid && Other_RAC == 0;

Positive_RA_Alt_Tresh alt sep=0:
. if (enabled && ((tcas_equipped && intent_not_known) || !tcas_equipped))
{
need_upward_RA = Non_Crossing_Biased_Climb() && Own_Below_Threat();

s . need_downward_RA = Non_Crossing_Biased_Descend() && Own_Above_Threat();
- Calls 9 distinct functions if (need_upward_RA &8 need_downward_RA)

- Nested conditionals, logical
operators, reifications, .. . 3
But, no loops, no fp, alt sep=0;
no pointers !

retumn alt_sep;

A bit of anti-collision Theory

Safety properties:

P1: Safe advisory selection

P2: Best advisory selection

P3: Avoid unnecessary crossing

P4: No crossing advisory selection

P5: Optimal advisory selection (subsumes P1 and P2)

&?5

TCAL

A : Up_Separation
B : Down_Separation

Safety properties in ACSL

P1a |/*@ behavior P1a: assumes
Up_Separation = Positive_RA_AIt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh; ensures \result != need_Downward_RA;

P1b | /*@ behavior P1b : assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation = Positive_RA_AIlt_Tresh; ensures \result != need_Upward_RA;

P2a | /*@ behavior P2a: assumes
Up_Separation < Positive_RA_AIlt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh ; ensures \result = need_Downward_RA;

P2b | /*@ behavior P2b : assumes
Up_Separation < Positive_RA_Alt_Tresh &&
Down_Separation < Positive_RA_Alt_Tresh &&

Up_Separation < Down_Separation; ensures \result 1= need_Upward_RA;

P3a |/*@ behavior P3a: assumes
Up_Separation >= Positive_RA_Alt_Thresh &&
Down_Separation >= Positive_RA_Alt_Thresh &&

Own_Tracked_Alt > Other_Tracked_Alt; ensures \result = need_Downward_RA;
@/

How prove these properties ? Agenda

* Motivations
« In practice, manual code review and testing
» TCAS software verification
« In Theory:

=P .« A Constraint Programming approach
- Hoare Logic (weakest precondition computations)
- Model checking . E . tal It
- Abstract Interpretation-based static analysis Xperimental results

* Further work

- Constraint-based verification and testing

Our CP approach A constraint model of C functions

. . Viewing an assignment statement as a relation requires to rename the variables
Constraint generation

Translate the each C function into a constraint program P
Translate the property into a constraint S

Constraint solving

-> Static Single Assignment (SSA) form (Cytron et al. TOPLAS 1991)
or single assignment language

Try to prove that sol(P A —S)=J

SSA form

Each use of a variable refers to a single definition

SSA form

Variable declaration

unsigned short i;

Assignment, decision

—— Constraint Program

Domain constraint

lp € 0..2161

Arithmetical constraints {=, <,..}

x =x+y; %, = %5 + ygi

Yy = X - Yi Y1 T X1 7 Yo/

X =X - y; X, = X — Yii

. if(.)

SIS i
BT else

else i2 = ;

i3 = @(i1,12) ¢
L= 13+

Jp =3, * 1 Jy=di %y
i<3 I<J

Conditionnal (SSA)
If d then c,, else c,; Vv;=0(v,,V,) ITE(D, C1/\V3=V1v C, Nvy=v,)
Function call (SSA)

r=fa) ; SP_CALL(f, A, G1, ..., Gn, R)

Implemented as global constraints

Translating a property into constraints

/*@ behavior P1b :

assumes
Up_Separation < Positive_RA_Alt_Tresh &&

Down_Separation 2 Positive_RA_Alt_Tresh; ensures \result != need_Upward_RA;

S = Preconditions =» Post-relations

Then, —S = Preconditions A —Post-relations

Up_Separation < Positive_RA_AIt_Tresh A
Down_Separation 2 Positive_RA_AIlt_Tresh A
R = need_Upward_RA

Constraint solving
sol(P A=S) ?

* P A=S is anon-linear FD constraint problem with global constraints
« We develop our own constraint solver based on:

- Constraint propagation + bound-consistency filtering
- Linear Programming techniques over Q

* Why LP ? : capturing linear global behaviour
< Why Q? : preserving correctness is essential for program verification !

