
Synthesis of Programs in Computational Logi
David Basin1, Yves Deville2, Pierre Flener3, Andreas Hamfelt4, and J�rgenFis
her Nilsson51 Department of Computer S
ien
eETH Zuri
hZ�uri
h Switzerlandbasin�inf.ethz.
h2 Department of Computing S
ien
e and EngineeringUniversit�e
atholique de Louvain,Pl. Ste Barbe 2, B-1348 Louvain-la-Neuve, Belgiumyde�info.u
l.a
.be3 Computing S
ien
e Division,Department of Information Te
hnologyUppsala University, Box 337, S-751 05 Uppsala, SwedenPierre.Flener�it.uu.se4 Computer S
ien
e Division,Department of Information S
ien
eUppsala University, Box 513, S-751 20 Uppsala, SwedenAndreas.Hamfelt�dis.uu.se5 Informati
s and Mathemati
al ModellingTe
hni
al University of DenmarkDK-2800 Lyngby, Denmarkjfn�it.dtu.dkAbstra
t. Sin
e the early days of programming and automated reason-ing, resear
hers have developed methods for systemati
ally
onstru
tingprograms from their spe
i�
ations. Espe
ially the last de
ade has seen a
urry of a
tivities in
luding the advent of spe
ialized
onferen
es, su
has LOPSTR,
overing the synthesis of programs in
omputational logi
.In this paper we analyze and
ompare three state-of-the-art methods forsynthesizing re
ursive programs in
omputational logi
. The three ap-proa
hes are
onstru
tive/dedu
tive synthesis, s
hema-guided synthesis,and indu
tive synthesis. Our
omparison is
arried out in a systemati
way where, for ea
h approa
h, we des
ribe the key ideas and synthesizea
ommon running example. In doing so, we explore the synergies be-tween the approa
hes, whi
h we believe are ne
essary in order to a
hieveprogress over the next de
ade in this �eld.1 Introdu
tionProgram synthesis is
on
erned with the following question: Given a not ne
-essarily exe
utable spe
i�
ation, how
an an exe
utable program satisfying thespe
i�
ation be developed? The notions of \spe
i�
ation" and \exe
utable" are

here interpreted broadly. The obje
tive of program synthesis is to develop meth-ods and tools to me
hanize or automate (part of) this pro
ess.In the last 30 years, program synthesis has been an a
tive resear
h area; seee.g. [14, 4, 40, 13, 26, 29℄ for a des
ription of major a
hievements. The startingpoint of program synthesis is usually a formal spe
i�
ation, that is an expressionin some formal language (a language having a syntax, a semanti
s, and usually aproof theory). Program synthesis thus has many relationships with formal spe
i-�
ation [69℄. As the end produ
t is a veri�ed
orre
t program, program synthesisis also related to formal methods in the development of
omputer systems [22℄,and to automated software engineering. All of these dis
iplines share the goal ofimproving the quality of software.Program Synthesis in Computational Logi
. It is generally re
ognizedthat a good starting point for program synthesis is to use de
larative formalismssu
h as fun
tional programming or
omputational logi
, where one spe
i�es whata program should do instead of how. We fo
us here on the synthesis of re
ur-sive programs in
omputational logi
, whi
h provides an expressive and uniformframework for program synthesis. On the one hand, the spe
i�
ation, the result-ing program, and their relationship,
an all be expressed in the same logi
. Onthe other hand, logi
 spe
i�
ations
an des
ribe
omplete spe
i�
ations as wellas in
omplete ones, su
h as examples or properties of the relation that is to be
omputed. Sin
e all this information
an be expressed in the same language, it
an be treated uniformly in a synthesis pro
ess.There exist many di�erent approa
hes to program synthesis in
omputationallogi
 and di�erent ways of viewing and
ategorizing them. For example, one
andistinguish
onstru
tive from dedu
tive synthesis. In
onstru
tive synthesis, a
onje
ture based on the spe
i�
ation is
onstru
tively proved, and from thisproof a program is extra
ted. In the dedu
tive approa
h, a program is dedu
eddire
tly from the spe
i�
ation by suitably transforming it. As will be shownin this paper, these two approa
hes
an pro�tably be viewed together and ex-pressed in a uniform framework. In a di�erent approa
h,
alled s
hema-basedsynthesis, the idea is to use program s
hemas, that is some abstra
tion of a
lass of a
tual programs, to guide and enhan
e the synthesis pro
ess. Anotherapproa
h is indu
tive synthesis, where a program is indu
ed from an in
ompletespe
i�
ation.Obje
tives. Our intent in this paper is to analyze and
ompare three state-of-the-art methods for synthesizing re
ursive programs in
omputational logi
. The
hosen approa
hes are
onstru
tive/dedu
tive synthesis, s
hema-guided synthe-sis, and indu
tive synthesis. We perform our
omparison in a systemati
 way: we�rst identify
ommon, generi
 features of all approa
hes and afterwards we usea
ommon example to explain these features for ea
h approa
h. This analysisforms the basis for an in-depth
omparison. We show, for example, that froman appropriately abstra
t viewpoint, there are a number of synergies betweenthe approa
hes that
an be exploited. For example, by identifying rules withs
hemas, all three methods have a
ommon, underlying synthesis me
hanism

