Deconfliction with Constraint Programming

Nicolas Barnier and Cyril Allignol barnier@recherche.enac.fr,allignol@tls.cena.fr

ENAC - DTI/R&D

International Workshop on Constraint Technology for Air Traffic Control & Management INO'08 12/02/2008

Outline

Introduction

Context

- ATC and ATFM
- Ground-Holding

Oeconfliction by Ground-Holding

- Model
- Search and Optimization
- Results

4 Further Works

5 Conclusion

э

-

Introduction

Introduction

Congested European Sky

- $\bullet\,$ Traffic still growing by a yearly 5%
- Increasing regulation delays due to en-route sector capacities
- Structural limits of the ATM system reached
- Optimization of airspace structure and ATFM regulations
- EC Single European Sky (SESAR) / Episode 3 WP3

Pre-tactical Deconfliction with Constraint Programming

- Deconfliction by ground-holding
- Highly combinatorial/disjunctive large scale problem
- Constraint Programming (CP) technology :
 - versatile modelling tool
 - side constraints incrementally added
 - experiment with various search strategies

• Feasibility stage : CP able to achieve optimality proof

N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming

Introduction

Introduction

Congested European Sky

- $\bullet\,$ Traffic still growing by a yearly 5%
- Increasing regulation delays due to en-route sector capacities
- Structural limits of the ATM system reached
- Optimization of airspace structure and ATFM regulations
- EC Single European Sky (SESAR) / Episode 3 WP3

Pre-tactical Deconfliction with Constraint Programming

- Deconfliction by ground-holding
- Highly combinatorial/disjunctive large scale problem
- Constraint Programming (CP) technology :
 - versatile modelling tool
 - side constraints incrementally added
 - experiment with various search strategies
- Feasibility stage : CP able to achieve optimality proof

ATC and ATFM

Objectives

- Safety : maintaining aircraft separated
- **2** Efficiency : expedite the flow of traffic

Layered Filters with Decreasing Time Horizon

- Strategic (several months) : AirSpace Management (ASM), design of routes, sectors and procedures
- Pre-tactical (a few days to a few hours) : Air Traffic Flow Management (ATFM), sector openings and capacities, flow regulation by delaying and rerouting (Central Flow Management Unit)
- Tactical (5-15 min) : Air Traffic Control (ATC), surveillance, coordination, conflict resolution
- Emergency (< 5 min) : safety nets, ground-based (STCA, MSAW) and airborne (TCAS, GPWS)

ATC and ATFM

Objectives

- Safety : maintaining aircraft separated
- Efficiency : expedite the flow of traffic

Layered Filters with Decreasing Time Horizon

- Strategic (several months) : AirSpace Management (ASM), design of routes, sectors and procedures
- Pre-tactical (a few days to a few hours) : Air Traffic Flow Management (ATFM), sector openings and capacities, flow regulation by delaying and rerouting (Central Flow Management Unit)
- Tactical (5-15 min) : Air Traffic Control (ATC), surveillance, coordination, conflict resolution
- Emergency (< 5 min) : safety nets, ground-based (STCA, MSAW) and airborne (TCAS, GPWS)

Ground-Holding

Pre-tactical Flow Regulation

- Safest than handling the traffic while airborne
- Costly for airlines and passengers, snowball effect

Sector Capacity and Regulation

- Air Traffic Control Centres (ATCC) **opening schedules** : designed by experts (FMP)
- Open sectors capacities : hourly entry rate
- Regulation on flows crossing overloaded sectors : Computer Assisted Slot Allocation (CASA) at CFMU

CASA

- Greedy algorithm : optimality, consistency
- "First-come, first-served" questionable principle
- Operational setting, real-time updates

Ground-Holding

Pre-tactical Flow Regulation

- Safest than handling the traffic while airborne
- Costly for airlines and passengers, snowball effect

Sector Capacity and Regulation

- Air Traffic Control Centres (ATCC) **opening schedules** : designed by experts (FMP)
- Open sectors capacities : hourly entry rate
- **Regulation** on flows crossing overloaded sectors : Computer Assisted **Slot Allocation** (CASA) at CFMU

