INDUCTIVE SYNTHESIS OF
RECURSIVE LOGIC PROGRAMS

A THESIS
SUBMITTED TO THE DEPARTMENT OF COMPUTER
ENGINEERING AND INFORMATION SCIENCE
AND THE INSTITUTE OF ENGINEERING AND SCIENCE
OF BILKENT UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
MASTER OF SCIENCE

By
Serap Yilmaz
August 1997

| certify that | have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Ass’t Prof. Pierre Flener (Principal Advisor)

| certify that | have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Ass't Prof. llyas Cicekli

| certify that | have read this thesis and that in my opinion it is fully adequate, in scope

and in quality, as a thesis for the degree of Master of Science.

Ass't Prof. Ayse Goker

Approved for the Institute of Engineering and Science:

Prof. Dr. Mehmet Baray, Director of the Institute of Engineering and Science

ABSTRACT

INDUCTIVE SYNTHESIS OF
RECURSIVE LOGIC PROGRAMS

Serap Yilmaz
M.S. in Computer Engineering and Information Science
Supervisor: Ass’t Prof. Pierre Flener
August 1997

The learning of recursive logic programs (i.e. the class of logic programs where at least
one clause is recursive) from incomplete information, such as input/output examples,
is a challenging subfield both of ILP (Inductive Logic Programming) and of the syn-
thesis (in general) of logic programs from formal specifications. This is an extremely
important class of logic programs, as the recent work on constructive induction shows
that necessarily invented predicates have recursive programs, and it even turns out that
their induction is much harder than the one of non-recursive programs. We dal this
ductive program synthesig/e introduce a system calledADoGs-II (Dialogue-based
Inductive and Abductive LOgic Program Synthesizer-1) whose ancestaslioEs.

It is a schema-guided, interactive, and non-incremental synthesizer of recursive logic
programs that takes the initiative and queries a (possibly naive) specifier for evidence
in her/his conceptual language. It can be used by any learner (including itself) that de-
tects, or merely conjectures, the necessity of invention of a new predicate. Moreover,
due to its powerful codification of “recursion-theory” into program schemata and sche-

matic constraints, it needs very little evidence and is very fast.

Keywords: program development, inductive logic programming, automatic program

synthesis, schema-guided program synthesis.

OZET

OZYINELI MANTIK PROGRAMLARININ
TUMEVARIMSAL YOLLA SENTEZI

Serap Yilmaz
Bilgisayar ve Enformatik Muhendisligi, YUksek Lisans
Tez Yoneticisi: Yrd. Dog. Pierre Flener
Agustos 1997

Ozyineli mantik programlarinin (en azindan bir yantiimcesi 6zyineli olan) tam olma-
yan bilgiden yola ¢ikilarak, mesela, girdi/gikti drneklerinden, otomatik sentezi oldukga
zor bir istir. Ve bu is timevarimsal mantik programlama ile otomatik program sente-
zinin bir alt calisma alanidir. Bu tur programlar mantik programlarinin gok énemli bir
sinifini olustururlar. Yapici timevarim calismalari gostermistir ki 6zyineli program-
larin sentezi Ozyineli olmayan programlarin sentezinden c¢ok daha zordur. Bu
calisma alani “tUmevarimsal program sentezi” diye anihiaL@cs-ll adiyla
gelistirdigimiz sistem (bu sistemin bir 6nceki versiyon®cs adli sistemdir)
taslak-yonetimli, interaktif ve artimsizdir. Sistem insiyatifi alip kullaniciyi kullanicinin
dilinde sorgulayarak 6zyineli mantik programlari sentezler. Sistem kendisi tarafindan
Ozyineli olarak ya da baska bir sistem tarafindan, sistem 6zyineli bir programin sentez-
inin gerekliligini farkettigi zaman kullanilabilir. “Ozyineleme Teorisi” sistemin
icinde taslaklar tarafindan etkili bir sekilde kodlandigi icin sistem c¢ok az bilgiye

gerek duyar ve ¢ok hizh galisir.

Anahtar S6zcukler: program gelistirme, timevarimsal mantik programlama, otomatik

program sentezi, taslak yonetimli program sentezi.

ACKNOWLEDGEMENTS

| am very grateful to my supervisor, Ass’'t Prof. Pierre Flener, for his invaluable guid-
ance during this study. His instruction will be the closest and most important reference
in my future work. | would also like to thank Halime Blyukyildiz and Esra Erdem for

sharing their work with me, my family and my dear friend Serap Firat for their moral

and motivating support.

Contents

1 Introduction L e 1
1.1 Terminology and Theoretical Results 2
1.1.1 Approaches and Extensions to ILP (and Inductive Synthesis)2
1.1.2 Additional Specification Information 5
1.1.3 SyntacticBias 6
1.14 Generality e 8
1.1.5 Predicate Invention 10
1.1.6 Construction Modes and Admissibility 13
1.2 The Objective ofthe Thesis 15
2 The DALOGS-Il Technique i 19
2.1 Asking For a Predicate Declaration, a Schema and a Strategy 21
2.2 Executionofthe Strategy Lo 23
2.3 Abduction of Evidence for the Open Relations of the Open Program . . 26
2.4 Induction of Clauses: The Program Closing Method 37
2.5 Evaluation of the Program Closing Method 40
2.5.1 Necessary Predicate Invention 41
2.5.2 Handling the Sparseness Problem 52

Vi

3 Comparison of DALOGS-Il with other ILP Systems 59

3.1 Comparisonin Terms of the Evidence 59
3.2 Comparisonin Terms of Schemata 61
3.3 Comparison of BLOGS-Il withDIALOGS 62
4 Conclusion 67
References e 69
Appendix A: README file forD 1aALoGs-Il 72
Appendix B: Sample Syntheses 74

Vii

Chapter 1

Introduction

In its most general form, the task of Inductive Logic Programming (ILP) is to infer a
hypothesiH from assumed-to-be-incomplete information (or: evideicahd back-
ground knowledg® such thaB UH =E, whereH, E, andB are sets of clauses. We
say thaH coversE (in B). In practiceB andH are often restricted to sets of Horn claus-
es (i.e. definite logic programs). Evidertieés usually divided into positive evidence
E™ and negative eviden& . Often, the clauses & are restricted to ground positive
literals (or: atoms) and are called positive examples, whereas tHoSeus restricted
to ground negative literals and are called negative examples: this yields an extensional
description, whereas the hypothesis is an intensional description. In a more traditional
machine learning terminology, we would say that a concept descrigtisnto be
learned from descriptiorisof instances and counter-examples of concepts, whose fea-
tures are represented by predicate symbols. In general thus, nothing restricts the evi-
dence to be about a single concept, so that multiple (possibly related) concepts may
have to be learned at the same time.

For instance, given the positive examples (in the left column) and negative examples

(in the right column)

subset([],[]) - subset([k],[])

subset([],[a,b]) = subset([n,m,m],[m,n])

subset([d,c],[c,e,d])
subset([h,f,0],[f,i,g,h,j])

and given as background knowledge (among others) the logic program

select(X,[X|Xs],Xs)
select(X,[H|Ys],[H|Zs]) — select(X,Ys,Zs)

a possible hypothesis is the logic program

subset([],Xs)
subset([X|Xs],Ys) — select(X,Ys,Zs), subset(Xs,Zs)

though at this point we do not wonder how this could be feasible. The main issue is that
we human beings can perform this kind of task, so that the question arises whether a
machine can be designed to do it also. The usefulness of such a machine is undeniable
as it would be a step towards a form of human/machine communication that more
closely models inter-human communication, which usually features a lot of incomplete
(and hence ambiguous) information, of course in the presence of background knowl-
edge, and even noisy information. In the following two sub-sections, we will first in-
troduce some terminology and theoretical results (Section 1.1) and next we will

present our objective (Section 1.2).

1.1 Terminology and Theoretical Results

We now introduce some terminology (in Section 1.1.1 to Section 1.1.3 and in
Section 1.1.6) and mention some theoretical results (in Section1.1.4 and

Section 1.1.5) concerning the induction of recursive clauses.

1.1.1 Approaches and Extensions to ILP (and Inductive Synthesis)

Whether for ILP in general or synthesis in particular, there is additional terminology
due to different approaches as well as extensions to the ILP task, all of which we now
discuss in a loosely connected fashion.

Often, the agent that provides the inputs to an ILP technique is called the teacher,
whereas the ILP technique is called the learner and is said to perform learning. Such a
machine learning terminology is misleading [17], and we shall use the more general

terminology ofsource induction techniqueandinductioninstead.

2

An intended relatioris the entire (possibly infinite) relation represented by a predi-
cate symbol. In an ILP task, onhhcompletanformation (called evidence) is available,
i.e. it does not describe superset(s) of the intended relation(s). We here assume that the
evidence hasorrectinformation, i.e. that it describes subset(s) of the intended rela-
tion(s). In this case, one also says that there rsoree Often, the actually described
subset(s) are finite. An extreme case of incomplete but correct information is complete
and correct information, though this can often only be achieved through some (finite)

axiomatization in the hypothesis language, but not in the evidence language.

We partition relations inteemantic manipulatiorelations angyntactic manipula-
tion relations, depending on whether the actual constants occurring in a ground tuple
are relevant or not for deciding whether that tuple belongs to a relation. For instance,
subset is a syntactic manipulation relation, because it treats constants like variables,

whereasort andinsert would be semantic manipulation relations (see Section 1.1.5).

Induction can be viewed asarchthrough a graph (or: search space) where the nodes
correspond to hypotheses and the arcs correspond to hypothesis-transforming opera-
tors. As usual, the challenge is to efficiently navigate through such a search space, via
intelligent control (e.g., by organizing the search space according to a partial order and

using pruning techniques).

Induction may benteractiveor passive depending on whether the technique asks
guestiongor: querieg to someoracle (or: informan) or not. The oracle may or may
not be the source. The questions may be of various kinds, such as the request for clas-

sification of invented examples as positive or negative ones.

Induction may bencrementalor non-incrementaldepending on whether evidence
Is input one-at-a-time with occasional output of (external) intermediate hypotheses, or
input all-at-once with output of a unique final hypothesis (though there may be internal

intermediate approximations, which are however not considered as hypotheses).

Induction may béottom-upor top-down depending on whether hypotheses (wheth-
er internal or external) monotonically evolve from the maximally specific one (namely
the empty logic program) or from the maximally general one (hamely a logic program

succeeding on all possible queries).

In the output hypothesis, some predicate symbols may be recursively defined: the

corresponding clauses are partitioned ldse clauseandrecursive clauses

3

Once a hypothesis is accepted (for whatever reasons), one may want to validate it.
Since there is no complete description of the intended relation(s), one can only test the
hypothesis, rather than somehow mathematically verifying it. Ideally, a hypothesis
covers all the given evidence. One may thus test the hypothesis by measuring its accu-
racy (expressed in percents) in correctly covering other evidence. The given evidence
IS thus also called theaining set whereas the additional evidence is calledéseset
and is usually in the evidence language. We here assume that the test set is also correct
w.r.t. the intended relation(s).

An identification criteriondefines the moment where an induction technique has
been successful in correctly identifying the intended relation(s), whether it “knows”
this or not. Sample criteria are finite identification, identification-in-the-limit, proba-
bly-approximately-correct (PAC) identification, and so on (see [21] for details). There
are limiting theorems stating what hypothesis languages are inducable from what evi-
dence language under what identification criterion.

It seems desirable to achieve some separation of concerns regarding the logic and
control components of algorithms (or logic programs): some techniques just induce the
logic component, assuming that the control can be added later. Adohitrgl (such
as by clause re-ordering inside programs and literal re-ordering inside clauses so as to
ensure safety of negation-by-failure, termination, etc.) is something specific to the (id-
losyncrasies of the) execution mechanism of the target language, as well as specific to
the desired ways of using the induced program (which are mentioned in additional in-
puts, see the next sub-section). If an interpreter of the target language is actually used
during the induction (say, to verify the coverage of the evidence), such control aspects
cannot be entirely ignored while constructing the logic component.

A generalization of the ILP task is knownthsory-guided inductigror (inductive)
theory revision or declarative debugginghe idea here is that an additional input is
provided, namely an initial hypothesis (or: theddy)under the constraint that the final
hypothesiH should be as close a “variant” thereof as possible, in the sense that only
the “bugs” ofH; w.r.t. E should be (incrementally) found and corrected (or: “de-
bugged”) in order to produdeé. This generalized scheme reduces to the normal one in
its extreme cases, that is wheh is maximally specific or general, depending on

whether induction proceeds bottom-up or top-down. In the past, this was also known

asmodel-driveror approximation-driveearning, as opposeddata-drivenlearning,
where there is no initial theory.
Another variant of the ILP task involves augmenting the inputsdeitiharative bias
which is any form of input information that restricts the search space. There are two
complementary approaches to this, and we discuss them separately in the next two

sub-sections.

1.1.2 Additional Specification Information

A specificatiorof a program contains)@ description of what problem is (to be) solved
by the program, as well as)(a description of how to use the program.

The former description should define the intended relation as declaratively as possi-
ble. Whether it should be informal or formal is an on-going debate, but we don’t have
a choice here, since we want it to be processed by a machine. Ideally, it should even be
as complete as possible, but, as mentioned earlier, this is rarely achieved in practice.
The problem descriptions investigated here (the evidence) are actually even as-
sumed-to-be-incomplete. They are furthermore the most declarative (formal) descrip-
tions that we can imagine (if they are constrained to be non-recursive [16]).

The latter description should give the predicate symbol representing the intended re-
lation, the sequence of names appesof its formal parametergre-conditions(if
any) on these parameters, as well as the representation conventions of the formal pa-
rameters so that one knows how to interpret their actual values. In logic programming,
where we are concerned with relations rather than functions, there should also be an
enumeration of the input/outpotodesn which the program may be called (since full
reversibility is rarely required or rarely even achieved in practice), as well as optional
multiplicity (or: determinismp information for each mode (stating the minimum and
maximum number of correct answers to a query in that mode).

Since such information is part of a (useful) specification anyway, it is only natural to
provide (some of) it as an additional input to an ILP task, especially for a program syn-
thesis task. In the ILP literature, such information is usually cakadantic biaga
kind of declarative bias that restricts the behavior of hypotheses), but we find this ter-
minology insufficient, as it fails to establish the link with (good) specification practice.
Type and mode information are the most commonly used, and, not surprisingly, they

reduce search spaces drastically. Some techniques efficiently exploit a particular case

5

of multiplicity information, namely that the intended relation is a total function in a
given mode (i.e. its multiplicity is 1-1). Of course, such statements should ideally also

be provided for all the predicates defined in the background knowledge.

1.1.3 Syntactic Bias

Syntactic biags another, complementary form of declarative bias. It restricts the lan-
guage of hypotheses. Ideally, it is a parameter of an induction technique, rather than
hardwired into it. As a parameter, it can be provided either by the source as an addi-

tional input, or made available to the technique by its designers.

One particularly useful and common approach is to bias induction by a schema. A
program schema&ontains a template program abstracting a class of actual programs
(calledinstancey in the sense that it represents their dataflow and control-flow by
means of parameterized place-holders, but does not contain (all) their actual computa-
tions nor (all) their actual data structures, together with a ssretraintsthat the

place-holders of the schema should satisfy.

One could for instance design a template program capturing the class of di-
vide-and-conquer programs, or a sub-class thereof, e.g. those featuring two parame-
ters, with division of the first parameter into two components that are somehow smaller
than it:

r(X,Y) — primitive(X), solve(X,Y)
r(X,Y) — nonPrimitive(X), decompose(X,HX,TX4,TX>),
r(TX1,TY1), r(TX,,TY;), compose(HX, TY,TY,,Y)

The intended semantics (data-flow constraints) of this template can be informally de-
scribed as follows. For an arbitrary relatioaver formal parameteps andyY, an in-
stance is to determine the value(syaforresponding to a given valueXxfTwo cases

arise: eitheX has a value (when thpgimitive test succeeds) for whidhcan be easily
directly computed (througéolve), or X has a value (when tlmnPrimitive test suc-
ceeds) for whicly cannot be so easily directly computeth the latter case, the di-
vide-and-conquer principle is applied bydivision (throughdecompose) of X into

a termHX and two term3X; andTX, that are both of the same typeXabut smaller

1. Note thatbothcases may apply, as there may be valuéé iiat it is easy to directly compute from

a givenX, as well as other values ¥fthat it is not so easy to directly compute from tKat

thanX according to some well-founded relatiain), ¢onquering (through in order to
determine the value(s) dfY, andTY, corresponding tGX; andTX,, respectively,

and (i) combining (througltompose) termsHX, TY4, TY, in order to buildy.

Enforcing this intended semantics must be done “manually,” as the template by itself
has no semantics, in the sense that many programs can be seen as an instance of it, not
just divide-and-conquer ones. One way of doing this is to attach to the template the set
of specifications of its predicate place-holders: these specifications are in terms of each
other, including the one of and are thus generic (because even the specification of
is unknown), but can be abduced once and for all according to the informal semantics
of the schema [15]. Such a schema (i.e. template plus specification set) constitutes an
extremely powerful syntactic bias, because it encodes algorithm design knowledge that
would otherwise have to be hardwired or rediscovered the “hard way” during each syn-

thesis.

There are two approaches for representing schemata. The first approach is represent-
ing the schemata as higher-order expressions, sometimes augmented by extra-logical
annotations and features, where the actual programs are obtained by applying high-
er-order substitutions to the schema. The reason why some researchers prefer this ap-
proach is that they find this approach suitable for some applications such as
schema-guided program transformation [6], where a schematic program transforma-
tion could begin only if one can find some form of higher-order matching between ac-
tual programs and schemata. In the second approach, the schemata are represented as
first-order programs, where actual programs are obtained by an interpretation of the re-
lations and the functions of the schema. In other words, the actual programs are ob-
tained by adding programs for itgpen relations, where openness means that an
arbitrary interpretation can apply to the relation and the function. This kind of schema-
ta is calledopen programg15]. A synthesis strateggetermines a way in which the
open relations of the schema are instantiated. There could be more than one strategy
for a given schema, depending on which open relation(s) to instantiate first (e.g. instan-
tiation ofdecompose, primitive, andnonPrimitive), and which open relations to in-

stantiate next (e.golve andcompose).

There are two ways of biasing synthesis by a schBoteema-basesiynthesis infers
a program guaranteed to fit the template of a pre-determined schema and to satisfy its

specification set, but the schema itself is to a certain degree hardwired into the tech-

7

nique. A useful variant ischema-guidedynthesis, where the schema is a parameter
to the technique (which is thus schema-independent) and thus actively guides the syn-
thesis. As a parameter, it can be provided either by the source as an additional input, or

made available to the technique by its designers.

