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Air Traffic Complexity Parameters

The complexity of sector s at moment m depends here on:
Nsec = # flights in s at m (traffic volume)
Ncd = # flights in s non-level at m (vertical state)
Nnsb = # flights that are

• at most 15 nm horizontally, or at most 40 FL vertically
• beyond their entry into s, or before their exit from s

at moment m (proximity to sector boundary)

NB: The complexity of sector s at moment m does not
depend here on potentially interacting pairs of aircraft:
surprisingly weak correlation with the COCA complexity; do
traffic volume & vertical state already capture this impact?
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Moment Complexity

The moment complexity of sector s at moment m is here:

MC(s,m) = (wsec · Nsec + wcd · Ncd + wnsb · Nnsb) · Snorm

where:
wsec , wcd , and wnsb are empirically determined weights
Snorm characterises the structure, equipment used,
procedures followed, etc, of s (sector normalisation)
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Large Variance of Moment Complexity
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Interval Complexity

The interval complexity of sector s over interval [m, . . . ,m′]
is the average of its moment complexities at the k + 1
sampled moments m, m + L, m + 2L, . . . , m + k · L = m′:

IC(s,m, k ,L) =

∑k
i=0 MC(s,m + i · L)

k + 1

where:
k = smoothing degree
L = time step between the sampled moments

In practice, for complexity resolution: k = 2 & L ≈ 210 sec.

NB: This definition of complexity can be changed without
compromising the whole work!
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Allowed Forms of Complexity Resolution I

Temporal Re-Profiling:
Change the entry time of a flight into the chosen airspace:

Grounded: Change the take-off time of a not yet
airborne flight by an integer amount of minutes
within [−5, . . . ,+10]

Airborne: Change the remaining approach time into the
chosen airspace of an already airborne flight by an
integer amount of minutes, but only within the two
layers of feeder sectors around the chosen airspace:

• at a speed-up rate of maximum 5%
• at a slow-down rate of maximum 10%
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Allowed Forms of Complexity Resolution II

Vertical Re-Profiling:
Change the altitude of passage over a way-point in the
chosen airspace by an integer amount of FLs within
[−30, . . . ,+10], so that the flight

• climbs no more than 10 FL / min
• descends no more than 30 FL / min if it is a jet
• descends no more than 10 FL / min if it is a turbo-prop

2D Re-Profiling:
Future work?
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Example: Vertical Re-Profiling
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Assumptions

Proximity to a sector boundary is approximatable
by being at most hvnsb = 120 sec of flight beyond the
entry to, or before the exit from, the considered sector.
This approximation only holds for en-route airspace.
Times can be controlled with an accuracy of 1 minute:
the profiles are just shifted in time.
Flight time along a segment does not change if we
restrict the FL changes over its endpoints to be “small”.
Otherwise, many more time variables will be needed,
leading to combinatorial explosion.
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Some Parameters

now is the time at which a resolved scenario is wanted
with a forecast of lookahead minutes
lookahead is typically a multiple of 10 in [20, . . . ,90]

m = now + lookahead is the start moment of the time
interval [m, . . . ,m + k · L] for complexity resolution
ff = minimum fraction of flights planned to be in chosen
airspace that must stay there at the sampled moments
timeOut = amount of CPU seconds after which the
currently best feasible solution is to be returned
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Some Decision Variables

δT [f ] = entry-time change in [−5, . . . ,+10] of flight f
δH[p] = level change in [−30, . . . ,+10] of flight-point p
Nsec[i , s] = # flights in sector s at sampled moment i
Ncd [i , s] = # flights on a non-level segment in s at i
Nnsb[i , s] = # flights near the boundary of s at i
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Some Constraints

All flights planned to take off until now have taken off
exactly according to their profile.
All other flights take off after now .
Points flown over until now cannot get changed FLs:

∀p ∈ FlightPoints : p.timeOver ≤ now . δH[p] = 0

Changed FLs stay within the bounds of the sector, as
(yet) no re-routing through a lower or higher sector:

∀s ∈ OurSectors . ∀f ∈ Flights[s] . ∀p ∈ Profile[s, f ] .
Sector [s].bottomFL ≤ p.level + δH[p] ≤ Sector [s].topFL
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Some Constraints (cont’d)

Define the Nsec[i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Nsec [i, s] =

˛̨̨̨
f ∈ Flights[s]

˛̨̨̨
first(Profile[s, f ]).timeOver ≤ m + i · L− δT [f ]

< last(Profile[s, f ]).timeOver

ff˛̨̨̨

Define the Ncd [i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Ncd [i, s] =

˛̨̨̨
˛̨
8<:f ∈ Flights[s]

˛̨̨̨
˛̨ ∃p ∈ Profile[s, f ] : p 6= last(Profile[s, f ]) .

p.timeOver ≤ m + i · L− δT [f ] < p′.timeOver∧
p.level + δH[p] 6= p′.level + δH[p′]