CASA

- Greedy algorithm : optimality, consistency
- "First-come, first-served" questionable principle
- Operational setting, real-time updates

Ground-Holding

Pre-tactical Flow Regulation

- Safest than handling the traffic while airborne
- Costly for airlines and passengers, snowball effect

Sector Capacity and Regulation

- Air Traffic Control Centres (ATCC) **opening schedules** : designed by experts (FMP)
- Open sectors capacities : hourly entry rate
- **Regulation** on flows crossing overloaded sectors : Computer Assisted **Slot Allocation** (CASA) at CFMU

CASA

- Greedy algorithm : optimality, consistency
- "First-come, first-served" questionable principle
- Operational setting, real-time updates

Slot Allocation with CP

Optimize upon CASA Solutions

- SHAMAN : CP model over 30 min periods (CENA/RFM)
- ISA : CP and LP [Junker et al]
- Marabout : sort constraint with FaCiLe to smooth the entry rate [ATM'01]

"Complexity" of Traffic

- Relevance of sector capacity to model controller workload?
- Discrepancies between planned schedule and actual openings
- More pertinent metrics w.r.t. real-time merge/split decision [Giannazza, Guittet 06]

Prior Opening Schedule Optimization

- Optimize upon FMP's opening schedule
- Multiple partitioning problem, possibly with side transition constraints [Barnier 02]
- Lower cost for slot allocation
- With other workload metrics [Giannazza 07]

Slot Allocation with CP

Optimize upon CASA Solutions

- SHAMAN : CP model over 30 min periods (CENA/RFM)
- ISA : CP and LP [Junker et al]
- Marabout : sort constraint with FaCiLe to smooth the entry rate [ATM'01]

"Complexity" of Traffic

- Relevance of sector capacity to model controller workload?
- Discrepancies between planned schedule and actual openings
- More pertinent metrics w.r.t. real-time merge/split decision [Giannazza, Guittet 06]

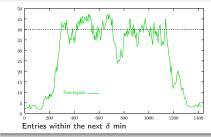
Prior Opening Schedule Optimization

- Optimize upon FMP's opening schedule
- Multiple partitioning problem, possibly with side transition constraints [Barnier 02]
- Lower cost for slot allocation
- With other workload metrics [Giannazza 07]

Slot Allocation with CP

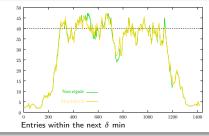
Optimize upon CASA Solutions

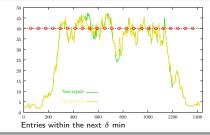
- SHAMAN : CP model over 30 min periods (CENA/RFM)
- ISA : CP and LP [Junker et al]
- Marabout : sort constraint with FaCiLe to smooth the entry rate [ATM'01]

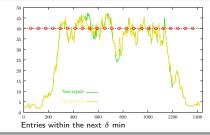

"Complexity" of Traffic

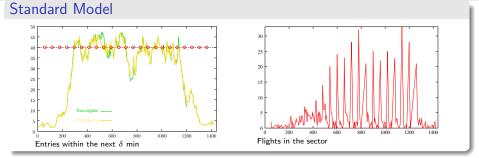
- Relevance of sector capacity to model controller workload?
- Discrepancies between planned schedule and actual openings
- More pertinent metrics w.r.t. real-time merge/split decision [Giannazza, Guittet 06]

Prior Opening Schedule Optimization

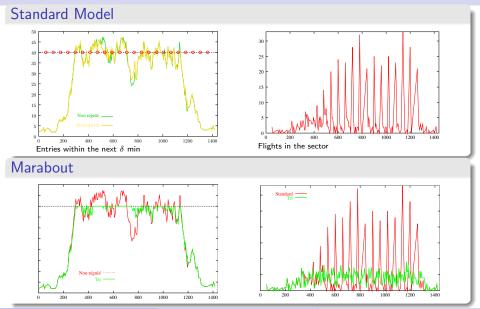

- Optimize upon FMP's opening schedule
- Multiple partitioning problem, possibly with side transition constraints [Barnier 02]
- Lower cost for slot allocation
- With other workload metrics [Giannazza 07]


