
On the Desirable Link Between Theory andPractice in Abstract Interpretation(Extended Abstract)Baudouin Le Charlier1 and Pierre Flener21 Institut d'InformatiqueUniversity of Namur, B{5000 Namur, BelgiumEmail: ble@info.fundp.ac.be2 Department of Computer Engineering and Information ScienceBilkent University, 06533 Bilkent, Ankara, TurkeyEmail: pf@cs.bilkent.edu.trAbstract. Abstract interpretation was originally introduced by Patrickand Radhia Cousot as a unifying mathematical framework underlyingthe design of practical program analyses. In this paper,3 we reconsidersome theoretical concepts and assumptions most often used in abstractinterpretation. We argue that they impose too strong mathematical con-ditions on the abstract semantics of programs and so do not allow apractical and provably correct implementation of complex analyses. As asolution, we advocate the use of a weaker and more general methodology,which is essentially based on the concept of (explicit) speci�cation. Weillustrate the methodology through a historical review of the abstractinterpretation system GAIA.1 MotivationsAlthough abstract interpretation is a widely used concept, its role and natureare probably not as clear as they should be. Many authors introduce abstract in-terpretation as a (semantics based) methodology for building program analyses.Other authors emphasize that abstract interpretation is a theory. The Cousotsthemselves often insist that abstract interpretation is a tool for comparing se-mantics in general and for deriving more \abstract" semantics from more \con-crete" ones. This variety of presentations is explained by the large number ofresearchers, of di�erent backgrounds, working on program analysis: there areengineers, mathematicians, denotational semanticists, programming methodolo-gists, to name but a few. Such educational di�erences explain why the \theoryof abstract interpretation" has in fact split into many formulations and variantsguided by di�erent philosophies. As a consequence, it seems to us relevant toquestion the very idea that abstract interpretation is (or can become) a uni�edframework.3 a longer and (slightly) more technical version of which will be available at the con-ference.

In this paper, we analyze some theoretical and practical aspects of abstractinterpretation from a programming methodology standpoint. In other words, weexamine their usefulness with respect to the broad objective of building programanalyses that areprovably correct: we must be able to provide convincing arguments about thecorrectness of our analyses up to any requested level of detail (including thecode level);practically implementable: the \theoretical objects" involved in the analysesare required to have a clear counterpart in the implementation, yet this\tracability" requirement must not entail an e�ciency penalty; andscalable: the analyses can be complexi�ed to reach an arbitrary level of accu-racy; i.e., the construction of abstract domains that are as complex as desiredmust be manageable.2 A Methodology Based on Speci�cationsA main di�erence between computer science and mathematics is that formaltexts written by computer scientists (i.e., programs in a broad sense) are even-tually run on computers, which may reveal errors (and actually often do), whileformal texts written by mathematicians (i.e., de�nitions, theorems, and proofs)are only read by other mathematicians, so that their correctness results froma social acceptance process [11], without being submitted to a factual risk ofcontradiction.This di�erence between mathematics and computer science is the main rea-son why programming methodology has developed as an original discipline. Ac-cording to us, the key concept in programming methodology is the notion of aspeci�cation that allows one to reason explicitly about the program construc-tion process, by establishing a clear link between relevant parts of the program(e.g., procedures and loops) and their purpose [14]. Following this fundamentalintuition, we would like abstract interpretation to provide us with the conceptsthat are the most convenient for specifying the various steps of a program anal-ysis design. Thus, in the next section, we reconsider some well-known aspects ofabstract interpretation with respect to this aim.3 Theory in Abstract Interpretation3.1 OverviewThe original formulation of abstract interpretation [7] can be viewed as a (math-ematical) generalization of several ad hoc data
ow analyses that were previouslypublished. The aim of that work is to provide convenient and reusable conceptsthat ensure an economy of thought while building new analyses. A major goal isthat an analysis should be derived in a systematic way from the (or: a) standardsemantics of the programming language.