Less common approaches to syntactic bias are the clause description language of [1],
antecedent description grammars [7], argument dependency graphs [27], etc., and are

surveyed in [26].

1.1.4 Generality

Given the formulaG [0 S we say thaG is more generathanS, and thatS is more
specifiahanG. In ILP, the aim is to compute a hypothddigiven background knowl-
edgeB and evidencg, such that B1H [0 E. The generality relationl is a partial or-

der, but doesn’t induce a lattice on the set of formulas. Indeed, there is not always a
unique least generalization under implication of an arbitrary pair of clauses. For in-
stance, the clausggf(X)) - p(X) andp(f(f(X))) - p(X) have bottp(f(f(X))) - p(X)
andp(f(X)) - p(Y) as least generalizations. In [22], the existence and computability of

a least generalization under implication for any finite set of clauses that contains at
least one non-tautologous function-free clause is proven. Since implication between
Horn clauses is undecidable, there are a number of different models of inductive infer-

ence.

B-subsumption. In the model calle®-subsumption [23], the background knowledge

B is empty. The model is defined for clauses, which are viewed as sets of literals.

Definition 1.1: A clauseg 6-subsumea clausesiff there exists a substitutiam such
thatgol s. Two clauses ar@subsumption-equivaleiff they 8-subsume each other.
A clause is said to breducedff it is not 8-subsumption-equivalent to any proper sub-

set of itself.
For instance, The clauggX,Y) - q(X,Y), r(X) 8-subsumes(V,2) - q(V,2),
q(V,T), r(V), s(2) with the substitutionX/V, Y/Z}.

If a clausey B-subsumes a clausetheng [J s, but the reverse is not true for self-re-
cursive clauses [21]. For instance, for the recursive clap&és)) - p(X) and

p(f(f(X))) - p(X) (calledg andsrespectively), although (I s(note thatkis simplyg

8

self-resolved)g does nob-subsumes. Therefore8-subsumption is not equivalent to

implication among clauses. Hence, it is not adequate for handling recursive clauses.

0-subsumption induces a lattice on the set of reduced clauses: any two clauses have
a unique least upper bound (lub) and a unique greatest lower bound (glb). The least
generalization undé-subsumption (abbreviateddpgof two clauses andd, denoted
lg6(c,d), is the lub ofc andd in the 8-subsumption lattice. The @gof two terms
f(sy,....Sn) and f(ty,....ty), denoted 1g6(f(s;,...,5)f(t1,. .. .to), is
f(196(sy,t1),---,196(s4.t1), whereas the Byof the termsf(sy,...,s,) andg(ty,..., ty),
wheref # g or n# m,is a variableV, whereV represents this pair of terms throughout.
The IP of two atoms (similarly for two negative literalg(s;,...,s,) andp(ty,....t,),
denotedg®(p(sy,..-,Sy),P(t1,---.tn), isp(1g6(sy,ty),...,198(s,ty), whereas the Byof the
atomsp(sy,...,S,) andq(ty,...,ty), wherep Z gor n# m, isT, whereT denotes the “most
general literal”. Finally, the Bof two clauses andd, denotedg6(c,d), is {Ig6(l4,!,)
|1, O candl, O d}.

For instance, the @of the clausep(V,W) ~ q(V,W), r(V), s(W) andp(T,N) -
q(T,N), r(T), r(N) is the claus@(X,Y) - q(X,Y), r(X), r(2).

Relative 8-subsumption. An extension ofB-subsumption that uses background

knowledgeB is called relative subsumption [23].

Definition 1.2: If the background knowledg® consists of a conjunction of ground
facts, then theelative least generalization undérsubsumptiorfabbreviated rl@) of
two ground atomg&; andE, relative to background knowled@es Ig6((E; — B),(Eo

~ B)).

The rlgp of two clauses is not necessarily finite. However, it is possible [21] to con-

struct finite ri@s under the syntactic bias ipideterminacy.

Definition 1.3: If L;is a literal in the ordered Horn clause- L,...,L,, then thenput
variablesof the literallL; are those variables appearingLinthat also appear in the
clauseA — L,,...,Lj_q; all other variables ih; are callecbutput variablesA literal L;

is determinateff its output variables have at most one possible binding, given the bind-
ing of the input variables. If a variableappears in the head of a clause, thenlémpeh

of Vis zero, and otherwise, i is the first literal containing the variableandd is the

maximal depth of the input variableskfthe depth oV isd +1. A clause ig-deter-

9

minateiff it is determinate and its body contains only variables of depth atiraost

predicate symbols that have arity at mdsi.

Inverse Resolution. Another model of generality is inverse resolution. There are four
inductive inference rules of inverse resolutiabsorption identification intra-con-

struction andinter-construction[21]:

(<A P-AB (P<AB(P-AQ
(- A (p-abB (q-B)(p-AQ0

P-AB{P-AQ P-AB@-AQ
(@-B)(p-AQ(qg-0C (p-rB)(r-A)(q-rC)

In the rules above, lower-case letters represent atoms and upper-case letters represent
conjunctions of atoms. The absorption and identification rules invert only one resolu-
tion step. The intra-construction and inter-construction rules introduce new predicate

symbols (predicate invention, see the next subsection).

1.1.5 Predicate Invention

Predicate invention can be defined as followWsn{roducing into the hypothesis some
predicate(s) that are not in the evidence, nor in the background knowledge (this is
called shifting the bias by extending the hypothesis language [25])ii pimdl(icing
programs of these new predicates. This requires the usage of constructive rules of in-
ductive inference (where the inductive consequent may involve symbol(s) that are not
in the antecedent), as opposed to selective ones. Such constructive induction thus
doesn’t (simplistically) assume that the preliminary induction tasks of representation
and vocabulary choice have already been solved, and represents thus a crucial field in

induction.

One can distinguish two types of predicate inventimtessary predicate invention

andnon-necessary predicate invention

Necessary Predicate Invention We'll first give an example of necessary predicate

invention, and then define it.

Example 1: In the absence of background knowledge, the induction from positive and

negative examples of the following logic program for #wet predicate (where

10

sort(L,S) holds iff S is a non-descendingly ordered permutatioh,oftherel, S are

integer-lists):

sort([1,[I) —
sort([H|T],S) < sort(T,Y), insert(H,Y,S)

involved the invention of thensert predicate (wherensert(E,L,R) holds iff inte-
ger-listR is non-descendingly ordered integer-Llistvith integerE inserted), whose

logic program hereatfter is a by-product:

insert(E,[].[E]) ~
insert(E,[H|T],[E,H|T]) - E<H
insert(E,[H|T],[HIR]) « - (E<H), insert(E,T,R)

Note that the invention of thasert predicate required in turn the invention of the

predicate (whose obvious specification and program are omitted here).

Definition 1.4: Predicate invention isecessaryff there is no finite logic program for
the observational concepts in the evidence that uses only the fixed vocabulary of pred-

icate symbols from the evidence and the background knowledge.

In Example 1, once synthesis was committed to the recursiveor(l,Y), where
T is the tail ofL (i.e. L=[H|T]), the predicaténsert had tobe invented, especially that
its recursive program cannot be unfolded into the prograradidr If committed to
some other recursive call(s), another predicate would have had to be invented. Other-
wise, the background knowledge being emgtyt would have to be implemented at
most in terms of itself only, which is impossible without generating the non-terminat-
ing progransort(L,S) - sort(L,S), or without generating an infinite program (which

extensionally encodes the model).

Non-necessary Predicate InventionOne can distinguish two types of non-neces-
sary predicate inventiomseful predicate inventioandpragmatic predicate invention
[12].

First, we discuss useful predicate invention. If there wermutation andordered
predicates in the background knowledge of Example 1, the inventimsest such
that it is recursively defined (e.g. as above) would be useful. Indeed, otherwise the
sert predicate would not have to be invented as its unfoldable (because non-recursive)

program would involve thpermutation andordered predicates:

11

insert(E,L,R) — permutation([E|L],R), ordered(R)

and would have a complexity of @), wheren is the length of the lidt, and would
thus be inefficient compared to the recursingert program above, which is Q)
Hence, the use of a recursivesert program would decrease the complexity of the
overallsort program. The invention of a recursivesert program is thus considered

useful although non-necessary.

Definition 1.5: Given a partially constructed logic program for the observational con-
cepts in the evidence, predicate inventiongsfuliff there is a way to complete the

program by inventing a predicate whose logic program is recursive.
Let's now give an example of pragmatic predicate invention.

Example 2: Given evidence of the grandDaughter relation (where
grandDaughter(G,P) holds iff persorG is a grand-daughter of persBi, and back-
ground knowledge of thparent, female, andmale relations (whergarent(P,Q)
holds iff persorP is a parent of persdp), the induction of the following logic program

for grandDaughter:
grandDaughter(G,P) — parent(P,Q), daughter(G,Q)

involved the invention of theaughter predicate (wherdaughter(D,P) holds iff per-

sonD is a daughter of persd?), whose logic program hereafter is a by-product:
daughter(D,P) — parent(P,D), female(D)

The invention of thelaughter predicate was pragmatic since, althoughdéeghter
program could be unfolded into the program ofdhendDaughter predicate, i.e. its
invention was non-necessary, inventing it causedjtardDaughter program to be-
come more compact, and since daeighter concept has now been defined and can be

reused in the future.

Definition 1.6: Given a patrtially constructed logic program for the observational con-
cepts in the evidence, predicate inventiopresgmaticiff it is neither necessary nor

useful.

The task of inductive inference amounts in the limit to finding a finite axiomatization
for a given model. If the intended model cannot be finitely axiomatized within a lan-
guagecr, inductive inference will never succeed. However, detecting this is undecid-

able. This follows from Rice’s theorem (see [25]):

12

Theorem 1: Given a recursively enumerable set of ground ateinsa language ,
it is undecidable whetheris finitely axiomatizable in some languagsuch thatc [
Lo
Fortunately, introducing a new predicate allows finding a finite axiomatization, as

proved by Kleene (see [25]):

Theorem 2: Any recursively enumerable set of formulas in a first-order languagye
finitely axiomatizable in the predicate calculus using additional predicate symbols not
in ..

In other words, Kleene’s theorem states that inductive inference will always succeed
provided the system invents the appropriate new predicates. Thus, predicate invention

is crucial in inductive inference.

1.1.6 Construction Modes and Admissibility

In this sub-section, we will introduce the concepts of construction modes and admissi-
bility [10]. The informal definitions of these two concepts are as followsnatruc-

tion modefor a relation states which parameter(s) are used to “construct” the other
parameters, also expressing whether such usage is mandatory or optional. Construction
modes should not be confused with input/output modes, which state which parameters
must be ground or may be variables at call/return-time. The concaghu$sibility
captures the notion of what it means foraammto satisfy a construction mode for its
relation. Now, let us give the formal definitions of these new concepts. In these defini-
tions, when we want (or need) to group several terms into a single term, we represent
this as a tuple, using angled brackets. For instai{&eY),g(X,Y,Z)[s a term represent-

ing the couple built of two ternféX,Y) andg(X,Y,2).

Definition 1.7: Theleavesof a termt, denotedeavest), are the set of the variables
and constants occurring in
Theverticesof a termt, denoted/erticegt), are the multi-set of the variables and func-

tion symbols (including the constants symbols) occurrirtg in

For instance)eave¢lB[mil) = {1, B, nil}, and leave¢aT) = {a, T}, whereas
verticeg1[B [Lmil) = {1, [IB, [11, [Inil}, and verticegalT) = {a,LT}.
Definition 1.8: Terms is syntactically obtainedrom termt iff leavesgt) [leavegs).

We denote this by s.

13

Term s syntactically containgermt iff verticegt) U,,, verticegs), wherelJ,,, denotes

multi-set inclusion. We denote this b/, s.

For instancela,bllis syntactically obtained frori@,al] becausdéeavesia,al) = {a}
O {a,b} = leaveg[d,bl). However,[@blldoes not syntactically contaif,al] because
verticegla,al) = {a,af [,{ab} =verticegd,bl).

Definition 1.9: A construction moden for a relationr of arity n is a total function
from the set {1, 2,.,n} into the set fnay,..., may,, may, must,..., res,..., res,,

not}, such thatres is in the range af iff may or mustalso is in the range of, and
such that everyes is at most once in the rangerof We also sayn(i) is the mode of

thei" parameter of.

A construction modenis often written in the more suggestive farfm(1),...,m(n)).
Do not confuse the positiarof a parameter and the indeof its modem(i), saymust.
The intended semantics of a mode is as follows:

 modemusf means the parameter in the corresponding position is mandatory in syn-
tactically constructing the parameter in the corresponding posities pf

« modemay means the parameter in the corresponding position is optional for syn-
tactically constructing the parameter in the corresponding posities pf

* modemayy; means the parameter in the corresponding position is optional for syn-
tactically constructing all other parameters;

» modenot means the parameter in the corresponding position is not used at all in
syntactically constructing any of the parameter(s) in the corresponding position(s)
of all res.

Let m be a mode for a relatianand letr(t,,..., t,) be the considered atom, wheres

natural number. Let the indexesrmrun from 1 tok inclusive, wherek is a natural
number. LeMust = [fi | m(i) = musfL}and leMust= [| m(i) = musf for somejL] Sim-

ilarly for May;, Mayy, May, Reg, Res andNot

For instance, let the construction modeabsation(mayy;, must, musp, res;, res,)

and the atom barelation(1, [b], [1, [&, b], [a]), then we have that= 2, Must; = [Jb][]
Must, = [[]) Must = [ib], [0} May; = May, = [I] May = May, = (1) Reg =[{a, b]L]
Res =[Ja][JandRes= [{a, b], [a]Ll

Definition 1.10: A variable is linked in a clause if it occurs in the head or if it occurs
in a literalL of the body andl contains a linked variable.

14

Definition 1.11: A clause that has no equality atoms and no recursive calls(see

Definition 1.1) and no unlinked variables in the body:
r(X,Y,z) - C
is admissible with respect to a maador r iff
H1<j<k MustUpRes, C'U (1)
whereC' is a tuple built of the atoms (seen as terms) of conjun@j@md
leavegReg \sharedLeavegReg [1leavegMay, May,, Must C') I {O,nil, ...} (2)

wheresharedLeavd$) denotes the set of leaves shared by all components ot.tuple
Now, we present the objective of the thesis based on the terminology and theoretical

results given in Section 1.1.

1.2 The Objective of the Thesis

The learning of recursive logic programs (i.e. the class of logic programs where at least
one clause is recursive, e.g. gubset program given in Section 1) from incomplete
information, such as input/output examples, is a challenging subfield both of ILP (In-
ductive Logic Programming) and of the synthesis (in general) of logic programs from
formal specifications. This is an extremely important class of logic programs, as the re-
cent work on constructive induction [12] [25] shows that necessarily invented predi-
cates (see Section 1.1.5) have recursive programs, and it even turns out that their
induction is much harder than the one of non-recursive programs. We call this (induc-
tive) program synthesis.

When it comes to programming applications, we believe the ideal technique is inter-
active (in the sense ofiBLOGs [13]) and non-incremental, has a clausal evidence lan-
guage plus type, mode, and multiplicity information (likenSPSE [11], DIALOGS),
can handle semantic manipulation relations, actually uses (structured) background
knowledge and a syntactic bias, which are both problem-independent and intensional
(like in SYNAPSE), is guided by (and not just based on) at least the powerful di-
vide-and-conquer schema o¥M\PSE and DALOGS (using the implementation ap-
proach of METAINDUCE [18]), discovers additional base case and recursive case
examples (like @p [19]), can perform both necessary and useful predicate invention

(like SYNAPSE, DIALOGS), even from sparse abduced evidence (like)Xactually dis-

15

covers the recursive atoms, and makes a constructive usage of the negative evidence
(through abduction, like th@onstructive Interpretef9] and SYNAPSE).

Our aim was thus to study this important class of logic programs, i.e. recursive logic
programs, and to develop a system that induces logic programs of this class. The clos-
est system to our considerations wasLDGSs (Dialogue-based Inductive and Abduc-
tive LOgic Program Synthesizer) [13]. Therefore, we improved this system into a new
one called MLoGs-II. Thus, our aim became to improveADOGS, whose ancestor
was the SNAPSE system [11] [14], which induces recursive logic programs from a set
of positive examples, and a set of Horn clauses that are padipdrties.The draw-
backs of SNAPSE are that the specifier may not always provide properties that are
needed to induce a logic program that is correct with respect to its specification, and
that most positive examples are redundant with the properties.

DiaLOGS-1I is a schema-guided, interactive, and non-incremental synthesizer of re-
cursive logic programs that takes the initiative and queries a (possibly naive) specifier
for evidence in her/his conceptual languageLDGs-Il needs no properties, and only
asks for the minimal knowledge a specifieusthave in order to want a (logic) pro-
gram, and it can be used by any learner (including itself) that detects, or merely con-
jectures, the necessity of invention of a new predicate. Moreover, due to its powerful
codification of “recursion-theory” into program schemata and schematic constraints, it
needs very little evidence and is very fast.

DiaLOGS-II is schema-guided. The reason why it is schema-guided is as follows:
most (but not all) inductive/abductive synthesizers require large amounts of ground
positive and negative examples of the intended concept. This is because ground exam-
ples are not an adequate way of communicating a concept to a computer and/or because
the underlying “recursion theory” of the synthesizer is poor. In order to overcome this
deficiency, some researchers used non-ground examples [20], or Horn clauses [11] [14]
as evidence language instead of using only ground examples, and some experimented
with schema-based synthesis [11] [14] to address the poor “recursion theory” problem
[17]. We chose the schema-guided approach, because we think that it is the best ap-
proach to handle “recursion theory”. The schemataiafd@ss-II are open programs
and are available to the system together with their synthesis strategies. In other words,

for a particular synthesis, a schema together with a synthesis strategy is chosen.

16

DIALOGS-II can be used to synthesize programs by making use of the available sche-
mata and strategies that are already existing in the system. Moreover, the specifier can
provide additional schemata using the declarative syntax of the schemas of the system
to encode new schemata, and adding the code for strategies for those new schemata. In
that way, the specifier can make syntheses of programs by executing the strategies that

fit to the schemata added.

DIALOGS-II is interactive, because the specifier is assumed to be “lazy” in the sense
that s/he is reluctant to take the initiative and type in evidence of the intended concept
without knowing whether it will be “useful” to the synthesizer or not [13]. Therefore,
DiaLoGs-1I takes the initiative and queries the specifier only for strictly necessary ev-
idence. The query and answer languages are carefully designed so that even a compu-
tationally naive specifier can use the system. Moreover, it is guaranteed that the
specifier can answer such queries, because otherwise the specifier would not need the

synthesized program.

DIALOGS-1I is a system that only induces recursive logic programs because we be-
lieve that inducing recursive logic programs is important [12], especially that they are

strictly necessary (see Section 1.1.5).