э


э



э



э

э

< □ > < □ > < □ > < □ > < □ >

N. Barnier & C. Allignol (ENAC – DTI)

Deconfliction with Constraint Programming

Conflict-Free 4D Tubes

4D Trajectory Planning

- European Commission Episode 3 project (WP3)
- 4D trajectory planning to reduce conflicts number and controller workload
- Many opportunities : flight level, speed, rerouting...
- Large scale combinatorial optimization problem

Deconfliction by Ground-Holding

- Finest grain vs aggregated model (sector capacity)
- Same degree of freedom than slot allocation
- Solve all conflicts above a given FL by delaying flights only
- Standard (flight plan) and direct routes considered
- Assumption : aircraft able to follow their 4D trajectories precisely...

Conflict-Free 4D Tubes

4D Trajectory Planning

- European Commission Episode 3 project (WP3)
- 4D trajectory planning to reduce conflicts number and controller workload
- Many opportunities : flight level, speed, rerouting...
- Large scale combinatorial optimization problem

Deconfliction by Ground-Holding

- Finest grain vs aggregated model (sector capacity)
- Same degree of freedom than slot allocation
- Solve all conflicts above a given FL by delaying flights only
- Standard (flight plan) and direct routes considered
- Assumption : aircraft able to follow their 4D trajectories precisely...

Model

Data

- Flight plans and airspace data for one day of traffic
- Simulation with CATS [Alliot, Durand 97]
- **Trajectories sampled** every 15s (shortest conflicts not missed) over French controlled airspace
- Notation : flight *i* at point p_i^k at time t_i^k if not delayed

Variables and Constraints

- **Decision variables** : delay δ_i for each flight *i*
- Auxilliary variables : $\theta_i^k = t_i^k + \delta_i$ $d_{ij} = \delta_j \delta_i$
- **Constraints** : two flights cannot be at two conflicting points of their trajectories at the same time

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Model

Data

- Flight plans and airspace data for one day of traffic
- Simulation with CATS [Alliot, Durand 97]
- **Trajectories sampled** every 15s (shortest conflicts not missed) over French controlled airspace
- Notation : flight *i* at point p_i^k at time t_i^k if not delayed

Variables and Constraints

- **Decision variables** : delay δ_i for each flight *i*
- Auxilliary variables : $\theta_i^k = t_i^k + \delta_i$ $d_{ij} = \delta_j \delta_i$
- **Constraints** : two flights cannot be at two conflicting points of their trajectories at the same time

< □ > < □ > < □ > < □ > < □ > < □ >

Constraints

Conflict Constraints

 $\forall i \neq j, \forall k, l$, such that $d_h(p_i^k, p_i^l) < 5 \text{ NM} \land d_v(p_i^k, p_i^l) < 1000 \text{ ft}$:

$$\begin{array}{rcl} \theta^k_i & \neq & \theta^l_j \\ t^k_i + \delta_i & \neq & t^l_j + \delta_j \\ d_{ij} & \neq & t^k_i - t_j \end{array}$$

Note : bandwidth coloring as a particular case

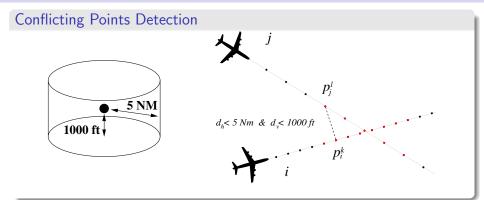
N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming

Constraints

Conflict Constraints

 $\forall i \neq j, \forall k, l, \text{ such that } d_h(p_i^k, p_i^l) < 5 \text{ NM } \land d_v(p_i^k, p_i^l) < 1000 \text{ ft}$:

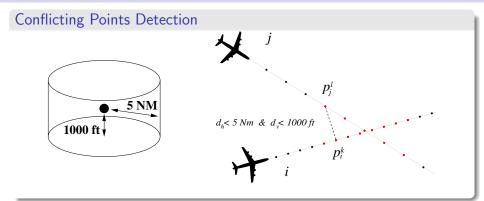
$$\begin{array}{rcl} \theta^k_i & \neq & \theta^l_j \\ t^k_i + \delta_i & \neq & t^l_j + \delta_j \\ d_{ij} & \neq & t^k_i - t^l_j \end{array}$$


Note : bandwidth coloring as a particular case

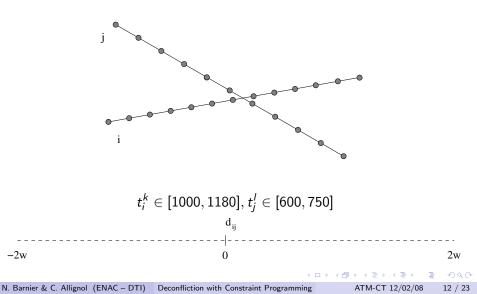
Non European Flight

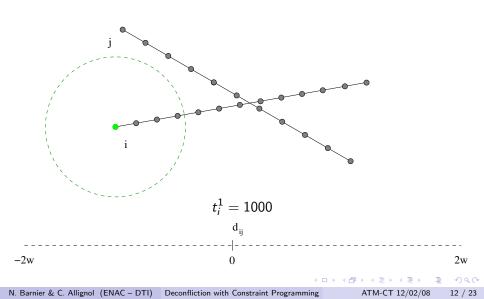
- Flights originating outside the ECAC zone cannot be delayed by Eurocontrol instances ($\approx 10\%$)
- Delay fixed to 0
- Remaining conflicts discarded (a few dozens)

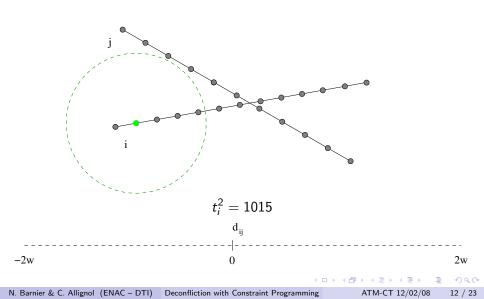
Model

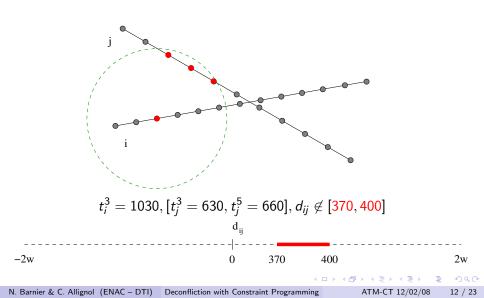

Conflict Detection

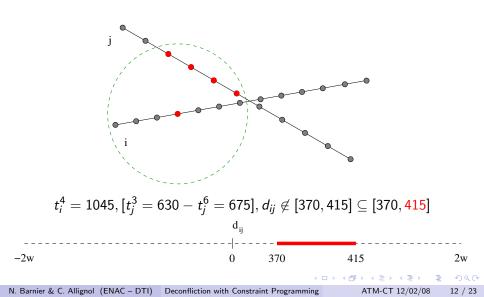
N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming

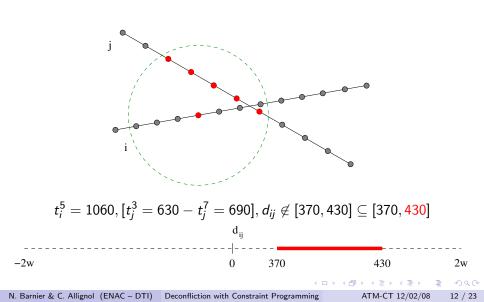

Model

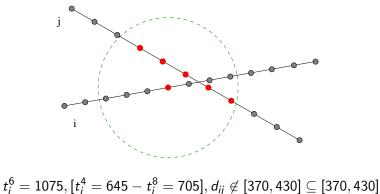

Conflict Detection

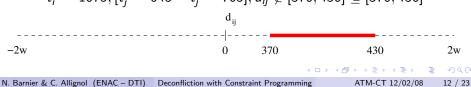


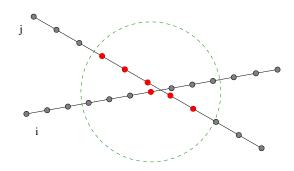

Naïve 3D Conflicting Segments

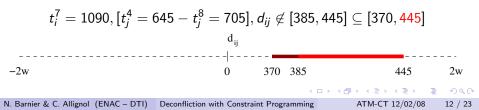

- 3D transitive closure of segments of conflicting points
- Forbidden time interval corresponds to extremities of segments
- Same route : whole trajectory conflicting !

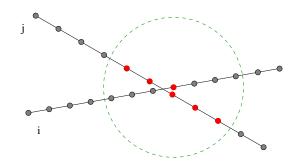


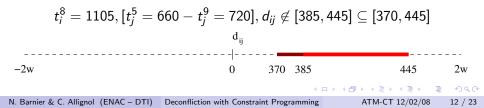


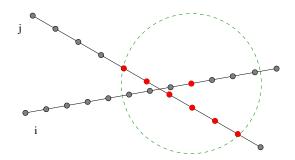


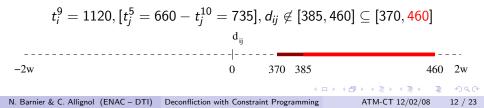


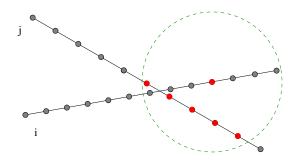


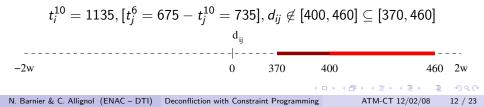


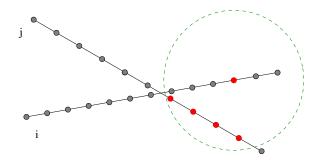


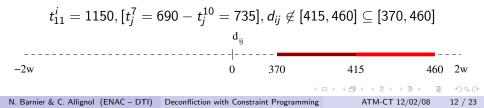


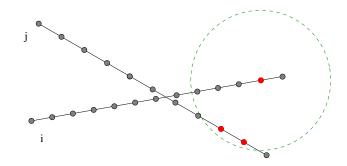


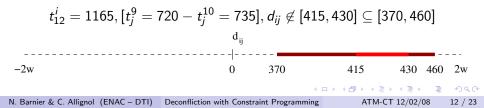


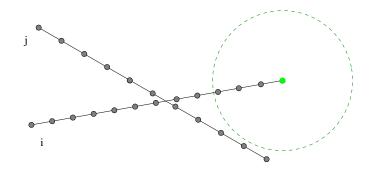


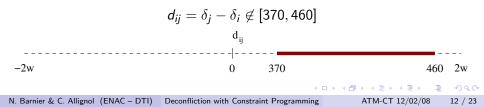


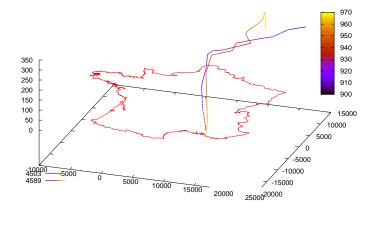







Model

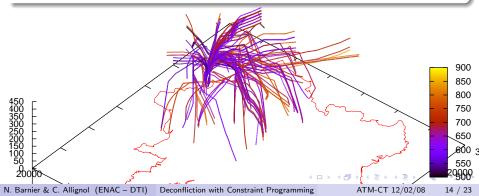




Mutliply-Conflicting Flight Pair

$$d_{ij} = \delta_j - \delta_i \notin [Ib_{ij}^1..ub_{ij}^1] \cup \cdots \cup [Ib_{ij}^k..ub_{ij}^k]$$