An apparently straightforward way of doing so is to design an analysis that\mimics" the normal (concrete) computation on a non-standard (abstract) do-main. This purely operational idea can be generalized to deal with other standardsemantics, such as denotational semantics (for functional languages) and TP -likesemantics (for logic and constraint logic languages): the idea now becomes thatan abstract semantics should be homomorphic to the standard one [13]. Thus,the abstract and standard semantics are two di�erent instances of a generic(e.g., denotational) semantics, and they are related by means of an abstractionfunction. The bene�t of such an approach is that the correctness of the abstractsemantics can be established in an almost obvious way (e.g., by a combination ofinduction on the syntax and �xpoint induction). The \homomorphic" approachhas been mainly developed in the functional programming community, since itnaturally appears as an application of the denotational semantics theory [23].More recently, it has also been extensively used in the logic programming com-munity, but based on the mathematical structure of Galois insertion [4].The use of Galois insertions was in fact �rst introduced by the Cousots in theirlandmark paper [7], in conjunction with the notion of collecting semantics. Thecollecting semantics basically is a reformulation of the standard semantics whereconcrete values are replaced by sets of concrete values (which are equivalentto properties of concrete values). In this approach, the abstract semantics ishomomorphic to the collecting semantics but not to the standard semantics; thisclari�es the meaning of the abstract semantics and provides additional
exibility,since the collecting semantics can be designed in various ways. Additionally,the collecting and abstract domains are required to be complete lattices andare related by means of two monotonic functions: the concretization functionCc maps an abstract element to its meaning (i.e., the set of concrete values itdenotes), while the abstraction function Abs maps a set of concrete values to itsbest approximation. The obtained mathematical structure is quite rich and themotivation for it is clear: it allows one to specify an abstract operation OA in anoptimal way as Abs � OC �Cc, where OC is the \collecting" version of a standardoperation O.Finally, note that in both the \homomorphic" and the \collecting" approach,the abstract semantics is (or can be) parameterized on the abstract domain andis de�ned by a �xpoint construction; assuming that the abstract domains are�nite, the �xpoint can be computed in �nite time by means of general purposealgorithms.3.2 Some Problems With Strong Mathematical FrameworksStrong mathematical frameworks of abstract interpretation based on denota-tional semantics or Galois insertions have some bene�ts. Notably, they allowresearchers to prove some nice theoretical results (see, e.g., [13, 22]) or to specifysome aspects of program analyses in an optimal way. Nevertheless these ap-proaches also exhibit some drawbacks, a few of which we list in the rest of thissection.

Restricted form of properties. In the homomorphic approach, it is necessary torequire that the abstract and concrete domain share some mathematical struc-ture, which makes it impossible to consider interesting program properties thatare incompatible with such structure.In logic programming, for example, many researchers concentrate on abstractdomains that are closed under instantiation, since this allows them to implementabstract uni�cation by means of the greatest lower bound operation; moreover,some works assume that the domains are condensing, i.e., that the analysis of anygoal can be performed by (optimally) specializing the result of the analysis fora most general (i.e., totally uninstantiated) goal. Many useful abstract domainsfor logic programs do not respect these assumptions.In functional programming, as a second example, the homomorphic approachrequires that properties are downwards closed with respect to the ordering of theunderlying Scott domain. This rules out many interesting properties.Limited practicality of Galois insertions. The equationOA = Abs � OC �Ccis misleadingly simple because it does not provide an e�ective way of computingthe OA operation (as a matter of fact, all three operations Abs, OC , and Ccare non-computable in general, since they deal with in�nite sets). (Part of)the craft of abstract domain design precisely amounts to deriving a practicalimplementation from the speci�cation above. Our personal experience has shownthat it is almost impossible for all but the simplest abstract domains to discoveran implementation of OA that exactly satis�es the equation; moreover, suchan implementation could be so intricate that the optimality of the operationwould be counterbalanced by a signi�cant loss of e�ciency. A typical example towhich the considerations above apply is abstract uni�cation (see, for instance, [5,12, 19]. Moreover, to the best of our knowledge, no proof of optimality for anabstract uni�cation algorithm has ever appeared in the literature (not even aproof of monotonicity).4In our opinion, it must be concluded that Galois insertions do not provide anadequate framework for complex domain construction, and that weaker math-ematical structures are better. As a �nal argument, notice that in frameworksbased on Galois insertions, the abstract semantics is not an optimal abstractionof the collecting semantics but only a conservative abstraction thereof. (This isbasically because the composition of two optimal abstract operations is not anoptimal abstraction of the composition of the two corresponding collecting oper-ations.) So why require the optimality of some operations if the global semanticsis not optimal anyway? And why pretend that it is reasonable to optimally de-sign operations such as abstract uni�cation if one believes it to be unreasonableto build an optimal abstract semantics. We believe that accuracy of programanalyses is (and can only be) a pragmatic issue guided by intuition and practicalexperiments.4 As a matter of fact, optimality implies monotonicity.