9=;
˛̨̨̨
˛̨

Define the Nnsb[i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Nnsb [i, s] =

˛̨̨̨
˛̨̨̨
˛

8>>><>>>:f ∈ Flights[s]

˛̨̨̨
˛̨̨̨
˛

0 ≤ m + i · L− (first(Profile[s, f ]).timeOver + δT [f ]) ≤ hvnsb
∧ m + i · L < last(Profile[s, f ]).timeOver + δT [f ]

∨
0 < last(Profile[s, f ]).timeOver + δT [f ]− (m + i · L) ≤ hvnsb

∧ first(Profile[s, f ]).timeOver + δT [f ] ≤ m + i · L

9>>>=>>>;
˛̨̨̨
˛̨̨̨
˛
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Some Constraints (cont’d)

Define the Nsec[i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Nsec [i, s] =

˛̨̨̨
f ∈ Flights[s]

˛̨̨̨
first(Profile[s, f ]).timeOver ≤ m + i · L− δT [f ]

< last(Profile[s, f ]).timeOver

ff˛̨̨̨

Define the Ncd [i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Ncd [i, s] =

˛̨̨̨
˛̨
8<:f ∈ Flights[s]

˛̨̨̨
˛̨ ∃p ∈ Profile[s, f ] : p 6= last(Profile[s, f ]) .

p.timeOver ≤ m + i · L− δT [f ] < p′.timeOver∧
p.level + δH[p] 6= p′.level + δH[p′]

9=;
˛̨̨̨
˛̨

Define the Nnsb[i , s] decision variables:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors .

Nnsb [i, s] =

˛̨̨̨
˛̨̨̨
˛

8>>><>>>:f ∈ Flights[s]

˛̨̨̨
˛̨̨̨
˛

0 ≤ m + i · L− (first(Profile[s, f ]).timeOver + δT [f ]) ≤ hvnsb
∧ m + i · L < last(Profile[s, f ]).timeOver + δT [f ]

∨
0 < last(Profile[s, f ]).timeOver + δT [f ]− (m + i · L) ≤ hvnsb

∧ first(Profile[s, f ]).timeOver + δT [f ] ≤ m + i · L

9>>>=>>>;
˛̨̨̨
˛̨̨̨
˛
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Some Constraints (cont’d)
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Some Constraints (cont’d)

No climbing > maxUpJet = 10 FL / min,
No climbing > maxUpTurbo = 10 FL / min,
No descending > maxDownJet = 30 FL / min,
No descending > maxDownTurbo = 10 FL / min:

∀s ∈ OurSectors . ∀f ∈ Flights[s] . ∀p ∈ Profile[s, f ] :
f .engineType = jet ∧ p 6= last(Profile[s, f ]) .
−(p′.timeOver − p.timeOver) ·maxDownJet
≤ ((p′.level + δH[p′])− (p.level + δH[p])) · 60
≤ (p′.timeOver − p.timeOver) ·maxUpJet

∧
∀s ∈ OurSectors . ∀f ∈ Flights[s] . ∀p ∈ Profile[s, f ] :

f .engineType = turbo ∧ p 6= last(Profile[s, f ]) .
−(p′.timeOver − p.timeOver) ·maxDownTurbo
≤ ((p′.level + δH[p′])− (p.level + δH[p])) · 60
≤ (p′.timeOver − p.timeOver) ·maxUpTurbo
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Some Constraints (cont’d)

No climbing > maxUpJet = 10 FL / min,
No climbing > maxUpTurbo = 10 FL / min,
No descending > maxDownJet = 30 FL / min,
No descending > maxDownTurbo = 10 FL / min:
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≤ (p′.timeOver − p.timeOver) ·maxUpJet

∧
∀s ∈ OurSectors . ∀f ∈ Flights[s] . ∀p ∈ Profile[s, f ] :

f .engineType = turbo ∧ p 6= last(Profile[s, f ]) .
−(p′.timeOver − p.timeOver) ·maxDownTurbo
≤ ((p′.level + δH[p′])− (p.level + δH[p])) · 60
≤ (p′.timeOver − p.timeOver) ·maxUpTurbo
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Some Constraints (end)

Minimum fraction ff of the number of flights planned to
be in the chosen airspace at the sampled moments i
must remain then in that chosen airspace:∑

i∈[0,...,k ]

∑
s∈OurSectors

Nsec[i , s] ≥ dff · ne

Define the MC[i , s] moment complexities:

∀i ∈ [0, . . . , k ] . ∀s ∈ OurSectors . MC[i, s] =
(wsec [s] · Nsec [i, s] + wcd [s] · Ncd [i, s] + wnsb[s] · Nnsb[i, s]) · Snorm[s]

Define the IC[s] interval complexities:

∀s ∈ OurSectors . IC[s] =

∑
i∈[0,...,k ] MC[i , s]

k + 1
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The Objective Function