« Property: If the LP relaxed problem does not contain integer points then the
original problem is unsatisfiable (but, the converse is false!)

» synchronous cooperation of constraint propagation and simplex over Q
through the usage of Dynamic Linear Relaxations

Non-linear expressions in tcas.c

Multiplication

Logical operations (z > x+y || z < x+y-3)
+ reification (z = x > y)
+ Conditionals (if then else)

-> Dynamic Linear Relaxations (DLRs)

DLR of multiplication [McCormick 76]

Z=X*Y, Xina.b,Yinc.d, Zine.f

@ {Z-Ya-Xc+acz0,
Xd-2Z-ad +aY 20,
bY-bc—-Z+Xc=0,
bd -bY-Xd+Z20,
asX<hb,
c<Y=<d,

esZsf

}

A consequence of (X—a)(Y-c)>0
(X-a)d-Y)=0

.

DLR of reification

Reification associates a boolean var. to an expression
Z=(X<Y) where Xina..b,Yinc.d and Zin0..1

@ {1-(X-Y) —(1-a-d)*Z £ 0, (X-Y)-(b-c)*(1-Z) < 0}

]

Min(F(XY) < FXY) < Max(F(XY))

Z=(F(X,Y)<0)

DLR of ITE(Dec, C, ,C,)

- Global constraint - is considered iterativelly in the constraint store
- Variables of the relation = input-output variables of the conditional
- Awaked when a bound of at least one variable has been pruned
- Filtering algorithm (perfomed when awaked):
if post(Dec A C,) fails
then DLR(-Dec A C,) and remove ITE

else if post(—Dec A C,) fails

then DLR (Dec & C,) and remove ITE

else join_dom(Dom1, Dom2)and join_poly(Qpoly,,Qpoly,)

How to implement join_poly(QPoly,,QPoly,)
with a linear solver ?

< Convex hull computation [Benoy, King, Mesnard TPLP 2004]
& Big-M relaxation + projection
& Simplex-based weak_join operator

(from the Abstract Interpretation community)
[Sankaranarayanan et al. VMCAI'06]

B1: All these computations are exponential in the number of dimensions
in the worst case

NB2: switching to the so-called polyhedra « generator representation »
is prohibitive in our context

Weak_join operator

The disjunction: {gll(x) 2 Cli }iel v {gIZ (X) 2 CiZ }iel
X = (X4,.., Xn), Where xi « Z

Weak_join: o :Minimizegi(x)subjectto{g‘z(x)}

iel

a =Minimize g (x) subject to {g;(x)}id
ap+1 = Minimize g} (x) subject to {gj(x)}

iel

az =Minimize g2 (x) subject to {g{(x)}iéI
01(x) = Min(an,c}),

g2 M (x) > Min(arzp, ")

Weak_join operator

convex hull computation

Weak join (Sankaranarayanan et al. VMCAI'06)

Weak_join operator

convex hull computation

Weak join (Sankaranarayanan et al. VMCAI'06)

Weak_join operator

convex hull computation

convex hull computation

Weak _join operator

Weak_join operator

- Doesn’t require any Fourier’s Elimination step ! >
Very good running time on tcas.c , acceptable loss of precision

- But, doesn’t commute with Join_dom

Join_poly(Q1,Q2) | Join_dom(Q1,Q2)

- Doesn’t « discover » new linear relations among the two disjuncts

Agenda

Motivations

» TCAS software verification
» A Constraint Programming approach

=p + Experimental results

* Further work

Euclide’s architecture

C program
i Negated property
Preprfcessed ﬁlea Symbol table l
N -test data
Normalized code i i
) Iz Euclide Program _—"" - fall
-?

Points-to analysis

SSA form

Implemented in SICStus Prolog, SSA form generated by an single-pass
algorithm [Brandis & Mdssenbock 94], clpfd and clpq libraries.