and it be
omes easier to see how the methods
an be fruitfully
ombined, or dif-ferentiated. Overall, we hope that our
omparison will deepen the
ommunitiesunderstanding of the approa
hes | their relationships, synergies, where theyex
el, and why | and thereby
ontribute to a
hieving progress in this �eld.We see this paper as
omplementary to surveys of program synthesis in
om-putational logi
 (or more pre
isely in logi
 programming), in parti
ular [26, 29℄.Rather than a making a broad survey, we fo
us on the analysis and in-depth
omparison of the di�erent approa
hes and we also
onsider s
hema-guided syn-thesis. Due to la
k of spa
e and to
omply with our obje
tives, some te
hni
aldetails are omitted. Here, the reader may rely on his or her intuitive understand-ing of relevant
on
epts or follow pointers to referen
es in the literature.Organization. Se
tion 2 presents the di�erent elements that will be used topresent and
ompare the
hosen synthesis approa
hes. These elements in
ludegeneral features of program synthesis approa
hes as well as the example thatwill be used for their
omparison. Se
tions 3 through 5 des
ribe the three
ho-sen approa
hes:
onstru
tive/dedu
tive synthesis, s
hema-guided synthesis, andindu
tive synthesis. To fa
ilitate a systemati
 analysis and
omparison of themethods, ea
h se
tion has a similar stru
ture. Se
tion 6
ompares the threeapproa
hes. Finally, Se
tion 7 draws
on
lusions and presents perspe
tives forfuture developments.2 Elements of ComparisonIn the subsequent se
tions, we will present three synthesis approa
hes. For ea
happroa
h, one representative method is des
ribed. However, before des
ribingthem, we �rst present their general features. These features are developed in the
ontext of ea
h parti
ular method and serve both to fa
ilitate our analysis andsystematize our
omparison. We also introdu
e our example.2.1 General FeaturesSpe
ifi
ation. The starting point for program synthesis is a spe
i�
ation ex-pressed in some language. For ea
h synthesis method, we must �x the spe
i�-
ation language and the form of the spe
i�
ation (e.g., a formula or a set ofexamples).Me
hanism. Program synthesis methods are based on
al
uli and pro
edurespres
ribing how program are synthesized from spe
i�
ations. Although the un-derlying me
hanisms of the various systems di�er, there are, in some
ases,similar underlying
on
epts.Heuristi
s. Program synthesis is sear
h intensive and heuristi
s are required inpra
ti
e to guide the synthesis pro
ess. Are the heuristi
s spe
i�
 to a synthesismethod or are there
ommon heuristi
s? How e�e
tive are the heuristi
s in thedi�erent methods and to what extent do di�erent methods stru
ture and restri
tthe sear
h spa
e?