DIALOGS-II is a recursive synthesizer, which means it recursively calls itself when a
necessary predicate invention is conjectured during the synthesis. It is then a natural
solution for the system to call itself recursively to make this new synthesis since the
problem (of synthesizing a program for a necessary new predicate) has the same nature
as the problem of synthesizing a program for the top-level predicate. That is, for both

cases, the necessity of predicate invention is conjectured before starting a synthesis.

DiALOGS-II is non-incremental, because we believe that using an incremental ap-
proach is not practical for program synthesis [17]. Recursive programs are so fragile
objects that they should be handled with utmost care. Therefore, we believe that using
general-purpose induction techniques to synthesize programs by incrementally “de-
bugging” the empty program (or an approximate program) according to incomplete ev-
idence is not an appropriate way of synthesizing programs. Moreover, in incremental
synthesis, the order of the evidence is important. That means the system can be forced
into the synthesis of infinite, redundant, or dead code. We strongly believe that the only
way to reliably and efficiently synthesize recursive programs from incomplete infor-

mation is through guidance by a schema capturing a design methodology (e.g. a di-

17

vide-and-conquer schema), as well as through non-incremental handling of the
evidence.

In the remainder of this thesis, we will examine theLDGs-II technique closely in
Chapter 2. This will be followed by a comparison eddGs-11 with current ILP sys-

tems in Chapter 3, and finally, we reach a conclusion in Chapter 4.

18

Chapter 2

The DIALOGS -Il Technique

As mentioned earlier, BLOGS-II is a schema-guided, interactive, recursive, and
non-incremental recursion synthesizer that takes the initiative and queries a (possibly
computationally naive) specifier for evidence in her/his conceptual language. In the
following sub-sections, we will illustrate how theADoGs-II mechanism works by
means of sample syntheses. First, we illustrate the synthesis of a prograndtsr the
|IOdds(L,R) predicate, wherdelOdds(L,R) holds iffR is L without its odd elements,
whereL, R are integer-lists. Next, we examine the synthesis of a program for the pred-
icatereverse(L,R), wherereverse(L,R) holds iff listR is the reverse of lidt, to il-

lustrate the recursive call ofiRL0Gs-II to itself. Before giving the sample syntheses,

we give an algorithm call chart of the basic synthesis algorithm of hawoBs-II

works and the basic synthesis algorithm itself:

19

Algorithm1

Algorithm?2

\/

Algorithm3 Algorithm4 Algorithm5 Algorithm8 Algorithm9&10

Algorithm6 Algorithm7

Algorithm 1: schemaGuidedDialogs-11(Pgm)

Inputs: (none)

Outputs: Pgm

ask for the predicate declaration of the predicate for which a program is being
synthesized

PredDecl := ask(‘Predicate Declaration’)

ask for a schema and a strategy for the schema
selectSchemasStrategy(Schema,Strategy)

call Dialogs-Il with Schema, Strategy and PredDecl to induce Pgm

dialogsli(Schema,Strategy,PredDecl,Pgm)

As shown in Algorithm 1, after executing the first two statements, the system executes
the statemerttialogslli(Schema,Strategy,PredDecl,Pgm) whose algorithm is given

as follows:

Algorithm 2: dialogsli(Schema,Strategy,PredDecl,Pgm)

Inputs: Schema, Strategy, PredDecl

Outputs: Pgm

execute the strategy in order to obtain an open program from the schema, where
the open program has open relations to be “closed” by the end of the next two

statements (i.e. abduce and induce). ParamRoles denotes the information about

20

the names, types, and roles of the parameters (e.g. induction, result).
Strategy(PredDecl,Schema,OpenPgm,ParamRoles)

abduce the evidence necessary for “closing” the open relations p and g of the
open program by means of querying the specifier, where the open relation of the
non-recursive clause is p, whereas the open relation of the recursive clause is g.
The atoms of these relations are supposed to be the last atoms of the
non-recursive and recursive clauses of the open program respectively.
abduce(OpenPgm,ParamRoles,PredDecl,pEvidence,qEvidence)

induce the programs for the open relations by using the Program Closing
Method based on the evidence abduced in the previous step according to the
construction modes pMode and gMode of the relations p and g respectively.
induce(pEvidence,qEvidence,pMode,qMode,pClauses,qClauses)

evaluate the result of the Program Closing Method to conjecture if there is a need
for inventing a new predicate
evaluate(Schema,Strategy,OpenPgm,pClauses,qClauses,PredDecl,Par

amRoles,Pgm)

Now, we go through the statements of the basic synthesis algorithm (Algorithm 1) for
the synthesis of a program for telOdds(L,R) predicate. We will first discuss the

first two statements of this algorithm: asking for a predicate declaration, selecting a
schema and a strategy in Section 2.1. Next we willjough the stateme of
Algorithm 2 by first discussing the execution of the strategy in Section 2.3 and abduc-
tion of evidence in Section 2.4, which is followed by the discussion of the induction of
program clauses in Section 2.5, and finally by the evaluation of the program clauses to

conjecture necessary predicate invention and sparseness problem in Section 2.5.2.

2.1 Asking For a Predicate Declaration, a Schema

and a Strategy

DiaLoGs-Il first needs to know for which predicate it is synthesizing a program. There-
fore, it asks the predicate declaration of the predicate. The speuiBtive able to give

such a declaration, because otherwise s/he would not have the need to have a program

21

for this predicate. Thus, the first step in the synthesis is prompting the specifier for a

predicate declaration and obtaining it:
Predi cat e decl arati on? delOdds(L:list(int),R:list(int))

where the type of andR is list(int). Other available types are in the &#bm, int,
nat, list(),...}.

As mentioned earlier, RBLOGS-II is a schema-guided synthesizer. Therefore, it needs
a schema and a strategy for the schema in order to be able to start a synthesis. Thus,
the next step in the synthesis is prompting the specifier for a schema and a strategy for
this schema.

A basic algorithm for selecting a schema and a strategy for it is given below, where
SchemabDefaults is a parameter representing the list of available schemata in the sys-
tem,Schema is a schema iBchemaDefaults, andStrategy is a strategy foche-

ma.

Algorithm 3: selectSchemaStrategy(Schema,Strategy)

Inputs: none

Outputs: Schema, Strategy

ask the specifier to select Schema from SchemaDefaults in the system
Schema := ask(‘Schema’, SchemaDefaults)

determine StrategyDefaults, the list of available strategies for Schema
StrategyDefaults := determineStrategyDefaults(Schema)

ask the specifier to select Strategy from StrategyDefaults

Strategy := ask(‘Strategy’, StrategyDefaults)

Now, let us see how is this done during the synthesis of a progralelfualds(L,R).

Note that the questions of this dialog are intfhpew i t er font, the specifier’s answers

are inhelvetica font, and the default answers of the system are given inside curly brac-
es, i.e. {}, and suppose that one of the schemata available in the system is a “di-

vide-and-conquer” schema together with a strategy for it:

Schema? {di vi de- and- conquer 1} divide-and-conquerl
Strategy? {divide-and-conquer-Strategyl} divide-and-con-
quer-Strategyl

Now, DIALOGS-II knows that it will use a divide-and-conquer schema with a particular

strategy, i.edivide-and-conquer-Strategyl.

22

2.2 Execution of the Strategy

The next step is to execute the strategy selected by the specifier. Before giving the al-
gorithm of a particular strategy, let us see what the considered divide-and-conquer

schema looks like. The considered schema is:

r(X,Y,Z) — solve r(X,Y,2)
r(X,Y,Z) « decompose_r(X,HX,TX), r(TX;,TY,2),....,r(TX,TY,Z),
compose_r(HX,TY,Y,Z)

whereHX=HX,...,HX}, TX=TXy,...,TX;, TY=TY3,...,TY,, andZ=Z;,...,Z,.

A divide-and-conqueprogram for a predicateover parameterX, Y, andZ works
as follows. Suppose thitis the induction parametef,is the result parameter, aid
the (repetitive) passive parameter(s), whepassiveparameter is a parameter that
does not change through a recursive call. There are two possibilities &f bamwbe
computed: the first one is th#tis directly computed fronX andZ by means of
solve_r(X,Y,Z). There could be more than one way in whycls directly computed
from X andZ (in other words, there could be more than one clause whose head is
solve_r(X,Y,Z) in the final synthesized program). In the second oneXfisstlecom-
posed intd heads antitails by means alecompose_r(X,HX,TX). Next,t recursive
calls are done, one for eatl;. Last, the result parametéris constructed froriX,

TY, andZ by means otompose_r(HX,TY,Y,Z). To be precise, thdX are processed
and composed with thEY andZ in order to yieldY. Again, there could be more than
one way of computiny fromHX, TY, andZ. The schema given above is a represen-
tation of this algorithm description.

So, in order to generate an open program from this schema according to the strategy
divide-and-conquer-Strategythe system must determine and use the roles of the pa-
rameters, the number of passive parameter(s) (if any), £, the program for the
open relatiordecompose_r, andh andt.

Now, let us give the algorithm for executing the strategy for the divide-and-conquer

schema given above:

23

Algorithm 4. divide-and-conquer-Strategyl(PredDecl,Schema,Pgm,
ParamRoles)

Input: PredDecl, Schema

Output: Pgm, ParamRoles

determine the induction parameter, which is of an inductively defined type, the
result parameter (if any), and the passive parameter(s) (if any), and the number
of result and passive parameters, i.e. y and z respectively, from the predicate
declaration PredDecl

[ParamRoles,y,z[1= paramRoles(PredDecl)

determine decompose using the system-defined decomposition operators, i.e.
DecomposeDefaults

[decompose_r,h,t[t= selectDecompose(DecomposeDefaults)

Pgm := generateOpenPgm(Schema,decompose_r,h,t,2)

Now, we examine the execution of the stratélgyde-and-conquer-Strategyldy

means of the synthesis of a programdelOdds(L,R).

First, we show the determination of the parameter roles using the predicate declara-
tion delOddgL:list(int),R:list(int)): DIALOGS-1I creates a sequence of potential induc-
tion parameters, which are of inductively defined types, keeps the first one as the (first)
default answer, and the remaining ones as default ones upon backtracking. Similarly
for the result parameter, which is also likely to be of an inductively defined type: from
the currently remaining parametersADdGs-1l can create a sequence of potential re-
sult parameters, keep the first one as the (first) default answer, and the remaining ones
as default answers upon backtracking. FinallgLDGs-1l can propose as the passive
parameter(s) (if any) the remaining parameter(s) (if any). Providing default answers is
good for naive specifiers, where naive specifiers are the ones who do not have the ca-
pability for answering every question of the system, since if s/he has no idea of deter-
mining the roles of the parameters, s/he can simply accept the default answers and go
on with the synthesis without blocking at this step. Note that a passive parameter may
accidentally be declared as a result parameter, without any influence on the existence
of a correct program: it would be found to be always equal to its tail by post-synthesis
transformations, where in that case the synthesis would be a bit slower, because unnec-
essary computations would need to be done for its construction using ks<tadind

the actually declared passive parameters.

24

How the parameter roles délOdds(L,R) are determined is shown by the dialogue
below, supposing that the specifier accepts the default answers proposed by the system.
First, the specifier is prompted for the induction parameter, where the system proposes

the parametel as the default answer:
I nduction paraneter? {L} L

Next, the specifier is prompted for the result parameter, where the system proposes the
(remaining) parametd® as the result parameter since there is only one remaining pa-
rameter according to the predicate declaration and it has to be a result parameter since

the result parameter is asked before passive parameters.
Result paraneter? {R} R

Note that there is (are) no passive parameter(s).

The strategy selected by the specifier makes@zs-1l create a sequence of poten-
tial decomposition operators using available decomposition operators in the system,
keep the first one as the (first) default answer, and the remaining ones as default ones
upon backtracking. The specifier can select the default one or can write her/his own
decompose_delOdds as an answer, where the predicates in the body must already be
defined as procedures in the system; let us assume that the specifier selects the default

one, which is a head-tail decomposition of the list:
Deconposi ti on operator? {deconpose_del Cdds(L, HL, TL) <
L=[HL| TL] }
decompose_delOdds(L,HL,TL) « L=[HL|TL]
The other pre-defined decomposition operators of thelistfe) are given below,

whereh denotes the number of heads addnotes the number of tails:

decompose_r(L,H;,H,,T) « L=[Hq,H,|T] h/2, t/1
decompose_r(L,H,T1,To) — L=[H|T], partition(T,H,T,,T5) h/1, t/2
decompose_r(L,T1,To) « L=[_,_|_], halves(L,T1,T>5) h/0, t/2

Similar sequences are also available for other inductively defined typesteext,
h andt are instantiated according to the selected decomposition operator: for head-tail
decomposition, both andt are 1. At this time of the synthesis, from a programming

point of view, all creative decisions have been taken, but alternative decisions are ready

25

for any occurrence of backtracking (either becaused®s-Il fails due to some deci-
sion at a later step of Algorithm 2, or because the specifier wants another program after
successful completion of all the steps).

Knowing decompose_delOdds, and the values df, t, z, the following open pro-

gram fordelOdds(L,R) is generated from the input schema:

delOdds(A,B) — solve_delOdds(A,B)

delOdds(A,B) — decompose_delOdds(A,C,D), delOdds(D,E),
compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) — F=[G|H]

Note that the relationsolve_delOdds andcompose_delOdds are open: they will
be “closed” after the execution of the second and the third statements (abduction of ev-
idence and induction of clauses) of Algorithm 2. This open program is passed as an

input to the second statement of Algorithm 2.

2.3 Abduction of Evidence for the Open Relations of

the Open Program

Let the open relations of an open progranpl@ndq, wherep is the open relation of
a non-recursive clause aqds the open relation of a recursive clause of the open pro-
gram.

In DIALOGS-II, the process of finding programs for the open relagpasdq is also
interactive and is based on the notions of abduction through (naive) unfolding and que-
rying, and induction through the Program Closing Method (computation of least gen-
eral generalizations).

We will illustrate naive unfolding and querying by means of the open relations of an
open program of the divide-and-conquer schema given previously. The basic principle

of (naive) unfolding and querying is as follows. Based on an open program

r(A,B) — solve r(A,B)
r(A,B) — decompose_r(A,C,D), r(D,E), compose_r(C,E,B)
decompose_r(F,G,H) ~ F=[G|H]

whose induction parameter As result parameter iB, decomposition operator is a

head-tail one, and open relations solve_r andcompose_r (wheresolve_r denotes

26

p andcompose_r denoteg), respectively), the possible computation “traces” for var-

lous most general values of the induction parameter are:

r((1.D1) — solve_r([],D1)

r((E4],F1) < solve_r([E4],F1)

r((E1l.F1) < r([].F2), compose_r(Eq,F>,F1)
r([G1,G2],Hy) « solve_r([G G,],Hq)
r([G1,G2lHy) « r([Go].Hy), compose_r(Gy,Hp,Hy)

The basic principle is ta X query the specifier for an instance of the last atom of each
trace, using previous answers to resolve recursive calisnduce a program for
solve_r from some of the answers so that it is not an open relation afterwands; (

duce a program famompose_r from the other answers so that it is not an open relation
after this induction. The criterion of how to make such a division of the answers fol-
lows from the construction modes (see Section 1.1.6) of the schema. Before giving the

steps above in detail, we introduce a new concept.

Definition 2.1: (Most general form of a parameter)
The most general form of a parameter of a certainttymel of a certain sizeis de-

noted by
mostGenForitt,s)

and is found using type-specific programs. For instance, folisgpthe program is as

follows:

list(nil,0)
list(H.T,M) « list(T,N), M is N+1

The most general forxd of a parameter of tydest and of size 3 is computed by SLD

resolution of the goal
< list(X,3)

with the program given above yielding the ksB.C.nil. Similarly, for typenat, the
program is

nat(0,0) —

nat(s(N),M) — nat(N,T), M is N+1

27

The most general forid of a parameter of typsat and of size 2 is computed by SLD

resolution of the goal
~ nat(X,2)

with the program given above yielding the natural nuns&(0)).

Step() is realized by means of a basic loop: for each most general form of the induc-
tion parameter a goal for the top-level predicate is generated. For each clause whose
head unifies with that goal, the atom of an open relation in the body of the clause is
found by resolving the body atoms (“executing” the body) using the primitives, spec-
ifier-introduced predicates (which are introduced while the specifier gives answers to
the queries about the predicate for which a program is being synthesized), and the
clauses abduced during the previous iterations of the loop. And for each such an
“‘open” atom, a query is generated. From the specifier’s answer to the query, some ev-
idence is abduced for the open relation. This basic loop is repeated until the user an-
swers a query bgtopt.

Let us now give an algorithm for Step(note that Stepi() and Stepi{i) will be dis-
cussed in the following sub-sections). The algorithm abduces evidengekvie.
dence and gEvidence, for the open relationp and g, wherePgm is the open
programParamRoles is information about the parameterdgim, i.e. names, types,
and the positions of the parameters in the heads of the clauRgspivhich is com-
puted using the predicate declaratleredDecl by Algorithm 4, andlopPred is the

name of the predicate for which a program is being induced.