Finite abstract domains. Strong abstract interpretation frameworks often re-quire that the abstract domain is �nite, because otherwise the abstract semanticsis not �nitely computable. Some authors [13] even argue that no additional accu-racy can be obtained by considering in�nite domains. This is only true becausethese authors presuppose a \homomorphic" framework. This argumentation hasbeen debunked by the Cousots in [10]. They show that the use of widening op-erators allows more powerful, yet �nite and e�cient analyses.However, there are examples of useful (in�nite) abstract domains that arenot even complete partial orders [6, 18]. With such domains, widening operationsare needed not only to enforce convergence but also as the only practical way ofde�ning the abstract semantics.Composite abstract domains. As the state of the art of program analysis evolves,it becomes more and more evident that the design of ambitious analyses requiresthe use of complex abstract domains made of several \communicating" compo-nents. Some proposals of combining abstract domains have been made recently,some of which are along the lines of the reduced product originally introduced bythe Cousots (see, e.g., [8]). It is worth understanding that operations on abstractdomains similar to the reduced product are purely theoretical and provide onlyspeci�cations of (hypothetical) abstract domains that are still to be designed.Nevertheless, some practical methods of combining abstract domains havealso been proposed [5]. They only require weak mathematical assumptions forthe domains, and their accuracy has only been demonstrated experimentally.Once again, this more pragmatic approach seems better to us, since it considersboth correctness and practicality issues.Conclusion. The abovementioned problems suggest to us that a practical ap-proach to the design of complex program analyses can only be based on weakmathematical assumptions about the used abstract domains. In the next section,we elaborate further on this opinion in the light of the experiments conductedwith the abstract interpretation system GAIA.4 The Practical System GAIAIn this section, we draw some lessons from the history of the abstract interpre-tation system GAIA. We aim at showing that the success of this system, whichis demonstrated by the large number of publications related to it,5 is due to acombination of theory and practice, which essentially relies on the use of explicitspeci�cations. We also show that the evolution of the system was made possibleonly by weakening the underlying mathematical framework.Why and how GAIA was successful. The original design of GAIA was based ona clear distinction between three aspects: the abstract domains, the abstractsemantics, and the �xpoint algorithms. These aspects are well separated in the5 See [18] for a bibliography.

implementation, allowing one to modify or replace any component independentlyof the others. It is worth mentioning that the original version published in [19]was found correct and e�cient at once, without any backtracking. Pascal VanHentenryck, the implementor of the original system, only took the research re-ports [15, 16, 21] and coded the algorithms and the domains in C. The correct-ness of the system came from the fact that all correctness issues related to theabstract domains, the abstract semantics, and the �xpoint algorithms had beenexplicitly proven before. The ease of the coding in C and the e�ciency camefrom the fact that the chosen abstraction level for the description of abstractsubstitutions and abstract operations allowed both a straightforward coding andan explicitly written correctness proof.We think that this approach is di�erent from others, which ignore the explicituse of speci�cations. In the operational framework [2], for instance, only the twoabstract operations entry and exit are considered. It can be argued that usingtwo operations only is a conceptual simpli�cation. However, the granularity ofthe operations is so coarse that it is impossible to specify them simply, makingit di�cult to prove the correctness of instances of the abstract operations. Theabstract semantics underlying the original version of GAIA uses six abstract op-erations, each of them having clear and explicit speci�cations that make explicitproofs possible.The evolution of GAIA. The theoretical research preliminary to GAIA origi-nated from the study of Maurice Bruynooghe's paper [3]. It quickly becameapparent to the �rst author of this paper that a separation between the abstractsemantics and the �xpoint algorithm would simplify the correctness proofs. Sothe framework was structured into three parts as mentioned in the previousparagraph. The �rst framework was in fact based on a classical collecting se-mantics approach, but assuming only a concretization function, since some ofBruynooghe's domains were not equipped with an abstraction function. Hencethe correctness proofs of abstract operations were only based on the concretiza-tion function. Since the existence of an abstract �xpoint requires monotonicityof the abstract operations, it was attempted to prove such properties. This ap-peared to be of an unexpected di�culty, and the proof attempts were �nallygiven up since it was discovered that, in the absence of monotonicity, the �x-point algorithm could be modi�ed to compute a post�xpoint that is correct aswell.Based on the �rst | correct | version of the system, many other experimentsand variations were performed in terms of abstract domains, abstract semantics,and �xpoint algorithms. Among other experiments, it is worth mentioning thereexecution semantics [20], which is a collecting semantics that is very di�erentfrom the standard semantics of Prolog, as it allows one to improve the accuracyof the analysis in a tremendous way for some abstract domains.A more recent version ofGAIA [1, 17, 18] is based on a denotational semanticsof Prolog and allows one to derive precise information about the cut and thenumber of solutions to a goal. It is interesting to note that, although this versionof the system uses a completely di�erent \standard" semantics, most of the