N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming


< ∃⇒ ATM-CT 12/02/08 13 / 23

Model

Flight Conflicting with Many Other

Constraint Graph of High Degree

- Maximally delayed flight potentially conflicting with 130 other
- Highest degree > 300
- Large cliques > 60
- One single large connected component

Further Instance Conditioning

Simulator Data

- Date of the day of traffic
- Standard or direct routes
- Trajectories sampled every 15s

Further Instance Conditioning

Simulator Data

- Date of the day of traffic
- Standard or direct routes
- Trajectories sampled every 15s

Instance Filtering

- TMA : trajectories cut around airports (10 NM) for takeoff/landing
- Maximal delay : problem size grows as more conflicts may occur
- **Minimal flight level** (usually upper airspace > FL290)
- **Minimal gap** between two disjoint conflicting intervals of the same pair, otherwise merged
- Time unit (1 min) : scaled with strict enclosure of conflicting intervals
- Flights without conflict are withdrawn

Search and Optimization

Search Strategy

- Directly labelling the delay decision variables is inefficient
- High-order decision scheme by analogy with disjunctive tasks in scheduling problems
- Order conflicting flights by **branching within the disjoint intervals** of their *d_{ij}* domain
- Dynamic variable ordering : choose d_{ij} with highest sparsity first
- Choose smaller interval first to maximize propagation
- Then label the delays δ_i by increasing values

Optimization

- Cost = maximum delay : equity, easiest for optimality proof
- Sum/Mean : exponentially harder
- Leximin? might be too propagation-costly

N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming

Search and Optimization

Search Strategy

- Directly labelling the delay decision variables is inefficient
- High-order decision scheme by analogy with disjunctive tasks in scheduling problems
- Order conflicting flights by **branching within the disjoint intervals** of their *d_{ij}* domain
- Dynamic variable ordering : choose d_{ij} with highest sparsity first
- Choose smaller interval first to maximize propagation
- Then label the delays δ_i by increasing values

Optimization

- Cost = maximum delay : equity, easiest for optimality proof
- Sum/Mean : exponentially harder
- Leximin? might be too propagation-costly

Results

Instance Size

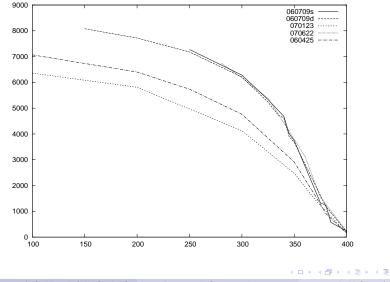
- Traffic from 2006/2007
- Up to 8000 flights
- Up to 300 000 conflicting pairs
- Best solvable volume of airspace down to FL0 (except TMA) for the easiest day
- Disjoint conflicts for the same pair : up to 26 with raw data, 4 after processing
- Difference domains with up to 97% sparsity

Limitations

- Instance size limited by memory usage (4 GB)
- Running times < 30 min (Core 2 Duo @ 2.4 GHz)
- No optimization of the mean/sum

Results

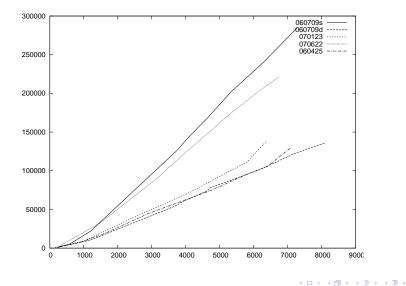
Instance Size


- Traffic from 2006/2007
- Up to 8000 flights
- Up to 300 000 conflicting pairs
- Best solvable volume of airspace down to FL0 (except TMA) for the easiest day
- Disjoint conflicts for the same pair : up to 26 with raw data, 4 after processing
- Difference domains with up to 97% sparsity