Algorithm5: abduce(Pgm,ParamRoles,PredDecl,pEvidence,qEvidence)
Inputs: Pgm, ParamRoles, PredDecl
Outputs: pEvidence, gEvidence
Shortcuts are abduced clauses for the open relations p, g and for TopPred
Shortcuts = {}
pEvidence := {}
gEvidence = {}
1:=0
repeat
let X be the most general form of the induction parameter of type t of size i
X := mostGenForm(t,i)

construct a goal using;»and variable result and passive parameter(s)

28

TopPred := predName(PredDecl)
Goal := TopPred(X;,Y,Z)
find a clause (in Pgm) whose head unifies with Goal and whose body unifies
with Body (under the same substitution)
Body := pgmClause(Pgm,Goal)
prove Body in order to find an atom of open relation p or q
demo(Body,Pgm,TopPred,Shortcuts,Background,Assumptions,
ResidueAtom)
guery the specifier to abduce evidence for the open relation of Body
askQuery(Goal,ResidueAtom,Assumptions,Answer)
if Answer # “false” and Answer # “stop-it” then
abduce evidence for open relations p or g using the answer Answer to the
query made in askQuery
if ResidueAtom is of predicate p then
[pEXs,Shortcut[t= abduceClauses(Answer,ResidueAtom)
assert pExs and Shortcut
pEvidence := pEvidence [1 pExs
else
[gExs,Shortcut[l:= abduceClauses(Answer,ResidueAtom)
assert gExs and Shortcut
gEvidence := gEvidence [0 gExs
Shortcuts := Shortcuts O {Shortcut}
else
abduce nothing
increment i
until Answer = “stop-it”

retract all Shortcuts to prevent them being used for further syntheses

Now let us give the algorithm falemo

29

Algorithm 6: demo(Goal,Pgm,TopPred,Shortcuts,Background,

Assumptions,ResidueAtom)

Input: Goal, Pgm, TopPred, Shortcuts, Background
Output: Assumptions, ResidueAtom
(Pgm + Shortcuts) O Background O Assumptions [ResidueAtom |—g| p

Goal

Let us explain hovdemoworks now: the proof oGoal is done by usinghortcuts
andBackground. Shortcuts are abduced clauses for the open relatmregsand for
TopPred, where these clauses have precedence over the clauses of during SLD reso-
lution (note that abduced clauses for the open relafipgsare also called evidence
since they will be used as evidence for closing these open relations). That is, when the
head of a shortcut clause unifies with an ato@aal, these shortcut clauses are used
instead of the clauses Bgm (note that + is used instead[ofto indicate this prece-
dence in Algorithm 6). If there is neither a shortcut for an atom nor a claéggrin

whose head unifies with that atom, then resolution is impossible and the resolution of
Goal stops there, where this atonrResidueAtom. The resolution oGoal also stops
whenGoal is proved to b&rue. Background is a set of programs for pre-defined prim-
itives, such as “=", “>", etc. The atoms of specifier-introduced predicates (introduced
by the answers that the specifier gives to the queries) encounté&edliare called
Assumptions, meaning that these atoms are assumed to be true during the SLD reso-
lution since these atoms are introduced by the specifier and, thus, there is not any pro-
gram for the specifier-introduced predicates that is known to the system, which implies
that the resolution will be blocked by the atoms of the specifier-introduced predicates,
if they are not assumed to be trdssumptions are collected (through conjunction)

in order to be passed to the query-asking during which the query is designed by con-
sideringAssumptions to be true (see askQuery below). Now, we give the algorithm

for asking queries:

Algorithm 7: askQuery(Goal,ResidueAtom,Assumptions,Answer)
Inputs: Goal, ResidueAtom, Assumptions
Output: Answer
if ResidueAtom is true then
do not query the specifier, because there is no atom for which any evidence

should be abduced, thus Answer is an empty set

30

Answer = {}
else if ResidueAtom is an atom of the relation p or g then

if Assumptions =[] then
ask the query: “When does Goal hold?” and get Answer from the specifier
Answer := ask(‘When does’ Goal ‘hold?’)

else
ask the query: “When does Goal hold, assuming Assumptions?” and get
Answer from the specifier

Answer := ask(‘When does’ Goal ‘hold assuming’ Assumptions?)

Now we know how the evidence is abduced for the open relations of an open program.
Let us now examine how the abduction of evidence for the open relations
solve_delOdds andcompose_delOdds is done during the synthesis of a program

for thedelOdds predicate by considering the open program

delOdds(A,B) — solve_delOdds(A,B)

delOdds(A,B) — decompose_delOdds(A,C,D), delOdds(D,E),
compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) ~ F=[G|H]

and considering that the relatisalve_delOdds plays the role of the relatign and
the relationcompose_delOdds plays the role of the relatian This correspondence
of the relations is due to the fact teatve_delOdds is the open relation of the non-re-
cursive clause of the open program, andthpose_delOdds is the open relation of

the recursive clause of the open program.

First Iteration for Abducing Evidence. The specifier must know the value of the re-

sult parameter when the induction parameter is the empty list, otherwise s/he would not
have the need for a program f@lOdds. Thus, the first most general form of the in-
duction parameteh is[], where the query generation process proceeds by first resolv-
ing the goatelOdds([],B) with the head of the recursive clause of the open program
and finding a goal for resolution. But, this attempt fails after resol@mpmpose

with the recursive clause since the induction parameter has a vallig that cannot

be decomposed. Therefore, the non-recursive clause is considered next. The recursive
clause of the open program is tried first, because in that way the answers that the spec-

ifier gives to the queries are shorter (thus it is less boring for the specifier to answer the

31

gueries) than in the case where the non-recursive clause is used first. This is because
during the resolution of a goal that has been generated by resolving the goal with the
head of the recursive clause, more assumptions are likely to be collected to be passed
to the queries than in the case where the goal is resolved with the non-recursive clause.
More assumptions during the querying causes the specifier to write less conditions in
order to make the goal (the one that includes a most general form of the induction pa-
rameter) hold.
Thus, next the goalelOdds([],B) is resolved with the non-recursive clause of the

open program yielding the goal:
~ solve_delOdds(A,B)

Resolving this goal is impossible, so the unfolding process stops herepand®ll

extracts the following query to abduce evidencestive_delOdds:
When does del Gdds([], B) hol d?

from this goal (see Algorithm 7). Note that the specifier should be able to answer this
guery, since otherwise s/he would not need a program for the predidd@idds, in

that sense the specifier is guaranteed to answer the queries. The answer should be a for-
mula 7[B], where onlyB may be free, explaining how to comp&tdérom [] such that
delOdds([],B) holds. In other wordsolve _delOdds([],B) should be “equivalent” to

F[B]. The answer to the query B=[]. Using this answer, IBLOGS-1l abduces the fol-

lowing evidence and shortcuts folve_delOdds anddelOdds (see Algorithm 5):

solve_delOdds([],A) « A=[]
delOdds([],A) « A=]] (s1)

Second lteration for Abducing Evidence.The specifier must also know the result
when the induction parameter is a one-element list. The query generation process starts
by unifying the goatlelOdds([A],B) with the head of the recursive clause of the open
program yielding the goal:

~ decompose_delOdds(A,C,D), delOdds(D,E),
compose_delOdds(C,E,B)

Resolvingdecompose_delOdds(A,C,D) and resolving the resulting equality atom

gives
~ delOdds([],E), compose_delOdds(C,E,B)

32

Using the shortcugl and resolving the resulting equality atom yields:
— compose_delOdds(C,[],B)

Now the following query can be extracted from this goal since resolving this goal is
impossible. The specifier answers the query as follows (note that the comma *,” stands
for conjunction, and the semi-colon “;” stands for disjunction, where the comma has a

higher precedence than the semi-colon):
When does del Odds([A], B) hol d? B=[], odd(A); B=[A], even(A).

Note that the predicatesld andevenare introduced by the specifier, where the atoms
odd’X) andeverfX) are from now on assumed by the system to be true. Otherwise, re-
solving these atoms would be impossible and the resolution will be blocked because
there are no programs for the predicatéd andeven Instead of blocking when such

atoms are encountered, the system keeps these atoms to pass them to the queries (see
the third iteration for abducing evidence given below). Using this answer to the query,
DiaLOGS-II abduces the following evidence and shortquiste the correspondence

between the answers in the answer disjunct and the bodies of the shortcut and evidence

clauses):
compose_delOdds(A,[],B) « B=[], odd(A) (s2)
compose_delOdds(A,[],B) —~ B=[A], even(A) (s3)
delOdds([A],B) — B=[], odd(A) (s4)
delOdds([A],B) — B=[A], even(A) (s5)

Now, upon backtracking, unifying the godélOdds([A],B) with the head of the

non-recursive clause of the open program yields the goal:
~ solve_delOdds([A],B)

where resolving this goal is impossible. In this case,@Gs-11 directly collects evi-
dence forsolve_delOdds using the shortcuts4 ands5 instead of generating a query
that would be identical to the one made for the abduction of evidence for
compose_delOdds(C,[],B). Thus, the evidence collected gmlve_delOdds is the

following:

solve_delOdds([A],B) — B=[], odd(A)
solve_delOdds([A],B) — B=[A], even(A)

33

Third Iteration for Abducing Evidence. Next, the specifier is queried for the result
when the induction parameter is a two-element list. Again, the specifstknow the
answer. DaLocs-ll first creates the following clause by unifying the goal
delOdds(JA,B],C) with the head of the recursive clause of the open program yielding
the goal:
— decompose_delOdds([A,B],HA, TA), delOdds(TA,TB),
compose_delOdds(HA,TB,C)

Resolvingdecompose_delOdds([A,B],HA,TA) and the resulting equality atom, and

using the shortcwg4 reduces this goal to:
~ 0dd(B), compose_delOdds(A,[],C)

Note that the atorodd(B) is an atom of the specifier-introduced predicatd, and
remember that during the SLD resolution of a goal, if such an atom is encountered, then
this atom is assumed to be true since it was introduced by the specifier, and kept since

it is passed to the next query. Thus, the goal becomes:
~ compose_delOdds(A,[],C)

Usings2, this becomes:
~ odd(A), C=[]

Again note thabdd(A) is assumed to be true since it is an atom of the specifier-intro-
duced predicate, and it is kept for the next query. So, now Assumptions becomes equal
to the set §dd(B), odd(A)}. Thus, the goal becomes:

~ C=[]
which is finally resolved to:
« true

Since there is no atom of any open relation in that goal, no query can be generated from
it (thus, in that case the assumptions collected are not used).
Next, upon backtracking, by the use of the other shortcusi,&he following goal

is obtained:
— even(B), compose_delOdds(A,[B],C)

where the atoneven(B) is assumed to be true and collected as an assumption to be
passed to the next query, again because it is an atom of a specifier-introduced predicate.

Thus, the goal becomes:

34

~ compose_delOdds(A,[B],C)

where resolving this goal is impossible, so that the following query is generated (note

the usage of the assumptieven(B) in the query):

When does del Gdds([A,B],C) hol d, assum ng even(B)?
C =[B], odd(A); C=[A,B], even(A).

The following shortcuts and evidence are abduced from the answer:
compose_delOdds(A,[B],C) — C=[B], odd(A)
compose_delOdds(A,[B],C) —~ C=[A,B], even(A)
delOdds(JA,B],C) — C=[B], odd(A), even(B) (s6)
delOdds([A,B],C) — C=[A,B], even(A), even(B) (s7)

Unifying the goaldelOdds([A,B],C) with the head of the non-recursive clause of the

open program would yield the goal
~ solve_delOdds([A,B],C)

Since the system now knows whiglOdds([A,B],C) holds (see shortcus$ ands?7),
the specifier is not queried, and by using the shorséugsds7, DIALOGS-II directly

abduces the evidence:

solve_delOdds([A,B],C) — C=[B], odd(A), even(B)

solve_delOdds(JA,B],C) ~ C=[A,B], even(A), even(B)
If first the goaldelOdds([A,B],C) had been unified with the non-recursive clause
yielding the goal

~ solve_delOdds([A,B],C)

where resolving this goal is impossible, then the specifier would have been queried as

follows:
When does del Gdds([A,B],C) hol d?

where s/he should have answered this query as:
C =[B], odd(A), even(B); C=[A,B], even(A), even(B); C=[], odd(A), odd(B);
C=[A], even(A), odd(B)
Note that the specifier would have to write a longer answer for this query than for the
one that was asked foompose_delOdds. That is why the goal is unified first with

the recursive clause rather than the non-recursive one as explained earlier.

35

Stopping the Query SessionNext, the specifier is queried for the result when the in-
duction parameter is a three-element list. Suppose that the specifier is bored or believes
having said sufficiently many useful things abdatOdds and does not want to an-

swer any queries anymore. In that case, the specifier answers the query by the keyword

“stop-it”, so that the query session is ended:

When does del Gdds([A, B, C],D) hold, assum ng even(B),

even(C) ? stop-it.

Stopping the querying is thus fully manual (specifier-dependent). Actually, there are
two other possibilities to stop querying: the first one is fully automatic, the second one
IS semi-automatic.

In the first one, a heuristic is used to conjecture whether the system has to stop que-
rying or not. The heuristic is as follows: after abducing evidenge &oidq after each
query, all the abduced evidence forandq is processed (by the Program Closing
Method) and compared with the result of the same process done on the evidence col-
lected for the previous query. If the results of these two processes are the same, then it
is assumed that the potential next queries would also yield the same results, so it is con-
jectured that the system can stop querying and rely on the evidence that was collected
until that time. This method is fully-automatic, because the system makes its decision
without any interaction with the specifier. But, due to its being a heuristic, the system
can be defeated.

The second method is a combination of the other two methods. The system processes
all the evidence after each query, and if the last two successive results are the same, it
asks the specifier to conjecture whether to continue querying or not, since there is a
possibility that the abduced evidence is adequate for induction of a correct program. If
the specifier thinks that this much evidence is sufficient to induce a correct program,
then a program is induced from this evidence, otherwise s/he is further queried until
s/he decides that the abduced evidence is adequate.

We think that the DALOGS-1l method is the most appropriate one. Its method is better
than the fully-automatic one since it leaves the decision to the specifier, so that it is al-
ways possible to induce a correct program either by a first correct decision of the spec-
ifier on stopping querying, or by successive syntheses that would let the specifier
synthesize a correct program in the end, by making the specifier learn that s/he should

answer more queries each time the system is re-run. This method has a drawback be-

36

cause of its being a heuristic. It fails when a correct program can only be induced after
some other queries. That is, abduction of some more new evidence could cause a
change in the result of each process done after each query. In that case, the program
induced could be incomplete/incorrect. The second method is mostly for expert speci-
fiers since the decision whether the abduced evidence is adequate or not is not an easy
decision for a naive specifier, where a specifier who has the knowledge and capability
to make such a decision is considered an expert specifier, whereas a specifier who is
not capable of making such a decision is considered a naive one. However, the naive
specifier could decide to stop querying the first time the system asks to make a deci-

sion. In that case, this method boils down to a combination of the other two methods.

Now, let us see how the abduced evidence #mive delOdds and

compose_delOdds will be processed in order to find programs for these relations.

2.4 Induction of Clauses: The Program Closing

Method

The Program Closing Method discussed in this section is based on the Program Clos-
ing Method discussed in [10]. There, the open program has only one relation that will
be closed using evidence for that relation. According to our Program Closing Method,
there are two open relations of the open prograny ieedq. Let us see now how it

works.

The evidence abduced for the open relatppasdq during the execution of the third
statement of Algorithm 2 is divided into subsets such that theflgach subset yields
a clause for eithgy or g. In order to understand how this division into subsets and tak-
ing the I@ of each subset is done, we have to first analyze the dataflow of the programs
that havep andq as open relations. In other words, we have to look inside the open

relationsp andq.

Here, we analyze the data-flow of divide-and-conquer programs, whickdiager

andcompose_r as open relations (see the divide-and-conquer schema on page 23).

Using general knowledge of the divide-and-conquer design methodology, it is possi-
ble to conjecture that, in general, the construction mode (see Section 1.1.6) of
compose_r(HX,TY,Y,Z) is

37

compose_r(may, must, res,may),

where the firstmay denotesnay...,maywith h occurrences afnay the seconanay
denotesnay...,maywith zoccurrences ahay,andmust denotesnust...,mustwith t
occurrences ahust(remember thét is the number of headi$X;, thatzis the number

of passive parameters, and thetthe number of tailsY;).

Indeed, thél'Y; being obtained through recursion, they must all somehow be used to
constructY, because some of the recursive calls would otherwise have been useless.
The HX; need not always be used to constjcas it depends on the particular pro-
gram. So there is no fixed mode for the head(s) of the induction parameter, and their
most general mode thusnsay The passive parameter@also need not always be
used to construct. So there also is no fixed mode for the passive parameter(s), and
their most general mode thus alsoniay

Similarly, one can argue that the modesolve_r(X,Y,Z) is solve_r(mayresmay),
wheremay denotesnay...,maywith zoccurrences ahay The inductive paramet&r
and the passive parameteiZsheed not always be used to construct the result param-
eterY. So there are no fixed modes ¥mlandZ, and their most general mode thus is
may

The evidence abduced for the open relatparsdqg needs to be processed according
to the Program Closing Method so that admissible clauses (see Section 1.1.6) for the
open relationp andq are obtained. We give an algorithm below for the realization of

this process (note thaplve_r plays the role gb, andcompose_r plays the role of):

Algorithm 8: induce(pEvidence,qEvidence,pMode,qMode,
pClauses,qClauses)

Inputs: pEvidence, gEvidence, pMode, gMode

Outputs: pClauses, qClauses

divide the (evidence) clause set for q, i.e. gEvidence, into a minimal number of
subsets (called cliques) of which any two elements have an admis8jhle.lg
gCliques (see [10] for an efficient algorithm for this NP-complete problem)
gCliques := division(gEvidence,gMode)

analyze every such clique: if thedlgf the counterpart subset of the clauses for
p is also admissible, then delete the clique from the clauses for q; otherwise
delete that counterpart subset from the clauses for p, and thus obtain

NewqCliques and NewpEvidence.

38

INewqCliques, NewpEvidencelt= prune(qCliques,pMode,pEvidence)
take the 1@s of the remaining cliques, i.e. NewqCliques, as clauses of q, i.e.
gClauses
gClauses := {lg6(c)|coNewqCliques}
divide the remaining clause set for p, i.e. NewpEvidence, into a minimal number
of cliques such that any two elements in each clique have an admis8jhle.lg
pCliques
pCliques := division(NewpEvidence,pMode)
build admissible clauses, i.e. pClauses, of the p from thast Ige. pCliques
pClauses := {Ig6(c)|cOpCliques}
Let us now turn back to the synthesis of a progrardét®dds and see how the “clos-
ing” of open relationsolve_delOdds andcompose_delOdds is done according to

Algorithm 8. The evidence collected for the open relatisobkre delOdds and

compose_delOdds is (see previous sub-section):

solve_delOdds([A,B],[A,B]) — even(A), even(B) (1) compose_delOdds(A,[B],[A,B]) — even(A)

solve_delOdds([A,B],[B]) — odd(A), even(B) (2) compose_delOdds(A,[B],[B]) — odd(A)
solve_delOdds([A],[A]) — even(A) (3) compose_delOdds(A,[],[A]) — even(A)
solve_delOdds([A],[]) — odd(A) (4) compose_delOdds(A[],[]) — odd(A)
solve_delOdds([],[]) < (5) (no counterpart)

Following the statements of Algorithm 8, 1ADOGs-1I first divides the

compose_delOdds evidence into the following cliques:

compose_delOdds(A,B,[A|B]) —~ even(A) 1,3)
compose_delOdds(A,B,B) — odd(A) (2,4)

where the first clique is constructed by taking tiedfy(1) and @), and the second one
by taking the I§ of (2) and (4) of theompose_delOdds evidence. Next, it analyzes
the counterpart sets feolve_delOdds. That is, it takes the Bof (1) and(3), as well

as the |§ of (2) and(4) of the solve_delOdds evidenceand thus obtains:

solve_delOdds([A|B],[A|B]) — even(A), even(C) (1,3)
solve_delOdds([A|B],B) —~ odd(A), T (2,4)
None of these two clauses is admissible since the first one contains a literal, i.e.
even(C), in its body, which has an unlinked variable, Ce.And, the second one is

not admissible because the body contdirfsee Section 1.1)6Thus, the counterpart
sets ofsolve_delOdds, i.e. {(1), (3)} and {(2), (4)} are eliminated from the

39

solve_delOdds evidence set and the cliquesafmpose_delOdds are kept. The
lgBs of these two cliques become thus clausesoaipose_delOdds, namely the

clauses that will be in the final prograirhe remaining set f@solve_delOdds is
solve_delOdds([],[]) -

and since this set is a clique and is admissible, 6téilg. itself) becomes a clause for
solve _delOdds.