We have a multi-objective optimisation problem:
minimise the vector 〈IC[s1], . . . , IC[sn]〉
of the interval complexities of n sectors si .
A vector of values is Pareto minimal if no element can
be reduced without increasing some other element.
Standard technique: Combine the multiple objectives
into a single objective using a weighted sum∑n

j=1 αj · IC[sj ] for some weights αj > 0.
In practice, and as often done, we take αj = 1 for all j :

minimise
∑

s∈OurSectors

IC[s]
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The Search Procedure and Heuristics

1 Assign the Nsec[i , s], Ncd [i , s], and Nnsb[i , s] variables:
Try placing a flight within s at sampled moment i , but
– neither on a non-level segment,
– nor near the boundary of s.
Begin with the sectors planned to be the busiest.

2 Assign the δT [f ] variables.
Try by increasing absolute values in [−10, . . . ,+5].

3 Assign the δH[p] variables.
Try by increasing absolute values in [−30, . . . ,+10].

NB: The given orderings guarantee resolved flight profiles
that deviate as little as possible from the planned ones.
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3 Assign the δH[p] variables.
Try by increasing absolute values in [−30, . . . ,+10].

NB: The given orderings guarantee resolved flight profiles
that deviate as little as possible from the planned ones.

ATM-CT 2008 Uppsala University - 26 - Flener, Pearson, Ågren, Garcia Avello, Çeliktin, and Dissing



Objective

Air Traffic
Complexity

Complexity
Resolution

A CP Model

Experiments

Conclusion

Implementation

The constraints were implemented in the Optimization
Programming Language (OPL), marketed by ILOG.
This is merely a matter of slight syntax changes! Prejudice:

The contribution of the article should be the reduction
of an engineering problem to a known optimization format.

[. . . ] showcases pseudo code [. . . ] submit this
work to a journal interested in code semantics [. . . ].

— Reviewer of this paper at a prestigious OR journal

The resulting OPL model has non-linear and higher-order
constraints, hence the OPL compiler translates the model
into code for ILOG Solver (now ILOG CP Optimizer), rather
than for ILOG CPLEX, and constraint propagation takes
place at runtime.
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Experimental Setup I

ATC centre = Maastricht, in the Netherlands
Multi-sector airspace =
five high-density, en-route, upper-airspace sectors:

sectorId bottomFL topFL wsec wcd wnsb Snorm

EBMALNL 245 340 7.74 15.20 5.69 1.35
EBMALXL 245 340 5.78 5.71 15.84 1.50
EBMAWSL 245 340 6.00 7.91 10.88 1.33
EDYRHLO 245 340 12.07 6.43 9.69 1.00
EHDELMD 245 340 4.42 10.59 14.72 1.11

Time = peak traffic hours, from 7 to 22, on 23/6/2004
Flights = turbo-props and jets, on standard routes

Central Flow Management Unit (CFMU): 1,798 flights
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Experimental Setup II

Chosen
multi-sector
airspace,
surrounded by
an additional
34 feeder
sectors
(on the
chosen day,
the sectors
EBMAKOL
and EBMANIL
were
collapsed into
EBMAWSL)
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Results

Significant complexity reductions and re-balancing,
obtained quickly (though with long proofs of optimality):
lookahead k L Average planned Average resolved

20 2 210 87.92 47.69
20 3 180 86.55 50.17
45 2 210 87.20 45.27
45 3 180 85.67 47.81
90 2 210 87.29 44.67
90 3 180 85.64 47.13

with ff = 90% of the flights kept in the chosen airspace, and
timeOut = 120 seconds on an Intel Pentium 4 CPU with
2.53GHz, a 512 KB cache, and a 1 GB memory
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Summary

Reduction: Complexity can be reduced by combination of:
Reprofiling flights into less complex sectors
Reprofiling flights away from sector boundaries
Reprofiling flights onto level segments

Non-Zero Sum:
Take-off and speed resolutions do not just transfer
complexity to adjacent multi-sectors, because a
parameter controls the percentage of flights that are to
be kept within the considered multi-sector.
Level and speed resolutions can reduce the complexity
of a sector without increasing it elsewhere.

Rebalancing: Current flight profiles often yield huge
complexity discrepancies among sectors, but complexity
resolution also addresses this.
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Contributions

Traffic complexity 6= # flights
Complexity resolution . . .
. . . in multi-sector planning
Use of constraint programming (CP) for this purpose
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Future Work

Strategic use of the model, rather than deployment:
new definitions of complexity can readily be tried, and
constraints can readily be changed or added.
In practice, complexity resolution is not an optimisation
problem, but a satisfaction problem:
need constraints on interval for resolved complexities.
Constraints on fast executability of resolved profiles.
Example: Keep # affected flights under threshold.
Horizontal re-profiling: among static / dynamic route list
Cost minimisation: of ground / air holding, . . .
Airline equity: towards a collaborative decision making
process between EuroControl and the airlines.
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