abstract operations are de�ned as upgraded versions of previous ones. This ispossible only because of the systematic use of speci�cations, since a correctreuse of previous operations can be based on explicit reasoning. Moreover, themathematical framework used by this version is still weaker than the previousones, since there is no abstract �xpoint at all, even in theory. Finally, this analysisconsiders properties of higher-order objects (i.e., substitution sequences) thatare not downwards closed, contrary to many frameworks based on denotationalsemantics.A limitation of GAIA. To date [24], more than seven (substantially) di�erentversions of GAIA have been completed in order to conduct various experimentsin logic and constraint logic program analysis. They amount to more than 50,000lines of C code. Thus, in its current form, GAIA is not a completely genericsystem, but rather a series of systems that were rather straightforwardly derivedfrom the �rst original version. Although the objective of a \real" generic systemseems a priori desirable, we believe that it is in fact di�cult to foresee all futureapplications of GAIA, since experience has shown that every new experimentmay entail unexpected variations of the framework; thus we think that it isprobably wiser to continue moving from one version to another one, based onexperiments. However, this is wise only if we keep a clear understanding of thesystem, based on good speci�cations of all its parts.5 ConclusionIs abstract interpretation a uni�ed framework? In this paper, we have mostlyanswered this question negatively. Much of our argumentation is personal opin-ion, but it is based on actual and largely successful experiments with a practicalsystem. Nevertheless, notions such as Galois insertions, collecting semantics, andwidening operators provide deep insights into how to properly design a programanalysis. Once these notions are well understood, one can relax or modify themin order to �nd the framework that is best adapted to one's goals [9]. Findingthe ultimate framework is an endless quest!AcknowledgementsBaudouin Le Charlier wishes to thank Pascal Van Hentenryck for his invaluablecontributions to GAIA.References1. C. Braem, B. Le Charlier, S. Modard, and P. Van Hentenryck. Cardinality anal-ysis of Prolog. In M. Bruynooghe, editor, Proceedings of the International LogicProgramming Symposium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.2. M. Bruynooghe. A practical framework for the abstract interpretation of logicprograms. Journal of Logic Programming, 10(2):91{124, February 1991.