Now, the open relatiorsolve _delOdds andcompose_delOdds are “closed”, that
is they have an interpretation, and the open program constructed from the initial sche-
ma is also “closed” since it has no open relations. The final step in the synthesis is add-
ing the clauses of the open relations to the open program to close the open program. In

that way, the final program becomes:

delOdds(A,B) — solve_delOdds(A,B)
delOdds(A,B) — decompose_delOdds(A,C,D), delOdds(D,E),
compose_delOdds(C,E,B)

decompose_delOdds(F,G,H) ~ F=[G|H]

solve_delOdds([],[]) -

compose_delOdds(A,B,[A|B]) — even(A)

compose_delOdds(A,B,B) — odd(A)
This program is correct with respect to its specification. Post-synthesis transformations
that optimize the final programs are not our concern in this thesis. See [6] if you want

to know more about them.

2.5 Evaluation of the Program Closing Method

Finding a program for the open relation of the recursive clause of an open program, i.e.
the relationg, via the Program Clausing Method assumes that there is a finite non-re-
cursive program for that relation. However such is not always the case. That is, there
might be a recursive one instead. In other words, the system might have to do a neces-

sary predicate invention.

40

2.5.1 Necessary Predicate Invention

How can the system possibly decide that the result of the Program Closing Method is
wrong, that is that the finite non-recursive program that was induced for the rglation
via the Program Closing Method is incomplete, and that it has to invent a predicate
with a recursive program after rejecting the result of the Program Closing Method?
These guestions imply that some heuristic needs to be used for detecting and handling
necessary predicate invention [12] [25].

Since the Program Clausing Method has been devised to always succeed (indeed, in
the worst case, it divides a clause set into cliques of one element each), a heuristic is
needed for rejecting the results of the Program Clausing Method and conjecturing ne-
cessity of the predicate invention. For the time being, we do not have an acceptable
heuristic that frequently correctly conjectures necessary predicate invention, whenever
there is a need to synthesize a recursive program. ThereforeLipd3-1l, the deci-
sion of predicate invention is specifier-dependent. That is, the specifier is asked wheth-
er the system should reject the result of the Program Closing Method and synthesize a
recursive program (do a necessary predicate invention), or whether it should use the
result of the Program Closing Method. If the result of the Program Clausing Method is
rejected by the specifier, themDoOGs-1l re-invokes itself under the assumption that a
recursive logic program exists for the open relation.

In general, nLOGS-II is called with astart program this is the empty set in the case
of a new synthesis (for thp-level predicatg or a set of clauses for a (unique)
top-level predicate and its (directly or indirectly) used predicates, in cased3-II
Is used (possibly by itself) for a necessary invention of a predicate that is (directly or
indirectly) used by the top-level predicate. In case there is a predicate invention, the
new program synthesized for the new predicate is added to the start program, otherwise
the clauses induced by the Program Closing Method are added to the start program,
yielding the final program.

We saw how query generation and answering take place when there is no predicate
invention and how the result of the Program Closing Method is used for “closing” the
open relations during the synthesis of a progrardét®dds. Now let us see how this
is done in case of necessary predicate invention: when a necessity of predicate inven-
tion is conjectured, query generation during the synthesis of the new predicate is al-

ways done for the top-level predicate, but resolution will eventually be blocked by an

41

open relation of the current predicate and thus the system will extract a question for it
in terms of the top-level one. This is because the user does not always (see the next
sub-section for an exceptional case) need to know the predicate being invented, but
s/he has to know the top-level predicate since otherwise s/he would not even have the
need for a program for the top-level predicate. Thus,@ss-1l generates queries for

the new predicate in terms of the top level predicate, but resolution is eventually
blocked by an open atom of the program of the new predicate, i.e. current predicate,
and extract a question for it in terms of the top-level one.

Now, we introduce two new concepts: the concept of giving hints and the concept of
calling DIALOGS-II in a certain modealoudor mute Let us first discuss the concept of
giving hints: hints about the roles of the parameters of a certain parameter declaration
can be given to the system. In a recursive calllaf@ss-l itself, it is possible to hint
about the parameter roles of the new predicate (how this is done will be explained lat-
er). So, we can say thatAboGs-1l can be called with hints about the roles of the pa-
rameters (if there are any hints), where the initial call et ®cs-II for the top-level
predicate is done with an empty hint listADbGs-II has preference of hints over de-
faults. In other words, if there are any hints, then the system uses these hints instead of
using the defaults.

Now let us introduce the concept of calling the systemuteor aloud mode: DA-

LOGS |l is said to be iraloud mode when it asks the specifier for a predicate declara-
tion, a schema, a strategy, parameter roles and a decomposition operator, and gets the
answer from the specifier whereas it is said to bautemode when the specifier is
gueried for nothing, where the system itself answers the questions by itself. By default,
the system is ialoudmode when it starts synthesis, but it is calleshitemode when

there is necessary predicate invention. Now, we give an algorithm that realizes all the
observations and discussions explained so far. What this algorithm basically does is
that itevaluateghe result of the Program Closing Method based on the specifier’s eval-
uation of the Program Closing Method and calleDGs-Il recursively, inmutemode,

to synthesize a recursive program for the predigatepredicate invention is neces-

sary, otherwise it uses the result of the Program Closing Method to produce a non-re-

cursive program for the relatian

42

Algorithm 9: evaluate(Schema,Strategy,CurrOpenPgm,

pClauses,qClauses,PredDecl,ParamRoles,Pgm)

Inputs: Schema, Strategy, CurrOpenPgm, pClauses, gClauses,
PredDecl, ParamRoles
Outputs: Pgm
display the result of the Program Closing Method
display(pClauses,qClauses)
ask the specifier if predicate invention is necessary
Answer := ask(‘Please evaluate the Program Closing Method: need for
recursive synthesis? [yes/no]’)
if Answer=yes then
determine the predicate declaration for the new predicate for which a
recursive program is being synthesized using ParamRoles of TopPred,
where TopPred is the name of the predicate given in PredDecl
NewPredDecl := predDecL(ParamRoles)
TopPred := predName(PredDecl)
add the clauses for the relation p, i.e. SelectedpClauses, which are from
pClauses and have no counterparts among the clauses of qClauses, to
CurrOpenPgm to obtain NewOpenPgm
SelectedpClauses = select(pClauses,qClauses)
NewOpenPgm := CurrOpenPgm O SelectedpClauses
construct hints about the roles of the parameters
Hints := constructHints(NewPredDecl)
setMode(mute)
call DiaLoGslI recursively with the new predicate declaration and hints to
induce a program for the new predicate
dialogsll(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,
TopPred,Pgm)
else
add the clauses pClauses and gClauses to CurrOpenPgm to obtain Pgm

Pgm := CurrOpenPgm 0O pClauses 0O qClauses

Note that in Algorithm 9, IALOGS-1I is now called withNewPredDecl andHints

about the parameter roles, where the final program for the new predicate will be added

43

to NewOpenPgm, which is an open program (whose relatipis still open) forTop-
Pred.

Synthesis of a Program foreverse(L,R). Now we will illustrate how Algorithm 9
works by means of the synthesis of a programdeerse(L,R), wherereverse(L,R)

holds iff listR is the reverse of lidt. Since we already discussed the first two state-
ments of the basic synthesis algorithm, i.e. Algorithm 1, and first two statements of
Algorithm 2, in terms of the synthesis of a programdelOdds, we will skip these
statements in the illustration of the synthesis of a prograneverse(L,R), where we

will only give the results of these statements.

By the execution of the first statement (execution of the strategy) of Algorithm 2, the

following open program foreverse(L,R) has been generated:

reverse(A,B) — solve_reverse(A,B)
reverse(A,B) — decompose_reverse(A,C,D), reverse(D,E),
compose_reverse(C,E,B)

decompose_reverse(F,G,H) — F=[G|H]

whereA is the induction parameter aBds the result parameter.

Remember that by executing the second statement of Algorithm 2, the evidence for
the open relations, i.@.andq, is abduced. So, at the end of the second statement, the

evidence fosolve_reverse andcompose_reverse is as given below in the form of

counterparts:

solve_reverse([A],[A]) ~ (1) compose_reverse(A,[1,[A]) ~
solve_reverse([A,B],[B,A]) ~ 2 compose_reverse(A,[B],[B,A]) —
solve_reverse([A,B,C],[C,B,A]) — 3 compose_reverse(A,[B,C],[B,C,A]) —
solve_reverse([A,B,C,D],[D,C,B,A]) — (4) compose_reverse(A,[B,C,D],[B,C,D,A]) —
solve_reverse([],[]) < (5) (no counterpart)

where the Program Closing Method results in the following clauses for the open rela-

tion solve_reverse (note that there is nmompose_reverse clause):

solve_reverse(AA)
solve_reverse([A,B],[B,A])
solve_reverse([A,B,C],[C,B,A]) ~

Now, it is time to query the specifier about the result of the Program Closing Method

to conjecture whether predicate invention is necessary or not.

44

Pl ease eval uate the Program C osi ng Met hod: need for

recursive synthesis? [yes/no] yes

The specifier here answers the queryésbelieving that there exists a recursive pro-
gram for the predicate of the recursive clause of the open program, i.e.
compose_reverse, rejecting the result of the Program Closing Method. Since the
system now knows that it should synthesize a recursive program for the
compose_reverse predicate, it needs to call itself recursively. But, before doing this

it should first elaborate a predicate declaration for the predicate, and construct hints
about the parameter roles, and compute the new start program for the new synthesis by
adding the clauses for the relatgmlve_reverse that have no counterparts among the

clauses otompose_reverse.

Determination of a Predicate Declaration for the New PredicateNow, let us go
through the steps of determination of a predicate declaration for the new predicate one
by one to see how they are realized. First, we discuss how the new predicate declaration
is elaborated. A predicate declaration has two components: the name of the predicate
and the list of parameters together with their types. The name of the new predicate is
already known, which isompose_reverse. The list of parameters together with their
types is elaborated as follows: it is known that the new predicate has three parameters.
The type of the first parameter is found tartiesince in the open program given above

the first parameter afompose_reverse, i.e.C, is the head (hamely, an element) of

the listA, where the type of the paramefeis list(int). The type of the second param-

eter is found to bdist(int), since in the open program the second parameter of
compose_reverse, i.e. E, is the result parameter of the recursive call, riee.
verse(D,E), where the result parameter of tegerse predicate is of typkst(int). Fi-

nally, the third parameter is found to be of ty#(int), since it also is the result
parameter of the open program, where its typistint). Thus, using the information

about the name of the new predicate and the parameters together with their types, the

predicate declaration for the new predicate is constructed as shown below:
compose_reverse(HL:int, TR:list(int),R:list(int))

Now, the system has a predicate declaration of the new predicate for which it will call

itself to induce a program.

45

Construction of Hints. Next, it has to construct hints about the parameter roles, i.e.
which parameter is the induction parameter, which one is (are) the result parameter(s)
(if any), and which one is (are) the passive parameter(s) (if any), in order to call itself
in mutemode with these hints (remember thaal®»Gs-Il has a preference of hints

over defaults irmute mode). It is reasonable thRt (see the predicate declaration
above) is hinted as the result parameter since the corresponding patnmetae

open program (see the open program on page 44) is the result parameter of the pro-
gram, and it is also reasonable to AR as the induction parameter since it is of an
inductively defined type, and finally to hint the remaining parantéiteas the passive
parameter. In general, the result parameter of the open rejatiaine open program

can be hinted as a result parameter for the new predicate, a parameter which is the re-
sult parameter of the recursive call in the open program can be hinted as an induction
parameter if it is of an inductively defined type, and the remaining parameters as the
passive parameters. Here we described the determination of hints about the parameter
roles for a divide-and-conquer schema, since we are illustrating the synthesis of a pro-
gram that fits a divide-and-conquer schema. The construction of hints would be differ-
ent if the schema were another one, e.g. descending-generalization, since the parameter

roles of the schema would be different.

Construction of a Start Program for the New SynthesisWhat DALOGS-II does

after elaboration of the new predicate declaration and construction of hints is that it
constructs a start program for the new synthesis by using the evidence clauses abduced
during execution of the second statement of Algorithm 2. How this is done is as fol-
lows: the system adds the abduced clauses for the rgpeti@t have no counterparts
among the abduced clauses for the relagida the open program to obtain the start

program for the new synthesis. The clause
solve_reverse([],[]) <

has no counterparts among the abduced clauses for the relatqpose reverse

(see page 45). Thus the start program for the new synthesis is:

reverse(A,B) — solve_reverse(A,B)
reverse(A,B) — decompose_reverse(A,C,D), reverse(D,E),

compose_reverse(C,E,B)

46

decompose_reverse(F,G,H) « F=[G|H]

solve_reverse([],[]) <

Now, it is time for the system to re-invoke itself on this start program using the new

predicate declaration and the hints.

Calling DiaLoGs -1l Recursively. Before calling the system recursively, the synthe-

sis mode is converted intoutemode. DALOGS-II first determines the roles of the pa-
rameters that are given inside the predicate declaration using the hints and the
decomposition operator using the defaults. Next, an open program is generated for the
new predicate, and this open program is added to the start program to obtain the new
open program that will be used for the abduction of the new evidence for the open re-
lations of the open program of the new predicate. The second and third statements (ab-
duction of evidence and induction of clauses) of Algorithm 2 are then executed using
this new open program to “close” the open relations of the open program of the new
predicate. Let us now see how all this is done during the synthesis of a program for the
reverse(L,R) predicate.

DiaLOGs-1I first determines the roles of the parameters of the predicate declaration:
compose_reverse(HL:int, TR:list(int),R:list(int))

using the hints determined previously. That is, the induction parame&teytise result
parameter iR, and the passive parameteHis (note that IALOGS-II does not query

the user for that since it uses the hints).

I nduction paraneter? {TR} TR
Result paraneter? {R} R
Passive parameter(s)? {[HL]} [HL]

Next, it determinegdecompose_compose_reverse by using the default one.

Deconposi ti on operator?
{deconpose_conpose_reverse(L,H T) < L =[HT]}
decompose_compose_reverse(L,H,T) « L=[H|T]

Next, it generates the following open program using

decompose_compose_reverse:

reverse(A,B) — solve_reverse(A,B)

reverse(A,B) — decompose_reverse(A,C,D), reverse(D,E),

47

compose_reverse(C,E,B)
decompose_reverse(F,G,H) « F=[G|H]
solve_reverse([],[]) <
compose_reverse(G,M,N) — solve_compose_reverse(G,M,N)
compose_reverse(G,H,l) — decompose_compose_reverse(H,J,K),
compose_reverse(G,K,L), compose_compose_reverse(J,L,l,G)

decompose_compose_reverse(F,G,H) — F=[G|H]

Now, it is time to abduce -evidence for the open relations, i.e.
compose_compose_reverse andsolve_compose_reverse, where during the ab-
duction of the evidence for these relations, the system does not query the specifier, but
uses the shortcuts for the top-level predicaterse, except in the case where there is

no shortcut left after using the available shortcuts:

reverse([],[]) ~ (s1)
reverse([A],[A]) ~ (s2)
reverse([A,B],[B,A]) ~ (s3)
reverse([A,B,C],[C,B,A]) (s4)
reverse([A,B,C,D],[ID,C,B,A]) ~ (s5)

After that point, the SLD resolution of a goal for the top-level predicate is blocked by
an open atom, and the system extracts a query for this open atom, where the answer to
that query is found using the shortcuts of the top-level predicate. Let us now go through

the steps of “closing” the open relations of the open program given above.

The most general form of the goal when the size of the induction parameterid.e.
0 is the following: ~ reverse([],X). This goal is first tried to be resolved with the re-
cursive clause of theeverse predicate, where this attempt fails since resolving
decompose_reverse when the induction parametaris the empty list, i.€], is im-
possible. The system next resolves the goal with the non-recursive clause of the open

program. As a result of this resolution, the goal
~ true

is reached because the predicatiwe reverse is already closed (there are clauses for

thesolve_reverse predicate), and thus there is no need to abduce evidence for it.