» Use of the c1pfd library for Constraint Propagation over Finite Domains
* Use of the c1pq library for Linear Programming over Q

A simple collaboration principle

Euclide

post(Min £ X, X < Max)j post(X in Min..Max),

post(relax(C)) post(C)
- Maintains coherence
throughs DLRs >
Simplex calls Propagation/Search
cutting planes + alarms
Solved form of the polyhedron Fixpoints

oA

Solution, fail or timeout

First experimental results

Table 2: Results on the venification of safety properties

Num Results Time | Mem.
Pla | Property proved 0.7s 4.6Mo
P1b | Property proved 0.7s 4.6Mo
P2a | Property proved 0.6s 4.6Mo
P2b | Counter-example found 0.7s 4.6Mo
P3a | Counter-example found S.4s 6.3Mo
P3b | Property proved 12s 4.6Mo
P4a | Counter-example found 6.85 6.9Mo
P4b | Counter-example found 2.7s 5.9Mo
P5a | Property proved 0.6s 4.6Mo
P5b | Counter-example found 1.0s 4.6Mo

Intel Core Duo 2.4GHz clocked PC with 2Go of RAM

And in the Literature !!!

Exrcution model Properey cheeking
Froperty Num. | Num Num. of
avumptions of of PDL property satielying
ttates | paths paths
p_SepATaticOEPosItive_WA_ALT_ChTesh and - . ——— .
Down_SSpATALLCn<Rositive_RA_ALE_thresh s % | IATTES+ ASTDewaRA) °
L sitive_FA_AIt_thresh and i~ " — -
Cenait e Fa ATt Thiesh) i228 | 38 | FpASTEs— ASTURRA) 0
4100 | 82 | IpASTEn— ASTDowRRA) a
P2
4100 | 82 | IMASTER— ASTURRA) o
W _feparatico--ponitive_Fh_Alc_Thresh and
Down_Ssparations-pooitive kA Alr Thrash and | 2212 s I ASTEa— ASTDowaRA) L
. own_Tracked Altsother_TraTked Al
. Tp_Separaticns=ponltive_FA_ATE_Thieah and Py
o2 3| IpASTEa— A PUPRA) L
o¥n_Tracked_Alt«Othar_Tracked_ALE “‘
.
.
Fig. Extracted from « Using Symbolic Execution for Verifying §qfetV-Critical Systems » ESEC-FSE 2001
.
?277?°*
Author said :

« | think that your analysis of P3A is right.

Recently we have redone the TCAS experiment for a workshop paper (attached for your reference) with a
difefrent symbolic executor and we found an aerror in that property too.! did not check your output in detail,
but | guess that you bumped in the same error. «

L IEEE

theese bugs was previously unseported while the other three
had been detected by the developers and fived.

Finally, we also used MAGIC on the source code of the
Alr Traffic Collision Avoldance System (TCAS). The source
code was obtained from the Siemens suite,’ 4 standard set
of benchmarks used by the testing and formal verification
community. The benchmarks provide both correct and
bugey implementations of TCAS. Using assertions, several
standard safety properties [56], [57] are hard-coded in the
implementation. These safety properties nefer o upward /
downward resolution advisories, e, instructions for an
airplane o increase or decrease altitude. MAGIC
successfully detected assertion v ne in the buggy
implementations and also proved that the correct imple-

mentation is safe. A 3
3

‘e

N SOFTWARE WOL 30, NO.6, JUNE 2004
serve s more natural specification mediums for software
than logics based purely on elther states o events.

There are many interesting research directions for
further work. Firsl, we will investigate more powerful
abstraction techniques for mare precise modeling of the
heap and dynamically allocated data structures, Second, we
envision an ext of the MAGIC o other
languages, such as Java and Cov. Thind, it is important that
MAGKC be capable of handling concumrent programs that
communicate via shared memory as opposed to message
passing, A vast majority of multithreaded © programs fall
under this category and we aim at analyzing such
programs,

Another important aspect is the analysis of parameter-
izad svetems that ean consist of an arbitmry number of

L3
23
Fig. Extracted from « Modular Veriﬁcat'p;l of Software Components in C »
-

27?7?

Agenda

* Motivations

» TCAS software verification

» A Constraint Programming approach
+ Experimental results

- .

Further work

Further work

« Improving our weak_join implementation

- removing spurious equalities
tmp = ..,

w = tmp + ..
adds a dimension to the polyhedron !

- Replacing SICStus clpq library by a verified LP solver (Qsopt_ex for
example [Applegate et al. OR Letters 2007])

« An efficient global constraint for function calls:
Abstracting the relations due to function calls (replace the constraints of the

callee by a polyhedral abstraction)

- Deal with modular integer computations

Thanks you !