3. M. Bruynooghe, G. Janssens, A. Callebaut, and B. Demoen. Abstract interpreta-tion: Towards the global optimization of Prolog programs. In Proceedings of the1987 Symposium on Logic Programming, pages 192{204, San Francisco, California,August 1987. Computer Society Press of the IEEE.4. P. Codognet and G. Fil�e. Computations, abstractions and constraints in logicprograms. In Proceedings of the fourth International Conference on ComputerLanguages (ICCL'92), Oakland, U.S.A., April 1992.5. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Combination of abstract do-mains for logic programming. In Proceedings of the 21th ACM SIGPLAN{SIGACTSymposium on Principles of Programming Languages (POPL'94), Portland, Ore-gon, January 1994.6. A. Cortesi, B. Le Charlier, and P. Van Hentenryck. Type analysis of Prolog usingtype graphs. Journal of Logic Programming, 23(3):237{278, June 1995.7. P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model forstatic analysis of programs by construction or approximation of �xpoints. In Con-ference Record of Fourth ACM Symposium on Programming Languages (POPL'77),pages 238{252, Los Angeles, California, January 1977.8. P. Cousot and R. Cousot. Abstract interpretation and application to logic pro-grams. Journal of Logic Programming, 13(2{3), 1992.9. P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of Logicand Computation, 2(4):511{547, 1992.10. P. Cousot and R. Cousot. Comparison of the Galois connection and widen-ing/narrowing approaches to abstract interpretation (invited paper). InM. Bruynooghe and M. Wirsing, editors, Proceedings of the Fourth InternationalWorkshop on Programming Language Implementation and Logic Programming(PLILP'92), Lecture Notes in Computer Science, Leuven, August 1992. Springer-Verlag.11. R.A. De Millo, R.J. Lipton, and A.J. Perlis. Social processes and proofs of theoremsand programs. Communications of the ACM, 22(5):271{280, 1979. Comments inCommunications of the ACM , 22(11):621{630, 1979.12. G. Janssens and M. Bruynooghe. Deriving descriptions of possible values of pro-gram variables by means of abstract interpretation. Journal of Logic Programming,13(2-3):205{258, 1992.13. R.B. Kieburtz and M. Napierala. Abstract semantics. In S. Abramsky andC. Hankin, editors, Abstract Interpretation of Declarative Languages, chapter 7,pages 143{180. Ellis Horwood Limited, 1987.14. B. Le Charlier and P. Flener. Speci�cations are necessarily informal, or: Somemore myths of formal methods. Accepted by Journal of Systems and Software,Special Issue on Formal Methods Technology Transfer, forthcoming.15. B. Le Charlier, K. Musumbu, and P. Van Hentenryck. E�cient and accurate algo-rithms for the abstract interpretation of Prolog programs. Technical Report 37/90,Institute of Computer Science, University of Namur, Belgium, 1990.16. B. Le Charlier, K. Musumbu, and P. Van Hentenryck. A generic abstract interpre-tation algorithm and its complexity analysis. In K. Furukawa, editor, Proceedingsof the Eighth International Conference on Logic Programming (ICLP'91), Paris,France, June 1991. MIT Press.17. B. Le Charlier, S. Rossi, and P. Van Hentenryck. An abstract interpretationframework which accurately handles Prolog search-rule and the cut. InM. Bruynooghe, editor, Proceedings of the International Logic Programming Sym-posium (ILPS'94), Ithaca NY, USA, November 1994. MIT Press.

18. B. Le Charlier, S. Rossi, and P. Van Hentenryck. Sequence-Based Abstract Inter-pretation of Prolog. Technical Report RR-97-001, Facult�es Universitaires Notre-Dame de la Paix, Institut d'Informatique, January 1997.19. B. Le Charlier and P. Van Hentenryck. Experimental evaluation of a generic ab-stract interpretation algorithm for Prolog. ACM Transactions on ProgrammingLanguages and Systems (TOPLAS), 16(1):35{101, January 1994.20. B. Le Charlier and P. Van Hentenryck. Reexecution in abstract interpretation ofProlog. Acta Informatica, 32:209{253, 1995.21. K. Musumbu. Interpr�etation Abstraite de Programmes Prolog. PhD thesis, In-stitute of Computer Science, University of Namur, Belgium, September 1990. InFrench.22. U.S. Reddy and S.N. Kamin. On the power of abstract interpretation. In J. Cordy,editor, Proceedings of the IEEE fourth International Conference on Computer Lan-guages (ICCL'92), Oakland, U.S.A., April 1992. IEEE Press.23. J. Stoy. Denotational Semantics: The Scott-Strachey Approach to ProgrammingLanguage Theory. MIT Press, Cambridge Mass., 1977.24. P. Van Hentenryck. Personal communication, June 1997.

This article was processed using the LaTEX macro package with LLNCS style