48

Next the goal— reverse([X],Y), where the induction parameter is a one-element
list, is resolved with the clauses of tieerse predicate, first with the recursive clause

yielding the goal:

~ decompose_reverse([X],C,D), reverse(D,E),

compose_reverse(C,E,Y)

Resolvingdecompose_reverse([X],C,D) and the resulting equality atom, and using

the shortcusl gives:
~ compose_reverse(X,[],Y)

Since there is no shortcut foompose_reverse(X,[],Y) (shortcuts obtained before
starting the new synthesis are not kept, to prevent them from being accidentally used
by the new synthesis as shortcuts, see Algorithmb5), the goal
compose_reverse(X,[],Y) is resolved with the non-recursive clause of
compose_reverse (note that the recursive clause cannot be resolved since the induc-

tion parameter, i.¢], cannot be decomposed) yielding the goal:
— solve_compose_reverse(X,[],Y)

There is neither a shortcut nor a program for the predicée compose_reverse,

so resolving this goal is impossible. Therefore, it is time to make a query out of this
goal. Since there is a shortcut, 52, the system uses the shorts@tto abduce the
following evidence and shortcuts forsolve_compose_reverse and

compose_reverse without any need for a query:

solve_compose_reverse(X,[],[X]) <

compose_reverse(X,[],[X]) (s6)

The system resolves the goalreverse([X],Y) with the non-recursive clause of the

reverse predicate. As a result of this resolution, the goal
« true

is reached because the predicative reverse is already closed (there are clauses for
thesolve_reverse predicate), and thus there is no need to abduce evidence for it.
Next the goal— reverse([X,Y],W) is resolved with the recursive clause of the

verse predicate, yielding the goal:

— decompose_reverse([X,Y],C,D), reverse(D,E),

compose_reverse(C,E,W)

49

Resolvingdecompose_reverse([X,Y],C,D) and the resulting equality atom, and

using the shortcus2), the goal becomes
— compose_reverse(X,[Y],W)

Since there is no shortcut foompose_reverse(X,[Y],W), it is resolved with the re-

cursive clause of theompose_reverse predicate yielding the goal

~ decompose_compose_reverse([Y],J,K), compose_reverse(X,K,L),

compose_compose_reverse(J,L,W,X)

Resolvingdecompose_compose_reverse([Y],J,K) and the resulting equality atom,

and usings6) gives
~ compose_compose_reverse(Y,L,W,X)

Resolving this goal is impossible since there is neither a shortcut nor a clause for
compose_compose_reverse. So, the following evidence and shortcuts are abduced

using the shortcig3:

compose_compose_reverse(Y,[X],[Y,X],X)

compose_reverse(X,[Y],[Y,X) < (s7)

Upon backtracking, the goal
— compose_reverse(X,[Y],W)

Is resolved with the non-recursive clause ofdbmpose_reverse yielding the goal:
— solve_compose_reverse(X,[Y],W)

Using the shortcwt7 the following evidence is abduced:
solve_compose_reverse(X,[Y],[Y,X]) <

Next this resolution process is also done for the most general values of the induction
parameteA of thereverse predicate (see the open programreverse) when the

size of the induction parameter is three and then foureizerse([X,Y,W],V), andre-
verse([X,Y,W,V],Z). And, as a result of this process the following evidence and short-

cuts are abduced:

solve_compose_reverse(X,[W,Y],[W,Y,X]) — (2)
solve_compose_reverse(X,[V,W,Y],[V,W,Y,X]) ~ Q)
compose_compose_reverse(X,[W,Y],[X,W,Y],Y) (2)
compose_compose_reverse(X,[W,Y,V],[X,W,Y ,V],V) Q)

50

compose_reverse(X,[W,Y],[W,Y,X])
compose_reverse(X,[V,W,Y],[V,W,Y,X])

The evidence given above for solve_compose_reverse and

compose_compose_reverse together with the following evidence

solve_compose_reverse(X,[],[X]) < (no counterpart)
solve_compose_reverse(X,[Y],[Y,X]) < (3)
compose_compose_reverse(Y,[X],[Y,X],X) ~ (3)

compose_reverse(X,[],Y) <

compose_reverse(X,[Y],[Y.X]) <
abduced previously is input to the Program Closing Method in order to find programs

for these open relations. Following Algorithm 8,1aAD0Gs-II first divides the

compose_compose_reverse evidence into a clique and computes ik Ig
compose_compose_reverse(L,[M|N],[L,M|N],P) (1,2,3)

where the clique is constructed by taking thé Igf (1), (2) and 8) of

compose_compose_reverse evidence (see Algorithm 8). Next, it analyzes the

counterpart set f@wolve_compose_reverse. That is, it takes the &of (1), (2), and

(3) of thesolve_compose_reverse evidence and thus obtains:
solve_compose_reverse(A,[B|C],[B,DIE]) ~ (1,2,3)
Since this clause is not admissible (see Section 1.1.6), it is not kept. The remaining
clause
solve_compose_reverse(X,[],[X]) <

that has no counterpart is kept in the final program. Thus, as a result of the Program

Closing Method the following two clauses are induced

solve_compose_reverse(K,[],[K]) <

compose_compose_reverse(L,[M|N],[L,M|N],P)

Adding these clauses to the open program gives the following program fevénse

predicate, which is correct with respect to its specification:

reverse(A,B) — solve_reverse(A,B)
reverse(A,B) — decompose_reverse(A,C,D), reverse(D,E),
compose_reverse(C,E,B)

decompose_reverse(F,G,H) — F=[G|H]

51

solve_reverse([],[]) <

compose_reverse(P,V,W) — solve_compose_reverse(P,V,W)

compose_reverse(P,Q,R) — decompose_compose_reverse(Q,S,T),
compose_reverse(P,T,U), compose_compose_reverse(S,U,R,P)

decompose_compose_reverse(F,G,H) — F=[G|H]

solve_compose_reverse(K,[],[K]) <

compose_compose_reverse(L,[M|N],[L,M|N],P)

2.5.2 Handling the Sparseness Problem

DiaLoGs-1I faces thesparsenesproblem [19] when not every value of the induction
parameter of the new predicate, geis “reachable” by the values of the induction pa-
rameter of the top-level predicate. That is, queries about the new predicate cannot al-
ways be asked in terms of the top-level one. To show how we solve this problem, we
will examine the synthesis of a program for thetorial predicate, wheréactori-

al(N,F) holds iff natural numbéef is the factorial of natural numbkr. What happens
during the synthesis offactorial program, in short, is that the synthesis requires the
invention of themultiplication predicate, whermultiplication(A,B,C) holds iff natu-

ral numbelC is the product of natural numbe&sandB, but actually only uses a sparse
subset of thenultiplication relation. That is, it uses the following subset ofrtheti-

plication relation.

multiplication(s(0),s(0),s(0))
multiplication(s(0),s2(0),s2(0))
multiplication(s2(0),s3(0),s°(0))
multiplication(s®(0),s%(0),s24(0))

So, the evidence abduced for the open relations of the open prograrmoitipéca-
tion relation is a sparse set of evidence from which it is not possible to induce a correct
and completenultiplication program, nor in turn a correct and compfatgorial pro-
gram with respect to its specification. Here, we introduce a new solution to the sparse-

ness problem. Before explaining this new approach, let us first give a new conjecture.

The “Yilmaz Conjecture”. We conjecture that if there is a relation such that during

the synthesis of a program for that relation the sparseness problem occurs, then the

52

specifier should be able to answer the queries related to the relations that are intrinsic

to the relation being induced (this is the exception that was mentioned in Section 2.5).

For instance, during the synthesis of a progranfdciorial, if the specifier is able

to answer the query
When does factorial (s3(0),L) hol d?

then s/he should also be able to answer the following query aduttiplication, after
having seen some evidence of theltiplication relation that was abduced and is dif-

ferent from the one given below:
When does mul tiplication(s?(0),s3(0),M hold?

since, what s/he is actually doing while finding an answer to the queryfattbeal
relation is that s/he is using thaultiplication relation, because otherwise s/he would
not be able to answer the query aboutféworial relation. In other wordsnultipli-
cation is “intrinsic” to factorial.

In our approach to handling the sparseness problem, we use the idea given by the
conjecture above. Before explaining how we use this idea, let us first investigate how
the system conjectures that there is a sparseness problem.de& 1, this detection
is done by means of a heuristic. How this heuristic works is as follows: if the abduced
evidence for the open relations in the open program for the new predicate (the evidence
for the solve_compose g and compose_compose_q) is unbalanced that is, if
there are at least three ma@ve _compose_(clauses thanompose_compose_(
clauses, then the system conjectures that there is a sparseness problem. The number
three has been determined empirically (e.g. based on the results obtained during the
synthesis of a program for th&ctorial predicate). When the system conjectures that
there is a sparseness problem, the evidence abducesbl¥® compose g and
compose_compose_(q is discarded, and a new synthesisaloud mode, is started
for theq predicate, after letting the specifier know that there will be a new synthesis
for the new predicate, and s/he would need to answer the queries of that new synthesis.
Let us now refine the algorithevaluate(Algorithm 9) such that it conjectures the

sparseness problem:

53

Algorithm 10: evaluate(Schema,Strategy,CurrOpenPgm,
pClauses,qClauses,PredDecl,ParamRoles,Pgm)
Inputs: CurrOpenPgm, pClauses,qClauses, TopPred,ParamRoles
Outputs: Pgm
display the result of the Program Closing Method
display(pClauses,qClauses)
ask the specifier if predicate invention is necessary
Answer := ask(‘Please evaluate the Program Closing Method: need for
recursive synthesis? [yes/no]’)
if Answer = yes then
determine the predicate declaration for the new predicate for which a
recursive program is being synthesized using ParamRoles of TopPred,
where TopPred is the name of the predicate given in PredDecl
NewPredDecl := predDecL(ParamRoles)
TopPred := predName(PredDecl)
add the clauses for the relation p, i.e. SelectedpClauses, which are from
pClauses and have no counterparts among the clauses of qClauses, to
CurrOpenPgm to obtain NewOpenPgm
SelectedpClauses := select(pClauses,qClauses)
NewOpenPgm := CurrOpenPgm O SelectedpClauses
check if there is sparseness problem by callimg.0cslI recursively with
the new predicate declaration in mute mode using the heuristic
gAndpEvidence := collectAssertedEvidence(q,p)
SynthesisMode := getMode()
setMode(mute)
dialogsli(Schema,Strategy,NewPredDecl,NewOpenPgm,[],
TopPred, Pgm)
setMode(SynthesisMode)
Sparseness ;= sparsenessHeuristic(QAndpEvidence)
if Sparseness = no then
Hints := constructHints(NewPredDecl)
setMode(mute)

call DiaLoGslI recursively with the new predicate declaration and

54

hints to induce a program for the new predicate such that final Pgm is
obtained
dialogsli(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,
TopPred,Pgm)
else
let the specifier know that a new synthesis for new predicate is being
started and display the abduced clauses for the new predicate
NewPred := predName(NewPredDecl)
Clauses := collectAssertedEvidence(NewPred)
display(Clauses)
setMode(aloud)
Hints := constructHints(NewPredDecl)
call DiaLoGslI recursively with the new predicate declaration and an
empty hint list to induce a program for the new predicate in aloud mode
dialogsli(Schema,Strategy,NewPredDecl,NewOpenPgm,Hints,
NewPred,Pgm)
else
add the clauses pClauses and gClauses to the CurrOpenPgm to obtain
Pgm
Pgm := CurrOpenPgm O pClauses O gClauses
Note that if there is a sparseness problem, then the system willaatid3-11 recur-
sively to induce a new program for the new predicate.
Now, let us examine the synthesis of a program fofabterial predicate Suppose
that the following open program for tfectorial predicate is generated at the end of

the execution of the first statement of Algorithm 2:
factorial(A,B) — solve_factorial(A,B)
factorial(A,B) — decompose_factorial(A,C,D), factorial(C,E),
compose_factorial(D,E,B)
decompose_factorial(F,G,H) —~ F=s(G), H=F
And, also suppose that the Program Closing Method yields the following clauses for

solve_factorial (note that no clause faompose_factorial has been induced):

55

solve_factorial(s3(0),s%(0)) —
solve_factorial(s(A),s(A)) —

solve_factorial(0,s(0))

Now, suppose that the specifier is asked to evaluate the result of the Program Closing
Method, and s/he rejects it (s/he thinks that predicate invention is necessary), and thus

the open program given above becomes (see Algorithm 10):

factorial(A,B) — solve_factorial(A,B)

factorial(A,B) — decompose_factorial(A,C,D), factorial(C,E),
compose_factorial(D,E,B)

decompose_factorial(F,G,H) ~ F=s(G), H=F

solve_factorial(0,s(0))

Next, the predicate declaration fmompose_factorial is determined, as it was done

for thecompose_reverse predicate, which is:
compose_factorial(A:nat,B:nat,C:nat)

Now, it is time for the system to detect if there is a sparseness problem. The sparseness
problem is detected by callingA20Gs-Il in mutemode using the new predicate dec-
laration (the shortcuts abduced for thetorial predicate previously are used for this

new synthesis). Thus, the system abduces the following evidence for
solve_compose_factorial (note that no clause faompose_compose_factorial is

induced) at the end of the Program Closing Method of this new synthesis:

solve_compose_factorial(s(0),s(0),s(0)) —
solve_compose_factorial(52(0),5(0),32(0)) -

solve_compose_factorial(s3(0),5%(0),s8(0)) —

The system now uses the heuristic to see if there is any sparseness problem: the number
of clauses fosolve_compose_factorial is three (at least three) more than the number

of clauses focompose_compose_factorial. So, a correct program for the relations
solve_compose factorial and compose_compose_factorial, and thus for
compose_factorial in turn, cannot be induced from this evidence, and therefore the
evidence is eliminated. Thus, a new synthesis for a progracorigrose_factorial is

started inaloud mode by letting the specifier know about this:

You nust know the rel ati on conpose_factorial since it

isintrinsictothe factorial relation. The cl auses of

56

this relation obtained during the synthesis are given
bel ow. The systemis starting a new synthesis for that
rel ation, so please answer the queries about it:
conpose_factorial (s(0),s(0),s(0)) -
conpose_factorial (s?(0),s(0),s%0)) «

conpose_factori al (53(0), 52(0), 56(0)) -

Note that the relatiooompose_factorial is actually thenultiplication relation. And,
with the new predicate declaration, the system is called recursively with an empty hint
list yielding the resulting open program fasmpose_factorial at the end of the exe-

cution of these statements:

compose_factorial(T,U,V) — solve_compose_factorial(T,U,V)
compose_factorial(T,U,V) — decompose_compose_factorial(T,W,X),
compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)

decompose_compose_factorial(F,G,H) — F=s(G), H=F

Next, the query session for the synthesis of programsolge_compose_factorial
andcompose_compose_factorial takes place to abduce evidence for these relations,

where the specifier answers the queries:

When does conpose factorial (0, A B) hol d? B=0.

When does conpose_factorial (s(0),A B) hold? B=A.

When does conpose factorial (s(s(0)), A B) hol d? B=A+A.
When does conpose_factorial (s(s(s(0))), A B) hold?
B=A+A+A.

The abduced evidence from this query is:

solve_compose_factorial(0,A,0)
solve_compose_factorial(s(0),A,A) —
solve_compose_factorial(s(s(0)),A,A+A)
solve_compose_factorial(s(s(s(0))),A,A+A+A)
compose_compose_factorial(s(0),0,A,A)
compose_compose_factorial(s(s(0)),A,A+AA)

compose_compose_factorial(s(s(s(0))),A+A,A+A+AA)

From this evidence, using the Program Closing Method, the following program is in-

duced forcompose_factorial:

57

compose_factorial(T,U,V) ~ solve_compose_factorial(T,U,V)
compose_factorial(T,U,V) — decompose_compose_factorial(T,W,X),
compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)
decompose_compose_factorial(F,G,H) — F=s(G), H=F
solve_compose_factorial(0,S,0)
solve_compose_factorial(s(0),R,R) —

compose_compose_factorial(s(s(0)),P,P+Q,Q) -

Finally, this new program fotompose_factorial is added to the open program for

factorial yielding the following program for thiactorial predicate:

factorial(A,B) — solve_factorial(A,B)
factorial(A,B) — decompose_factorial(A,C,D), factorial(C,E),
compose_factorial(D,E,B)

decompose_factorial(F,G,H) —~ F=s(G), H=F

solve_factorial(0,s(0))

compose_factorial(T,U,V) — solve_compose_factorial(T,U,V)

compose_factorial(T,U,V) — decompose_compose_factorial(T,W,X),
compose_factorial(W,U,Y), compose_compose_factorial(X,Y,V,U)

decompose_compose_factorial(F,G,H) — F=s(G), H=F

solve_compose_factorial(0,A,0)

solve_compose_factorial(s(0),B,B) -

compose_compose_factorial(s(s(C)),D,D+E,E)

where thidactorial program is correct with respect to its specification. If we partially

evaluate this program, then we obtain the following program that is more “readable”:

factorial(0,s(0)) -

factorial(A,B) — A=s(C), factorial(C,E), compose_factorial(A,E,B)

compose_factorial(0,A,0)

compose_factorial(s(0),B,B)

compose_factorial(T,U,V) ~ T=s(W), compose_factorial(W,U,Y),
compose_compose_factorial(T,Y,V,U)

compose_compose_factorial(s(s(C)),D,D+E,E)

58

Chapter 3

Comparison of DALOGS -Il with other

ILP Systems

We compare DA\LOGS-1I with other ILP systems in terms of the evidence given as input

to the system, and in terms of the power of their schemata. We first discuss (in
Section 3.1) the evidence given in the form of examples and given in the form of syn-
tactic bias (see Section 1.1.3), and then (in Section 3.2) we compare other ILP systems

with DIALOGS-1I in terms of the schemata available to these systems.

3.1 Comparison in Terms of the Evidence

FoiL [24] is a general purpose system that induces recursive and non-recursive logic
programs. In order to learn a recursive programnieogth(A,L), wherelength(A,L)

holds iff natural numbelk is the length of the ligh, it needs in the order of thousands

of positive and negative examples. On the other hamdoBs-11 can synthesize a re-
cursive logic program fdength(A,L) from as few as three positive examples. The rea-
son for FOIL to consume that many examples for the synthesis of such a simple
recursive program is that it is a general purpose synthesizer that does not differentiate
between the synthesis of non-recursive programs and the synthesis of recursive ones.

This leads to poor “recursion” handling, and, as a result, the necessity of thousands of

59

examples for “encoding” the recursion. As advocated by Biermann [4], we believe that
it is more efficient to try a suite of fast and reliable class-specific synthesizers (and, if
necessary, to fall back onto a general purpose synthesizer) than to simply run such a
slow, if not unreliable, general-purpose synthesizer.

The TRACY system [3] gets a description of the hypothesis space in the form of a syn-
tactic bias and induces recursive logic programs using that bias. Suppose that for the
append predicate (wherappend(A,B,C) holds iff listC is the concatenation of list
A'in front of listB), the following bias, positive and negative examples, and mode dec-
laration are given as inputs, where the program and mode declaratior préuicate

are considered given as background knowledge:
append(A,B,C) ~ {B=C, A=[]}
append(A,B,C) —~ {A=[H|T], B=[E|F], append(T {E,B,A},{D,F}), C=[H|D]}
+append([a],[b],[a,b])
—append([a],[b],[a])
—append([a],[b],[b])
append_inout(in,in,out)

The curly braces used for writing the body atoms and the parameters denote one ele-
ment of the powerset of the elements inside the braces. After generating all possible
clauses in the hypothesis space encoded by the bias above, the set of clauses used in
the derivation of the positive example such that these clauses do not cover any of the

two negative examples yields the final program:

append(A,B,C) — B=C, A=[]
append(A,B,C) — A=[H|T], append(T,B,D), C=[H|D]

Note that the recursive call is already encoded in the bias: the technique itself cannot
discover recursion. In that sense, the source already knows how to write a possible pro-
gram forappend. If the same synthesis would be done withUdGs-II, the source
would not need to know how to write a programdppend. In fact, this is the ideal
scenario since the very aim of a synthesizer is to synthesize a program that is unknown
(or not completely known) to the source; it is not to extract a possible program from
the evidence that encodes this program.

In summary, DLOGS-1l synthesizes recursive logic programs from little evidence,
and the source can useaDoGs-Il to synthesize a recursive logic program that is un-

known to it.

60

3.2 Comparison in Terms of Schemata

METAINDUCE [18] is almost exactly a subset ofADOGs-II. Its schema is a particular

case of the divide-and-conquer schemataiaf @zs-1I, namely for ternary relations,
induction parameter of type list, exactly one base clause (when the list is empty), ex-
actly one recursive clause (when the list is non-empty), and head-tail decomposition of
the list (i.e. exactly one recursive call). In other words, the divide-and-conquer sche-
mata that can be used byaDoGs-Il is more powerful: the induction parameter is not
necessarily of type list, as it can be of any type that is inductively defined, multiple base
clauses and multiple recursive clauses are possible, and the decomposition is not nec-

essarily a head-tail one.