Ba
kground Knowledge. Usually, non-trivial spe
i�
ations refer to ba
k-ground knowledge that formalizes information about the properties of obje
tsused in the spe
i�
ation, e.g., theories about the relevant data types.Human Intera
tion. Human intera
tion involves two di�erent issues. First,how mu
h
an a human be automati
ally assisted? Se
ond, what is the nature ofhuman-
omputer intera
tion in synthesis? How
an the human step in and, forexample, give key steps rather than leave the matter to blind sear
h? Allowinginput at
riti
al points requires appropriate system support.Tool Support. What kind of tool support is needed for turning a synthesismethod into a viable system?S
alability. S
alability is a major
on
ern in program synthesis. Synthesissystems should not only be able to synthesize small simple programs, but theyshould also be able to ta
kle large or
omplex programs that solve real-life prob-lems.2.2 The Chosen ExampleThe same example will be used throughout the paper to fa
ilitate a
omparisonof the di�erent methods. We have
hosen a problem simple enough to presentin full, but
omplex enough to illustrate the main issues asso
iated with ea
happroa
h.Spe
i�
ation 21 Let L be a list, I a natural number, and E a term. The rela-tion atpos(L; I; E) holds i� E is the element of L at position I. By
onvention,the �rst element of a list is at position 0. The atpos relation
an be formallyspe
i�ed as follows:atpos(L; I; E)$ 9P; S : append (P;E � S;L) ^ length(P; I)where append and length have their usual meaning, and are assumed to be de�nedin the ba
kground theory.In the formula above, and in the rest of the paper, free variables are assumedto be universally quanti�ed over the entire formula. As list notation, we use nilto represent the empty list, and H � T for the list with head H and tail T .3 Constru
tive and Dedu
tive SynthesisWe will now look at two approa
hes to synthesizing programs that are oftengrouped together:
onstru
tive and dedu
tive synthesis. We shall highlight theirsimilarities by viewing both from the same perspe
tive: In both
ases, dedu
-tion
an be used to synthesize programs by solving for unknowns during theappli
ation of rules.

3.1 Ba
kgroundFor histori
al reasons, and be
ause the ideas are simplest to present there, webegin by
onsidering synthesis of fun
tional programs in
onstru
tive type the-ory.Constru
tive type theories are logi
s used for reasoning about fun
tionalprograms. The simplest example is the simply typed �-
al
ulus [5, 48℄, whi
h webrie
y review here. Programs in the simply typed �-
al
ulus are terms in the�-
al
ulus, whi
h are built from variables, appli
ation, and abstra
tion. Typesare built from a set of base types,
losed under the fun
tion spa
e
onstru
tor!. One reasons about judgments that assert that a term t has a type T , relativeto a sequen
e of bindings � , of the form x1 : A1; : : : ; xn : An, whi
h asso
iatevariables to types. The valid judgments are indu
tively de�ned by the followingrules: x : A 2 � hyp� ` x : A �; x : A `M : B abst� ` (�x:M) : (A! B)� `M : A! B � ` N : A appl� ` (MN) : BThese rules
omprise a dedu
tion system for proving that a program t hasa type T . Under the propositions-as-types interpretation, this type may also beunderstood as a logi
al proposition (reading `!' as intuitionisti
 impli
ation)that spe
i�es t's properties. Of
ourse, the spe
i�
ation language is quite weak,so it is diÆ
ult to spe
ify many interesting properties. In stronger type theories,su
h as [24, 56℄, types
orrespond to propositions in ri
her logi
s and one
an,for example, spe
ify sorting as` t : (8x : int list : 9y : int list : perm(x; y) ^ ord (y)) : (1)This asserts that the program t is a fun
tion that, on input x, returns an orderedpermutation y.The given dedu
tion system
an be used for program veri�
ation: given aprogram t and a spe
i�
ation T , prove ` t : T . For example, for p and q types,we
an verify that the program �x: �y: x satis�es the spe
i�
ation p! (q ! p):x : p 2 x : p; y : q hypx : p; y : q ` x : p abstx : p ` �y: x : q ! p abst` �x: �y: x : p! (q ! p) (2)Perhaps less obviously, the same rules
an be used for program synthesis :given a spe
i�
ation T ,
onstru
t a program t su
h that ` t : T . This
an bedone by1. Reversing the dire
tion in whi
h rules are applied and proofs are
onstru
ted.That is, build the proof in a goal-dire
ted, \re�nement style" way by startingwith the goal and working towards the axioms.