Limitations

- Instance size limited by memory usage (4 GB)
- Running times < 30 min (Core 2 Duo @ 2.4 GHz)
- No optimization of the mean/sum

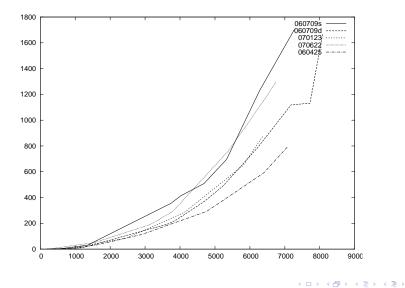
Results


Minimal Flight Level vs Number of Flights

Deconfliction with Constraint Programming N. Barnier & C. Allignol (ENAC - DTI) ATM-CT 12/02/08 18 / 23

Results

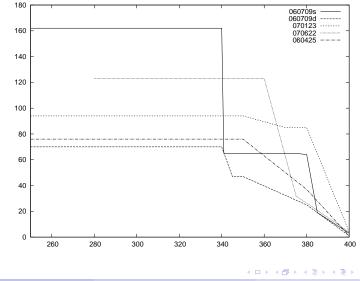
Number of Flights vs Number of Conflicts



N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming ATM-CT 12/02/08

19 / 23

Deconfliction by Ground-Holding Results


Number of Flights vs Computation Time (Proof)

N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming ATM-CT 12/02/08 20 / 23

Results

Minimal flight level vs optimal cost

N. Barnier & C. Allignol (ENAC - DTI) Deconfliction with Constraint Programming

Further Works

Validation and Robustness

- Validation of the solutions with the CATS simulator (undergoing)
- **Robustness** of solutions w.r.t. uncertainty : vertical and ground speed, takeoff time

Perspectives

- Rotation constraints : easy to implement but not provided by airlines
- Prior flight level allocation : pre-deconfliction, lower delay costs [CP-AI-OR'02]
- Larger (European) instances with soft constraints and other optimization paradigms : local search (LS), meta-heuristics, combined with CP (LNS)
- Post-optimization of the sum/mean with LS or CP once the maximum delay is bounded

Further Works

Validation and Robustness

- Validation of the solutions with the CATS simulator (undergoing)
- **Robustness** of solutions w.r.t. uncertainty : vertical and ground speed, takeoff time

Perspectives

- Rotation constraints : easy to implement but not provided by airlines
- Prior flight level allocation : pre-deconfliction, lower delay costs [CP-AI-OR'02]
- Larger (European) instances with soft constraints and other optimization paradigms : local search (LS), meta-heuristics, combined with CP (LNS)
- Post-optimization of the sum/mean with LS or CP once the maximum delay is bounded

Conclusion

Conclusion

ATM

- Ground-Holding for deconfliction vs macroscopic regulation
- Large problem but **optimality proof** obtained (w.r.t. max) with CP
- Some instances with solution compatible with CFMU figures, **too costly** for some others
- Better results with direct routes
- Has to be **combined with other strategies**, like flight level allocation, to lower the delay cost
- **Uncertainties** : have to be taken into account in the operational setting, until accurate 4D-FMS are designed

CP

- CP technology **scalable** to such LSCOP
- Still scalable to European instances 20 000-30 000 flights/day?
- **Combined** with other search paradigms : LS to solve CSP, CP to speed up LS...

Conclusion

ATM

- Ground-Holding for deconfliction vs macroscopic regulation
- Large problem but **optimality proof** obtained (w.r.t. max) with CP
- Some instances with solution compatible with CFMU figures, **too costly** for some others
- Better results with direct routes
- Has to be **combined with other strategies**, like flight level allocation, to lower the delay cost
- **Uncertainties** : have to be taken into account in the operational setting, until accurate 4D-FMS are designed

CP

- CP technology **scalable** to such LSCOP
- Still scalable to European instances 20 000-30 000 flights/day?
- **Combined** with other search paradigms : LS to solve CSP, CP to speed up LS...