CRUSTACEAN 1] [2] synthesizes recursive logic programs of the following schema:

p(Al’ . ,An) —
p(As,---A) — P(By,-.By)

where thed; andB; are terms. This is a very restricted schema compared to the possible
divide-and-conquer schemata ofaDoGs-Il. It has only one base clause and one re-
cursive clause. Moreover, because of the schema, there is no possibility of any kind of

predicate invention.

The schema of thel(® system [19] is a superior to that oRGSTACEAN.

p(...) <
p(...) < p(...)

or, in the case of necessary predicate invention, it is:

q(...) <

q(...) < q(...), newp(...)
newp(...) <

newp(...) « newp(...)

The AQLP schema is superior to the schemaRUETACEAN. When there is no predicate
invention, the schema ofi® is the same as that oORGSTACEAN, when there is pred-

icate invention, the schema has one base clause and one recursive clause, which has an
invented predicate whose program has only one base clause and one recursive clause.

When there is predicate inventionADOGs-II invents predicates whose programs are

61

also be of the divide-and-conquer schemataiaf@ss-II, which implies DALOGS-II

can make use of divide-and-conquer schemata that are more general thanittrat of C

The hypothesis language of theR€E2 system [8] is two-clause linear and closed
recursiveij-determinate logic programs. A clause is linear and closed recursive if the
body of the clause has a single recursive atom that is closed, i.e. has no output vari-

ables. Thus, the schema is:

p(.-) < Ar(-)s s U
p(...) < ri(...), .oy rp(--2), pCe-)

where eachy, andr, is anij-determinate literal that is defined in the background
knowledge, and the recursive at@..) has no output variables. This schema is re-
stricted with respect to the possible divide-and-conquer schemataLaid3-Il since

it has only one base clause and only one recursive clause, where the recursive clause
has only one recursive call. Moreover, the schema above is further restrigteteby
terminacy, where the divide-and-conquer schemataafdass-Il have no such con-

straint.

In summary, there exist divide-and-conquer schemata that can be used by

DiaLOGS-II, which are superior to those of all other ILP systems known to us.

3.3 Comparison of DALOGS-Il with D IALOGS

DiaLOGS-II enables the specifier to select a certain schema together with a strategy,
whereas MLOGS does not have such a concept of selection of a schema and a strategy,
l.e. the concept of schema-guidedness; howeverdds is schema-based (has a
hard-wired divide-and-conquer schema together with a strategy), and it was thus the
first step towards the schema-guidednessafd@ss-II, and, to the best of our knowl-

edge, DaLoGs-II is the first in schema-guided synthesis in the field of ILP.

DIALOGS-1I uses the open program approach (a first-order approach) in representing
schemata, whereasiADOGS uses a second-order approach in representing its di-
vide-and-conquer schema. Using the open program approach simplifies the represen-

tation and manipulation of the schemata of the system.

DiALOGS-II handles the sparseness problem, thus enabling the system to induce pro-

grams, e.gfactorial, that were not inducable byA0OGs.

62

Another difference betweeniR0oGs and DALOGS-II is that the DALOGS imple-
mentation did not make a difference between the semantics of the afeseasd
stop-itto the queries. Actualljalsemeans that there does not exist any condition such
that the goal in the query might hold, wherstp-itmeans that the specifier wants to
stop the query session. In theaDoGs-Il implementationfalse andstop-ithave their

intended meanings.

DiALOGS -1l Uses Clause I@. DIALOGS uses term I8s in its MSG Method, whereas
DiaLOGS-Il uses clause Bg in its Program Closing Method, since claugeisga more
powerful way of handling generality among clauses.

If we had used term @yinstead of clause @gin the Program Closing Method, then
the order of the atoms inside a clause would matter. For instance, if the two clauses

whose I@ is to be computed were

sort([A,B,C],[B,A,C]) — C=A, A>B (c1)
sort([D,E,F],[E,D,F]) - F=D, D=E (c2)

then the clause ®of these two clauses would be:
sort([A,B,C],[B,A,C]) — C=A, D>E, F>G, A>B

After reducing (see Definition 2.1) this clause, we would obtain the resulting clause
sort([A,B,C],[B,A,C]) -« C=A, A>B

If we write these two clauses in the form of two terms, i.e.

if(sort([A,B,C],[B,A,C]),and(C=A,A>B))
if(sort([D,E,F],[E,D,F]),and(F=D,D=E)) (t2)

and then take their termfgthe resulting term would be
if(sort([A,B,C],[B,A,C]),and(C=A,A>B))

where this I§ corresponds to the clause obtained after taking the (reduced) clduse Ig
of the two clausesl andc2.

Now, suppose that we change the order of the literals in the body of thecdaese

sort([A,B,C],[B,A,C]) — C=A, A>B
sort([D,E,F],[E,D,F]) — D=E, F=D

and compute their clausedlg.e.
sort([A,B,C],[B,A,C]) — D=E, C=A, A>B, F>G

63

After reducing this clause, we obtain the same clause that was computed above when

the order of the literals was not changed:
sort([A,B,C],[B,A,C]) — C=A, A>B (c3)

However, if we make this order change for téBnand then take the termf@f the

resulting terms, then we obtain the following term
if(sort([A,B,C],[B,A,C]),and(D=E,F=G))

where this I§ does not correspond to thé@lfpr clauses, i.ec3. As we can see, this
term is different from the one where the order has not been changed. So, changing the
order of the terms matters when terr8 ig used, though it should not matter. Because
of that reason, BLOGS-II uses clause Rjinstead of term I§; in that way it also guar-
antees that there are no second-ordgs.|§or instance, suppose that the two clauses,
ie.

delOdds([A,B],[A,B]) — even(A), even(B)

delOdds([A],[A]) — even(A)

are given and their clauseblgs computed as
delOdds([A|B],[A|B]) — even(A), even(C)

Note that there is no second order variable in the cla8sH these two clauses. How-

ever, if we write these two clauses in the form of two terms, i.e.
if(delOdds([A,B],[A,B]),and(even(A),even(B)))
if(delOdds([A],[A]),even(A))

and then take their termégthe resulting term would be
if(delOdds([A|B],[A|B]),V)

where the variabl¥ is a second-order variable.

DiaLoGs -1l Eliminates Redundant Answers. Another new concept related to the
queries of DALOGS-1I is “elimination of redundant answers”. Before discussing this
concept, we introduce some terminology. We assume that conjunctions of literals can

also be viewn as sets of literals.

Definition 3.1: A conjunction of literalsC,; 8-subsumes conjunction of literal€,

(denotedC,=C,) iff there exists a substitutiamsuch thatC,o U C;.

64

For instance, le€, beB=[C], C=A andC, beB=[A]. The conjunctiorC, 6-subsumes
C, since there exists a substitutionwhich is {A/C}, such thatC,{ A/C} [C;.

Theorem 3: (C,2C,) 0 (C, 0 Cy)

Proof 3: FromC,, we can build a clause, namelZ,. FromC,, we can build a clause,
namely-C,. Now, note thaC, [C, is equivalent te-C, J - C,. So, to check for
C, O C,, one may approximate this (correctly but incompletely) by checking@gr
> - C; (according to Plotkin’s definition, i.e. Definition 2.1, for clauses) (stCg
and-C, are clauses), i.e. by finding a substituissuch that-C,o [- C4, which is

obviously equivalent t€,0 [C;.

When, to a query (i.e. ator), the specifier gives a DNF answey [1C, [I...00 C,
(n=0), then the system must eliminate thGséor which there existssuch that; 2C;
(i#) (i.e. eliminate those that are more general than some other one), and then only
build the clause® ~ Cy, wherekis in the set of remaining indices.

What happens when the system does not eliminate redundant answers? We illustrate
this point by means of a case that occurs during the synthesis of a program for
efface(E,L,R), whereefface(E,L,R) holds iff listR is listL without the first (existing)

occurrence of terr&z in L. Let the query and its answer be:
When does efface(A [B,Al,C hold? C=[A], B=A; C=[B].
The system would abduce the following shortcuts and evidence from this answer:

compose_efface(B,[],C,A) —« C=[A], B=A

compose_efface(B,[],C,A) — C=[B]

solve_efface(A,[B,A],C) — C=[A], B=A

solve_efface(A,[B,A],C) — C=[B]

efface(A,[B,A],C) « C=[A], B=A (s1)
efface(A,[B,A],C) — C=[B] (s2)

Next, the system generates the query
When does efface(A [B, A Al,C hold?

where the answer to the query is:
C=[A,A], A=B; C=[B,A], BZA.
Using the answer, the system would abduce the following shortcuts and evidence:

65

compose_efface(B,[A],C,A) -« C=[AA], A=B (cd)
compose_efface(B,[A],C,A) — C=[B,A], BZA (c5)
efface(A,[B,A,A],C) —« C=[AA], A=B
efface(A,[B,A,A],C) -~ C=[B,A], AZB

Upon backtracking to shortce®, the system would also abduce the following evi-

dence:
compose_efface(B,[A],C,A) - C=[AA], A=B (c6)
compose_efface(B,[A],C,A) - C=[B,A], BZA (c7)

Upon backtracking, the following evidence smive_efface would be abduced using

the answer to the query:

solve_efface(A,[B,A,A],C) — C=[AA], A=B
solve_efface(A,[B,A,A],C) - C=[B,A], A#B

Now, note that4 andc6 are identical, as well ab andc7. This redundancy in the
evidence clauses is due to the redundancy in the answer to the query asied for
face(A,[B,A],C). There are now two moreompose efface clauses than
solve_efface clauses. This means that in the resulting set of evidence clauses that is
passed to the Program Closing Method, there will be margose_efface clauses
thansolve_efface, which makes the Program Closing Method fail, because the divi-
sion algorithm of the Program Closing Method (see Algorithm 8) works under the as-
sumption that there are lessmpose_efface clauses tharsolve efface clauses.
This is a correct assumption since there should always be more nundmdveofr
clauses than the numberadmpose_r clauses, if the evidence is correctly abduced.
This is due to the existence of a decomposition operator in the recursive clause, which
does not resolve for some values of the induction parametd] faglists,0 for nat-
ural numbers, which in turn causes less evidence to be abduced for the open relation of
the recursive clause than the one of the non-recursive clause.

Thus, the system must eliminate the ans@afA\], B=A (which is more general than
C=[B]) from C=[A], B=A; C=[B]. So,C=[A], B=Ais redundant and is eliminated from
the answer, leaving onl@=[B] as the answer to the query, where this elimination pre-
vents the redundancy in the evidence clauses, which in turn makes the system to ab-

duce a usable set of evidence clauses.

66

Chapter 4

Conclusion

The inductive synthesis of recursive (logic) programs is a challenging and important
sub-field of ILP. Challenging because recursive programs are particularly delicate
mathematical objects that must be designed with utmost care. Important because recur-
sive programs (for certain predicates) are sometimes the only way to complete the in-
duction of a finite hypothesis (involving these predicates).

When it comes to programming applications, we believe that the ideal technique is
interactive (in the sense ofA0Gs [13]) and non-incremental, has a clausal evidence
language plus type, mode, and multiplicity information (likel/&se[11], DIALOGS),
can handle semantic manipulation relations, actually uses (structured) background
knowledge and a syntactic bias, which are both problem-independent and intensional
(like in SYNAPSE), is guided by (and not just based on) at least the powerful di-
vide-and-conquer schema o¥M\PSE and DALOGS (using the implementation ap-
proach of METAINDUCE [18]), discovers additional base case and recursive case
examples (like @p [19]), can perform both necessary and useful predicate invention
(like SYNAPSE, DIALOGS), even from sparse abduced evidence (like)Cactually dis-
covers the recursive atoms, and makes a constructive usage of the negative evidence
(through abduction, like th@onstructive Interpretef9] and SYNAPSE).

Thus, we aimed to design and implement a synthesizer that induces recursive logic
programs, which is non-incremental, schema-guided, and interactive, and finally de-

veloped DaLOGS-II, which is based on the systenaDoGs [13].

67

DiaLOGS-1I is a schema-guided, interactive, and non-incremental synthesizer of re-
cursive logic programs that takes the initiative and queries a (possibly naive) specifier
for evidence in her/his conceptual languagesLDGs-II only asks for the minimal
knowledge a specifienusthave in order to want a (logic) program, and it can be used
by any learner (including itself) that detects, or merely conjectures, the necessity of in-
vention of a new predicate. Moreover, due to its powerful codification of “recur-
sion-theory” into schemata and schematic constraints, it needs very little evidence and

Is very fast.

The main difference betweenADoGs-1l and its ancestor BLOGS is as follows: D
ALOGS Il enables the specifier to select a certain schema together with a strategy,
whereas MLOGS does not have such a concept of selection of a schema and its strat-
egy, i.e. the concept of schema-guidedness; indeadpBs is schema-based (has a
hard-wired divide-and-conquer schema together with a strategy). To the best of our

knowledge, DALOGS-II is the first schema-guided synthesizer.

Other differences are thatAboGs-1l uses the open program approach (a first-order
approach) to representing schemas, whereaBs uses a second-order approach to
representing its divide-and-conquer schema. Using the open program approach simpli-

fies the representation and manipulation of the schemas of the system.

DiaLOGS-II handles the sparseness problem, thus enabling the system to induce pro-

grams that were not inducable byDoGs, e.g. forfactorial.

DIALOGS uses term I§s in its MSG Method, whereasADoGs-1l uses clause Bg in
its Program Closing Method, since clauggikgga more powerful way of handling gen-

erality among clauses.

DiALOGS-II can induce correct recursive logic programs from less evidence than
other ILP systems, e.goOit [24] and TRACY [3]. Moreover, the divide-and-conquer
schemata that can be used by the system may be more general than the ones of some
other important ILP systems, e.gLE[19], CRUSTACEAN[1] [2], and METAINDUCE
[18].

DiaLoGs-1l can be further improved in several ways: a heuristic for the necessary
predicate invention would conjecture when to do predicate invention, and finding more
powerful admissibility criteria for the evidence of the open relations of the di-
vide-and-conquer schema would increase the probability of synthesizing a correct pro-

gram.

68

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Inverting implication with
small training sets. In F. Bergadano and L. De Raedt (Bds}, of ECMI94,
pp. 31-48. LNAI 784, Springer-Verlag, 1994.

D.W. Aha, S. Lapointe, C.X. Ling, and S. Matwin. Learning recursive relations
with randomly selected small training sets. In W.W. Cohen and H. Hirsh (eds),
Proc. of ICML94. Morgan Kaufmann, 1994.

F. Bergadano and D. Gunetti. Learning clauses by tracing derivations. In S. Wro-
bel (ed),Proc. of ILP94, pp. 11-29. GMD-Studien Nr. 237, Sankt Augustin
(Germany), 1994.

A.W. Biermann. Dealing with Search. In W. Biermann, G. Guiho, and Y. Kodrat-
off (eds),Automatic Program Construction Techniqupp. 375-392. Macmill-
an, 1984,

H. Buyukyildiz. Schema-based Logic Program TransformatibhSc. Thesis,

Bilkent University, Department of Computer Science, 1997.

H. Buyikyildiz and P. Flene&eneralized Generalization GeneralizersN. E.
Fuchs (ed)Proc. of LOPSTR7. LNCS, Springer-Verlag, forthcoming.

W.W. Cohen. Compiling prior knowledge into an explicit bias. In P. Edwards and
D. Sleeman (edsRroc. of ICML92, pp. 102-110. Morgan Kaufmann, 1992.

69

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

W.W. Cohen PAC-learning a restricted class of recursive logic programs. In S.
Muggleton (ed)Proc. of ILP93, pp. 73—-86. TR 1JS-DP-6707, J. Stefan Institute,
Ljubljana (Slovenia), 1993.

N. Dershowitz and Y.-J. Lee. Logical debuggidgurnal of Symbolic Computa-
tion, Special Issue on Automatic Programmib®(5-6):745—-773, May/June
1993.

E. Erdem and P. Flener. A redefinition of least generalizations and its application

to inductive logic program synthesis. In preparation.

P. FlenerLogic Program Synthesis from Incomplete Informati$luwer Aca-
demic Publishers, 1995.

P. Flener. Predicate Invention in Inductive Program SynthesiSR
BU-CEIS-9509, Bilkent University, Ankara, Turkey, 1995.

P. Flenerinductive logic program synthesis with DIALOGS S. Muggleton
(ed),Proc. of ILP96. LNAI, Springer-Verlag, 1997.

P. Flener and Y. Deville. Logic program synthesis from incomplete specifica-
tions. Journal of Symbolic Computation, Special Issue on Automatic Program-
ming 15(5-6):775-805, May/June 1993.

P. Flener, K.-K. Lau, and M. Ornagl®n Correct Program Schemals N. E.
Fuchs (ed)Proc. of LOPSTR7. LNCS, Springer-Verlag, forthcoming.

P. Flener and L. Popelinsky. On the use of inductive reasoning in program syn-
thesis: Prejudice and prospects. In L. Fribourg and F. Turini (@als},Proc. of
META'94 and LOPSTR4, pp. 69-87. LNCS 883, Springer-Verlag, 1994.

P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs:

Achievements and prospects. Submitted taJthenal of Logic Programming

A. Hamfelt and J. Fischer Nilsson. Inductive metalogic programming. In S. Wro-
bel (ed),Proc. of ILP94, pp. 85-96. GMD-Studien Nr. 237, Sankt Augustin
(Germany), 1994.

70

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Lapointe, C. Ling, and S. Matwin. Constructive inductive logic programming.
In S. Muggleton (ed)Proc. of ILP93, pp. 255-264. TR 1JS-DP-6707, J. Stefan
Institute, Ljubljana (Slovenia), 1993.

S. Muggleton and W. Buntine. Machine invention of first-order predicates by in-
verting resolution. IfProc. of ICML88, pp.339-352. Morgan Kaufmann, 1988.

S. Muggleton and L. De Raedt. Inductive logic programming: Theory and meth-
ods.Journal of Logic Programming, Special Issue on 10 Years of Logic Pro-
grammingl9-20:629-679, May/July 1994.

S.H. Nienhuys and R. de Wolf. Least generalizations and Greatest Specializa-
tions of Sets of Clause3ournal of Artificial Intelligence Researeh 341-363,
1996.

G. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie
(eds), Machine Intelligence5:153-163. Elsevier North Holland, New York,
1970.

J. R. Quinlan and R. M. Cameron-Jones. Induction of logic programs: FOIL and

related system®lew Generation Computingp. 287-312, 1995.

|. Stahl.Predicate Invention in ILP: An OvervieWR 1993/06, Fakultat Infor-
matik, Universitat Stuttgart (Germany), 1993.

B. Tausend. A unifying representation for language restrictions. In S. Muggleton
(ed).Proc. of ILP93, pp. 205-220. TR 1JS-DP-6707, J. Stefan Institute, Ljubl-
jana (Slovenia), 1993.