2. Leaving the program t as an unknown, or metavariable, whi
h is solvedduring proof.Let's try this out in the example above. Using
apital letters to indi
atemetavariables, we begin with ` R : p! (q ! p) :Resolving this with the (
on
lusion of the) abst rule yields the new goalx : p ` R1(x) : (q ! p) ;where R is uni�ed with �x:R1(x). Applying abst again results inx : p; y : q ` R2(x; y) : p ;where R1(x) = �y:R2(x; y). Finally, applying hyp uni�es the assumption x : pwith R2(x; y) : p, instantiating R2(x; y) to x and
ompleting the proof. Compos-ing the substitutions yields the previously veri�ed program t = �x: �y: x.The a

ount above is
ompli
ated by the fa
t that the abstra
tion operator �binds variables and, to work properly, higher-order uni�
ation is required whenapplying rules. The rules
onstitute
lauses in a higher-order (meta-)languageand proofs are
onstru
ted by higher-order resolution. A higher-order logi
 pro-gramming language or logi
al framework based on higher-order resolution like�-Prolog [27℄, ELF [61℄, or Isabelle [59℄ would support this kind of proof.There are two
on
lusions we would like to draw. First, veri�
ation andsynthesis are
losely related a
tivities. In fa
t, when rules are applied using(higher-order) resolution, they are essentially identi
al. The only di�eren
e iswhether uni�
ation is between ground or non-ground terms, i.e., whether ornot an answer substitution is built. This
on
lusion should not be surprising tothose working in logi
 programming: the same sequen
e of resolution steps
anbe used to establish a ground query p(t) or a non-ground one p(X), generatingthe substitution X = t.Se
ond,
onstru
tive synthesis is of a dedu
tive nature and the line betweenthe two
an be �ne. As the analogy with Prolog shows, proofs
onstru
t obje
ts.In type theory, the obje
ts are programs. Indeed, the idea of proofs synthesizingprograms, sometimes
alled proofs-as-programs,
an be de
omposed intoproofs-as-programs = proofs-as-obje
ts + obje
ts-as-programs.In our example, uni�
ation, not the
onstru
tivity of the logi
, is responsiblefor
onstru
ting an obje
t. Constru
tivity does not play a role in the synthesisof obje
ts, but rather in their exe
ution and meaning. That is, be
ause thelogi
 is
onstru
tive, the synthesized terms
an be exe
uted and their evaluationbehavior agrees with the semanti
s of the type theory. In
ontrast, [49℄, forexample, presents a
lassi
al type theory where programs
orrespond to (non-
omputable) ora
les that
annot be exe
uted. There one might say that theline is
rossed from
onstru
tive (and dedu
tive) program synthesis to dedu
tiveobje
t synthesis.