R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton
(ed),Inductive Logic Programmingp. 299-318. Volume APIC-38, Academic
Press, 1992.

71

72

Appendix A: README file for

DIALOGS -I|

After loading the file dialogsll.pl, start a new synthesis by typing “d2.” (without the

guotes). The system is composed of the following programs:

» phase0.pl: asks for predicate declaration, schema and strategy, and executes the

strategy in order to obtain an open program to be passed to the next phase.

» phaseland2.pl: abduces evidence, induces program clauses by the Program Clos-
ing Method and evaluates the result of the Program Closing Method to conjecture

necessary predicate invention.

» schemas.pl: contains the currently available schemata and the strategies of the sys-

tem.
* cligues.pl: finds (admissible) cliques of clauses.
* clausemsg.pl: computes théIgf two clauses.
* primitives.pl: contains primitives used by the system.
» grammar.pl: contains Definite Clause Grammar for parsing predicate declarations.
» utilities.pl: contains procedures frequently used by the system

« dedotify.pl: dedatifies initial schemata of the system to convert them to open pro-
grams
Variable names start with an uppercase letter; predicate names, functor and constants
start with a lowercase letter. Conjunction is expressed by a comma (,), disjunction by
a semi-colon (;), negation by wrapping the atom with a prefg{1 functor, truth by
“true”, and falsity by “false” (without the quotes). The available primitives ai&;
\==/2, length/2, append/3, member/2, nat/1, list/1, add/3, mult/3, 1t/2, gt/2, le/2,

72

ge/2, partition/4, andhalves/3 (see file primitives.pl). Natural numbers should be
typed in as Peano numbers, using O for zero and prefix fusittéor successor.

Please note that during the determination of the predicate declaration, parameter
roles and decomposition operator, answers should not be terminated by a full-stop (.).
The default answer (always between curly braces) can be selected by simply hitting the
RETURN/ENTER key. You can force backtracking to a previous question using the
answer “back” (without the quotes). Note that parameters that can be any number of
(e.g. passive parameters) are indicated as lists, using the Prolog notation; that means
the absence of such parameters is indicated using the empty list ([]). For the schema
language please refer to [5]. A new schema can be added to the system using that sche-
ma language. You also need to make sure that the parameter roles of the parameters of
the programs that fit to the schema, modes of the open relations, and the positions of
the parameters inside the atoms of the open relations are defined (see file schemas.pl).
Available types aratom, term, nat, int, list(atom), list(term), list(nat), andlist(int).

The type language can be inferred by looking at file grammar.pl (see non-terminal
type/l). Similarly for the predicate declaration language. You can express your bore-
dom with the questions (or unwillingness or inability to answer them) by answering

“stop_it" (without the quotes). You will find some sample syntheses in the remainder

of the thesis.

73

Appendix B: Sample Syntheses

* len(L,N) iff natural numbeN is the length of the lidt.

Predi cate decl arati on? len(L:list(term),N:nat)

Schema? [dc, dg] dc

Strategy? [divide_and_conquer_strategyl]

di vi de_and_conquer _strategyl

I nducti on parameter? {L} L

Result paranmeter? {N} N

Deconposi ti on Qperator? {deconpose(L, HL, TL)<--L=[HL| TL] }
deconpose(L, HL, TL) <- - L=[HL| TL]

When does len([],A) hold?

A=0.

When does len([A], B) hol d?
B=s(0).

Wien does len([A B],C hol d?
C=s(s(0)).

When does len([A B, C,D) hold?
D=s(s(s(0))).

When does len([A B, C D,E) hold?
stop_it.

Result of the Program d osing Method:

Cl auses for conpose_| en:

conpose_l en(A B,s(B)) <--

O auses for solve_len:

solve_len([],0) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-
sive synthesis? [yes/no] no

A possible programis:

74

len(A B) <-- solve_len(A B)

I en(A C <-- deconpose_len(A D E),len(E F), conpose_l en(D, F, C
deconpose_len(GH 1) <-- G [HI]

solve_len([],0) <--

conmpose_len(J, K s(K)) <--

Do you want another |ogic progran? {yes} yes

Deconposi ti on Qperat or? {deconpose(L, H.1, HL2, TL) <--L=[HL1, HL2| TL] }
decompose(L,HL1,HL2,TL)<- - L=[HL1,HL2|TL]

Usi ng shortcut(s) instead of querying...
When does len([A B, C D,E) hold?
E=s(s(s(s(0))))-

When does len([A B, C D, E],F) hold?
stop_it.

Result of the Program C osing Method:

Cl auses for conpose_|len:

conpose_l en(A B,C s(s(Q)) <--

Cl auses for solve_|en:
solve_len([A],s(0)) <--

solve len([],0) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-
sive synthesis? [yes/no] no

A possible programis:

len(A B) <-- solve_len(A B)

I en(A C <-- deconpose len(A D E F),len(F, G, conpose _len(D E G QO
deconpose len(H 1,3, K <-- H1,J|K]

solve len([],0) <--

solve len([L],s(0)) <--

conpose_len(M N, P,s(s(P))) <--

Do you want another |ogic progran? {yes} no

No (nore) prograns.

 count(A,B,C) iff natural numberC is the number of elements that unify with the

termA in list B.

75

Predi cate decl arati on? count(A:term,B:list(term),C:nat)

Schema? [dc, dg] dc

Strategy? [divide_and_conquer_strategyl]

di vi de_and_conquer _strategyl

I nducti on paraneter? {B} B

Result parameter? {C C

Passi ve paraneter(s)? {[Al} [Al

Deconposi ti on Qperator? {deconpose(B, HB, TB) <--B=[HB| TB] }
deconpose(B, HB, TB) <- - B=[HB| TB]

When does count (A [], B) hol d?

B=0.

When does count (A [B],C hold?
C=0,A\==B;C=s(0),A=B.

When does count (A [B, A],C hol d?
C=s(0),A\==B;C=5s(s(0)),A=B.

When does count (A [B, A Al,C hol d?
C=s(s(0)),A\==B;C=s(s(s(0))),A=B.

When does count (A [B, A A Al,C hold?
stop_it.

Result of the Program C osing Method:

O auses for conpose_count:
conpose_count (A B,s(B),A) <--
conpose_count (C, D, D, E) <-- BE\==C

Cl auses for solve_count:

solve _count (A [],0) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-
sive synthesis? [yes/no] no

A possible programis:

count (A, B,C <-- solve_count(A B, O

count (A, D, E) <-- deconpose count(D, F, G,

count (A G H), conpose_count (F, H, E, A

deconpose_count (1,J,K) <-- 1=[J]| K]

solve _count(L,[],0) <--

76

conpose_count (M N, N, P) <-- P\==M
conmpose_count (Q R s(R,Q <--
Do you want another |ogic progran? {yes} no.

No (nore) prograns.

addlast(A,B,C) iff list C is list B with the termA added in the end.

Predi cat e decl arati on? addlast(A:term,B:list(term),C:list(term))
Schema? [dc, dg] dc

Strategy? [divide_and conquer_strategyl]

di vide_and_conquer _strategyl

I nducti on paraneter? {B} B

Result parameter? {C} C

Passi ve paraneter(s)? {[Al} [A

Deconposi ti on Qperator? {deconpose(B, HB, TB) <--B=[HB| TB] }
deconpose(B, HB, TB) <- - B=[HB| TB]

When does addl ast (A, [], B) hol d?

B=[A].

When does addl ast (A, [B],C hol d?
C=[B,A].

When does addl ast (A [B, C], D) hol d?
D=[B,C,Al.

When does addl ast (A [B,C, D], E) hol d?
E=[B,C,D,A].

When does addl ast (A [B,C D, E],F) hold?
stop_it.

Result of the Program O osing Method:

Ol auses for conpose_addl ast:
conpose_addl ast (A, [B|C],[A B/ C],D <--

Cl auses for sol ve_addl ast:
solve_addl ast (A, [B],[B|A]) <--
solve_addlast(C [],[]) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-

sive synthesis? [yes/no] no

77

A possible programis:

addl ast (A, B,C) <-- solve_addlast (A B, O

addl ast (A, D, E) <-- deconpose_addl ast(D, F, G,
addl ast (A, G H), conpose_addl ast(F, H, E, A)
deconpose_addl ast(1,J,K) <-- 1=[J]| K]
solve_addlast (L,[],[L]) <--

sol ve_addl ast (M [N ,[NM) <--
conpose_addlast(P,[QR,[P,QR],S) <--

Do you want another |ogic progran? {yes} no.
No (nore) prograns.

Do you want another synthesis with a different strategy? {yes} yes

There is no other strategy for schena dc!

multiply(A,B,C) iff natural numbeclC is the product of natural numbeksandB.

Predi cate decl arati on? multiply(A:nat,B:nat,C:nat)

Schema? [dc, dg] dc

Strategy? [divide_and conquer_strategyl]

di vide_and_conquer _strategyl

I nducti on parameter? {A} A

Result paraneter? {B} B

Passive paraneter(s)? {[C} []

Deconposition Qperator? {deconpose(A, HA TA) <- - A=s(TA), HA=A}
deconpose(A, HA, TA) <-- A=s(TA), HA=A

When does multiply(0, A B) hol d?

A=0.

When does multiply(s(0), A B) hol d?

A=B+0.

When does multiply(s(s(0)), A B) hold?
A=B+(B+0).

Wien does nul tiply(s(s(s(0))),A B) hol d?
A=B+(B+(B+0)).

Wien does nul tiply(s(s(s(s(0)))),A B) hold?
stop_it.

Result of the Program d osing Method:

O auses for conpose nultiply:

78

conmpose_mul tiply(s(A), B, C+B,) <--

Ol auses for solve_multiply:

solve_nmultiply(0,0,A) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-
sive synthesis? [yes/no] no

A possible programis:

mul tiply(A B, C <-- solve_multiply(A B, O

multiply(A D E) <-- deconpose_multiply(A F, G,

mul tiply(G H, E), conpose_nul tiply(F, H, D, E)

deconpose_mul tiply(l,J,K) <-- 1=s(K), J=l

solve_nultiply(0,0,L) <--

conmpose_mul tiply(s(M, N, P+N, P) <- -

Do you want another |ogic progranf {yes} no.

No (nore) prograns.

compress(L,R) iff list R is the compressed form of list
e.g.compress([a,a,b,c,c,c,d],[a,s(s(0)),b,s(0),c,s(s(s(0))),d,s(0)])

Predi cate decl arati on? compress(L:list(atom),R:list(atom))
Schema? [dc, dg] dc

Strategy? [divide_and_conquer_strategyl]

di vi de_and_conquer _strategyl

I nducti on paraneter? {L} L

Result paraneter? {R} R

Deconposition Operator? {deconpose(L, HL, TL) <--L=[HL| TL]}
deconpose(L, HL, TL) <--L=[HL| TL]

When does conpress([],A) hold?

A=[].

When does conpress([A], B) hol d?

B=[A,s(0)].

When does conpress([A B],C hold?
C=[A,s(s(0))],eq(A,B);C=[A,s(0),B,s(0)],diff(A,B).

When does conpress([A B, C,D) hold, assuning eq(B,C) ?
D=[A,s(s(s(0)))],eq(A,B);D=[A,s(0),B,s(s(0))],diff(A,B).

When does conmpress([A B, C],D) hold, assunming diff(B,C)?
D=[A,s(s(0)),C,s(0)],eq(A,B);D=[A,s(0),B,s(0),C,s(0)],diff(A,B).

79

When does conpress([A B, C D,E) hold, assum ng eq(B,C),eq(C D ?
stop_it.

Result of the Program d osing Method:

Cl auses for conpose_conpress:
conmpose_conpress(A, [B,s(O|D,[A s(0),B,s(Q]|D) <-- diff(A B)
conpose_conpress(E [F,s(Q|H,[Es(s(Q)|H) <-- eq(E F)

Cl auses for sol ve_conpress:
solve_conpress([A],[A s(0)]) <--

solve_conpress([],[]) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-

sive synthesis? [yes/no] no

A possible programis:

conpress(A B) <-- solve_conpress(A, B)

conpress(A C <-- deconpose_conpress(A D, E),

conpress(E, F), conpose_conpress(D, F, C

deconpose_conpress(G H, 1) <-- G[H 1]

solve_conpress([],[]) <--

sol ve_conpress([J],[J,s(0)]) <--

conpose_conpress(K, [L,s(M|N,[K s(s(M)|N) <-- eq(K,L)
conpose_conpress(P, [RsS(Q|S].,[P,s(0),Rs(Q]|S]) <-- diff(P,R

s(L,S) iff list S is (ascendingly) sorted version of list

Predi cat e decl arati on? s(L:list(int),S:list(int))

Strategy? [divide_and _conquer_strategyl]

di vi de_and_conquer _strategyl

I nduction paranmeter? {L} L

Result paraneter? {S} S

Deconposition Qperator? {deconpose(L, HL, TL) <--L=[HL| TL]}
deconpose(L, HL, TL) <--L=[HL| TL]

When does s([],A) hol d?
A=]].
When does s([A], B) hol d?

80

B=[A].

When does s([A B],C hold?

C=[A,B],le(A,B);C=[B,A],gt(A,B).

When does s([A B, C],D) hold, assunming |le(B,C?
D=[A,B,C].,le(A,B);D=[B,A,C],gt(A,B),le(A,C);D=[B,C,A],gt(A,B),gt(A,C).
Wien does s([A B, C D],E) hold, assunming le(B,C,le(CD?
stop_it.

Result of the Program O osing Method:

O auses for conpose_s:
conmpose_s(A, [B|C],[A Bl C]) <-- le(A B)

Cl auses for solve_s:

solve_s(A A <--

solve_s([B,C,D,[CDB]) <-- gt(B,O,gt(B,D),le(C, D)
sol ve_s([E F],[F E]) <-- gt(E P

Pl ease eval uate the Program d osi ng Method results: need for recur-

sive synthesis? [yes/no] yes

Need for recursive synthesis detected!

Calling DIALOGS-11 with the predicate declaration
conmpose_s(HL:int, TS:list(int),S:list(int))

I nduction parameter? {[TS]} [TS]

Result paraneter? {S} S

Passi ve paraneter(s)? {[HL]} [HL]

Deconposi ti on Qperator? {deconpose(TS, HTS, TTS) <--TS=[HTS| TTS] }

deconpose(TS, HTS, TTS) <-- TS=[HTS| TTS]

Current program

sS(A B) <-- solve_s(A B)

S(A C <-- decompose_s(A, D E),s(E F), conpose_s(D, F, C

deconpose_s(G H/ 1) <-- G H]

solve_s([].[]) <--

conmpose_s(J, K, L) <-- solve_conpose_s(J, K, L)

conmpose_s(J, M N) <-- deconpose_conpose_s(MP, Q,

conmpose_s(J, Q R, conpose_conpose_s(P, R N, J)

deconpose_conpose_s(S, T,U) <-- SE[T| U

When does s([A B, C],D hold, assunmng le(B,O,le(AQO?

81

stop_it.

Result of the Program C osi ng Method:

conpose_conpose_s cl auses:

(none)

sol ve_conpose_s cl auses:

sol ve_conpose_s(A [B],[B,A]) <-- gt(A B)
solve_conpose_s(C, [D],[C D) <-- le(C D)
sol ve_conpose_s(E, [],[E) <--

Pl ease eval uate the Program d osi ng Method results: need for recur-
sive synthesis? [yes/no] no

A possi ble programis:

s(A B) <-- solve_s(A B)

s(A C <-- decompose_s(A D E),s(E F), conpose_s(D, F, C
deconpose_s(G H/ 1) <-- Gf[H 1]

solve_s([],[]) <--

conpose_s(J, K, L) <-- solve_conpose_s(J, K, L)
conpose_s(J,MN) <-- deconpose_conpose_s(MP, Q,
conpose_s(J, Q R), conpose_conpose_s(P, R N, J)
deconpose_conpose_s(S, T,U) <-- S=[T| U

sol ve_conpose_s(V,[],[V]) <--

sol ve_conpose s(W[X],[WX]) <-- le(WX)
solve_conpose_s(Y,[Z],[Z,Y]) <-- gt(Y,2)

Do you want another |ogic progran? {yes} no

reverse(A,B,C) iff list B is the concatenation of reverse of Asand the lisC it-

self.

Predi cat e decl ar ati on? reverse(A:list(term),R:list(term),L:list(term))
Schena? [dc, dg] dg

Strategy? [descend _gen_strategyl]

descend_gen_strategyl

I nducti on parameter? {A} A

Result paraneter? {R} R

Passi ve paraneter(s)? {[L]} T[]

Accunul ation paranmeter(s)? {[L]} [L]

82

Deconposi ti on Qperator? {deconpose(A, HA, TA) <-- A=[HA| TA] }
deconpose(A, HA, TA) <- - A=[HA| TA]

When does reverse([], A B) hol d?

A=B.

When does reverse([A], B, C) hol d?

B=[A|C].

When does reverse([A B],[BlC,D hold?
[B|C]=[B,A|D].

When does reverse([A B, C],[C B|D],E) hold?
[C,B|D]=[C,B,A|E].

Wien does reverse([A B, C, D ,[D C B|E],F) hold?
[D,C,B|E]=[D,C,B,A|F].

Wien does reverse([A B,C, D E],[E D CB|F],3 hold?
stop_it.

Entering the Program Cl osing Method with the foll ow ng evidence
sol veAccu_reverse evidence:

sol veAccu_reverse([] , A A <--

sol veAccu_reverse([B],[Bl(,0 <--

sol veAccu_reverse([D E],[E, D F],F) <--

sol veAccu_reverse([GH I],[I,HGEJ],d) <--

sol veAccu_reverse([K,L,MN ,[NML,K P],P) <--

ext endAccu_reverse evi dence:
extendAccu_reverse(A B, [A B])
extendAccu_reverse(C D, [C D)

AN

AN

AN

extendAccu_reverse(E, F, [E F])
extendAccu_reverse(GH [GH)

AN

Result of the Program C osi ng Method:

Cl auses for extendAccu_reverse:

extendAccu_reverse(A B, [A B]) <--

Cl auses for sol veAccu_reverse:

sol veAccu_reverse([], A A <--

83

Pl ease eval uate the Program d osing Method results: need for recur-

sive synthesis?[yes/no] no

A possible programis:
reverse(A B, C <-- solveAccu_reverse(A B, O
reverse(A D E) <-- deconpose_reverse(A F, G,
reverse(G D, H), extendAccu_reverse(F, E H
deconpose_reverse(l,J,K) <-- I=[J|K]
sol veAccu_reverse([], L, L)<--
ext endAccu_reverse(M N [M N) <--
Do you want another |ogic progran? {yes}

no

84