The use of uni�
ation is at the heart of dedu
tive and
onstru
tive synthesis.Uni�
ation is driven by resolution, to synthesize, or solve for, programs duringproofs. This idea goes ba
k to work in the 1960s on using �rst-order resolutionto
onstru
t terms that represent plans or, more generally, programs [19, 42℄. Inthe logi
al framework
ommunity, the use of higher-order metalogi
s to representrules and the use of higher-order uni�
ation to apply them is now standard, e.g.,[2, 8, 9, 23℄. For example, the Isabelle distribution [59℄
omes with en
odings of anumber of type theories, where programs
an be synthesized as des
ribed here.The vast majority of approa
hes for synthesizing logi
 programs are basedon �rst-order reasoning, e.g., equivalen
e preserving transformations. There havebeen many proposed methods and [26℄
ontains a good survey. They di�er inthe form of their axioms (Horn
lauses, i� -de�nitions, et
.), exa
t notion ofequivalen
e used (and there are many, see e.g., [55℄), and ease of automation.Many of these, for example unfold-fold based transformations [60℄,
an be re
astas synthesis by resolution using rules like those presented here [7, 10℄.3.2 OverviewSpe
ifi
ations. In type theory, programs and spe
i�
ations belong to di�er-ent languages. When synthesizing logi
 programs, the spe
i�
ation language istypi
ally the language of a �rst-order theory and the programming language issome suitable, exe
utable subset thereof. By sharing the same language, logi
programs are well suited for dedu
tive synthesis where spe
i�
ations are manip-ulated, using equivalen
e preserving transformations, until a formula with somedesired form or property is rea
hed.Me
hanism. The me
hanism for synthesizing logi
 programs during proofs isessentially the same as what we have just seen for type theory. However, what isproved (i.e., the form of the theorem to be proven), and the proof rules used toestablish it, are of
ourse di�erent. Namely, we will prove theorems about equiv-alen
es between spe
i�
ations and programs and we will prove these theoremsusing rules suitable for establishing su
h equivalen
es.For our example, we will employ the following rules:$�re
A$ A A1 $ B1 A2 $ B2 _�split(A1 _ A2)$ (B1 _ B2)In addition, for building re
ursive programs that re
urse over lists we employthe rule s
hema A1 A2 A3 ind ;8L;X : P (L;X)$ Q(L;X)where L is a variable ranging over lists, X denotes sequen
es of zero or morevariables of any type, and the assumptions Ai are:A1 � 8L;X : Q(L;X)$ (L = nil ^ B(X))_9H;T : L = H � T ^ S(H;T;X)

A2 � 8X : P (nil;X)$ B(X)A3 � 8T : (8X : P (T;X)$ Q(T;X))! 8H;X : P (H � T;X)$ S(H;T;X)This rule, whi
h
an be derived by indu
tion on the list L, states the equiv-alen
e between predi
ates P and Q (whi
h are metavariables). For the purposeof synthesis, we
an take A1 as the de�nition of Q, and A2 and A3
onstrain(and will be used to de�ne) Q's base and re
ursive
ases. In A3, we are allowedto use the existen
e of Q, when de�ning Q, but only on smaller arguments.We will show below how, by applying these rules (using higher-order resolu-tion), we
an
onstru
t R while proving its equivalen
e to atpos .Heuristi
s and Human Intera
tion. Proof rules, like those given above,
an be applied intera
tively, semi-intera
tively, or even automati
ally. The useof a ta
ti
 based theorem prover [41℄, whi
h allows users to write programs that
onstru
t proofs, leaves open the degree of automation.[50, 51℄, for example, show how to
ompletely automate the
onstru
tion ofsu
h synthesis proofs in a ta
ti
 based setting. In this work, the most importantta
ti
 implements the rippling heuristi
 of [17, 12℄. This heuristi
 automates theappli
ation of rewrite or equivalen
e preserving transformation rules in a waythat minimizes di�eren
es between terms or formulas. Rippling is typi
ally usedin indu
tive theorem proving to enable the use of the indu
tion hypothesis insimplifying the indu
tion
on
lusion and it
an be used in a similar way dur-ing program synthesis where rules that introdu
e re
ursion (like ind) produ
eindu
tion-like proof obligations. Rippling has been used to automate
ompletelythe synthesis of a number of non-trivial logi
 programs. However, it should benoted that some intera
tion with the user is often desirable sin
e the appli
ationof proof rules, in parti
ular rules that build re
ursive programs, determines theeÆ
ien
y of the synthesized program.Ba
kground Knowledge. The approa
h we present here for synthesizinglogi
 programs involves two kinds of rules. The �rst kind are rules, like $�re
and _�split , whi
h are derived rules of �rst-order logi
. These derived rulesare not, stri
tly speaking, ne
essary (provided we are working in a
ompleteaxiomatization of �rst-order logi
), but their addition makes it easier to
onstru
tsynthesis proofs by reasoning about equivalen
es. The se
ond kind of rules aretheory spe
i�
 rules, e.g., rules about indu
tively de�ned data types like numbersand lists. The rule ind given above is an example of su
h a rule. It is derivablein a theory that axiomatizes lists and formalizes indu
tion over lists.Tool Support. For synthesizing the atpos example, we have used the Isabellesystem. Isabelle's basi
 me
hanism for proof
onstru
tion is top-down proof byhigher-order resolution, whi
h is pre
isely what we require. Moreover, as a logi-
al framework, Isabelle supports the derivation of new rules, so we
an formallyderive, and thus insure the
orre
tness of, the spe
ialized rules needed for synthe-sis; in our example, we derive the rules just presented in a standard �rst-order

theory of lists. Finally, ta
ti
s
an be used to partially, or entirely, automateproof
onstru
tion. The Isabelle distribution
omes with simpli�ers and de
isionpro
edures that we used to semi-automate synthesis.S
alability. The sear
h spa
e in most approa
hes to dedu
tive synthesis isquite large. In pra
ti
e, building non-trivial programs requires an environmentthat supports heuristi
s for automating simple proof steps, e.g., by the appli
a-tion of ta
ti
s. It is also important that the user
an safely augment a synthesissystem with derived rules. As we will later observe, s
hemas, for s
hema guidedsynthesis,
an be seen as derived rules spe
ialized for synthesizing programs of aparti
ular form, and their integration with dedu
tive synthesis approa
hes
anhelp with large s
ale developments. Examples of this are provided in [1℄.3.3 ExampleLet us illustrate our synthesis method on the atpos example. We wish to
on-stru
t a logi
 program equivalent to the spe
i�
ation 21. As with synthesis inthe type theory, we use a metavariable, R, to stand in for the desired program.Hen
e we start with̀ 8L; I; E : atpos(L; I; E)$ R(L; I; E) : (3)Working ba
kwards, resolving (using higher-order uni�
ation) this
on
lusionwith the
on
lusion of the ind rule yields the three subgoals8L; I; E : R(L; I; E)$ (L = nil ^ B(I; E))_9H;T : L = H � T ^ S(H;T; I; E)8I; E : atpos(nil; I; E)$ B(I; E)8T : (8I; E : atpos(T; I; E)$R(T; I; E)! 8H; I; E : atpos(H � T; I; E)$ S(H;T; I; E)and Q is uni�ed with R.The �rst subgoal
onstitutes a program template, whi
h will later be �lledout by solving the other subgoals. In the se
ond subgoal, expanding the de�nitionof atpos results in` 8I; E : (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) :Let I and E be arbitrary. To show` (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) ;observe that there are no values for P or S for whi
h append (P ; E � S ; nil) istrue. Hen
e this subgoal is equivalent to` false $ B(I; E) :We
an
omplete the proof with $�re
 , whi
h uni�es B(I; E) with false .

For the third subgoal, we assume the existen
e of an arbitrary list T andthe ante
edent of the impli
ation (whi
h amounts to an indu
tion hypothesis)and must prove the
onsequent (the indu
tion
on
lusion). Hen
e, expandingthe de�nition of atpos , we assume8I; E : (9P ;S : append (P ; E � S ; T) ^ length(P ; I))$ R(T; I; E)and we must prove, for some arbitrary H , I , and E,` (9P ;S : append (P ; E � S ; H � T) ^ length(P ; I))$ S(H;T; I; E) :Now, sin
e P ranges over lists, for any formula �(l), 9P :�(P) is equivalent(by
ase analysis) to �(nil)_9H;T : �(H � T). Hen
e, the above is equivalent to` ((9S : append (nil; E � S ; H � T) ^ length(nil; I))_ (9H 0; T 0;S :append (H 0 � T 0; E � S ; H � T) ^ length(H 0 � T 0; I)))$ S(H;T; I; E) :We pro
eed by de
omposing the disjun
tion on the left-hand side by resolvingwith _�split . Doing so builds a disjun
tion for S, by instantiating S(H;T; I; E)with S1(H;T; I; E) _ S2(H;T; I; E), and yields the two subgoals:` 9S : append (nil; E � S ; H � T) ^ length(nil; I)$ S1(H;T; I; E)` 9H 0; T 0;S : append (H 0 � T 0; E � S ; H � T)^length(H 0 � T 0; I)$ S2(H;T; I; E)For the �rst, the left-hand side is true whenever 9S : E = H ^ S = T ^ I = 0.Hen
e, setting S to T , this subgoal is equivalent to` (E = H ^ I = 0)$ S1(H;T; I; E) :We
an again dis
harge this using $�re
 , whi
h uni�es S1(H;T; I; E) withE = H ^ I = 0. Now, under the standard de�nition of append and length , these
ond subgoal is equivalent to` (9I 0:s(I 0) = I ^ (9T 0;S :append (T 0; E � S ; T) ^ length(T 0; I 0)))$ S2(H;T; I; E)where s(I 0) represents the su

essor of I 0. We
an now simplify this using theante
edent (indu
tion hypothesis), whi
h yields(9I 0:s(I 0) = I ^ R(T; I 0; E))$ S2(H;T; I; E) :We
omplete the proof with $�re
 , unifying S2(H;T; I; E) with 9I 0:s(I 0) =I ^ R(T; I 0; E).We are done! If we apply the a

umulated substitutions to the remainingassumption A1 we have8L; I; E : R(L; I; E)$ (L = nil ^ false)_9H;T : L = H � T ^ ((E = H ^ I = 0)_ 9I 0 : s(I 0) = I ^ R(T; I 0; E)) :

and we have proved the equivalen
e of (3) under this de�nition, i.e.,atpos(L; I; E) is equivalent to the synthesized instan
e of R(L; I; E).The alert reader may have wondered why we did not
omplete the proofearlier by resolving with $�re
 . In this example, our goal was to transformatpos so that the result falls within a parti
ular subset of �rst-order formulae,sometimes
alled pure logi
 programs [16℄ or logi
 des
riptions [25℄, that de�nelogi
 programs. These formulae
an be easily translated to Horn
lauses or rundire
tly in a language like G�odel [47℄. In this
ase, we get the
lauses:atpos(nil; I; E) falseatpos(H � T; I; E) E = H; I = 0atpos(H � T; I; E) s(I 0) = I; atpos(T; I 0; E)whi
h
an be simpli�ed toatpos(E � ; 0; E) atpos(� T; s(I 0); E) atpos(T; I 0; E)3.4 AnalysisOverall, when
ast in this way, the dedu
tive synthesis of logi
 programs is quitesimilar to the previous
onstru
tive/dedu
tive synthesis of fun
tional programs.In both
ases, we leave the program as an unknown, and solve for it, by uni-�
ation, during proof. Of
ourse, the metatheoreti
 properties of the programsprodu
ed are quite di�erent. In the
ase of logi
 program synthesis, the rules,as they are given, do not enfor
e that the obje
t
onstru
ted has any spe
ialsynta
ti
 properties (e.g., is a pure logi
 program); we only know that it is anequivalent formula. Moreover, we do not a priori know anything about its ter-mination behavior (although it is not diÆ
ult to show that the indu
tion rulebuilds predi
ates that terminate when the �rst argument is ground).This kind of development, as with most approa
hes to logi
 program synthe-sis, is best des
ribed as dedu
tive synthesis. They are
onstru
tive only in theweak sense that, at the metalevel (or metalogi
, if one is
arrying out the proofin a logi
al framework), one is essentially proving a theorem of the form9R : 8L; I; E :atpos(L; I; E)$ R(L; I; E)and building a witness (in this
ase, a predi
ate de�nition) for R. (For moreon this notion of
onstru
tivity and the proof theory behind it, see [11℄.) Manyproposed methods for the
onstru
tive synthesis of logi
 programs
an also beexplained in this way. For example, the Whelk Cal
ulus of [71℄, whi
h is moti-vated by experiments in synthesizing relations in a
onstru
tive type theory,
anbe re
ast as this kind of synthesis [6℄.

4 S
hema-Guided SynthesisWe here outline Flener, Lau, Ornaghi, and Ri
hardson's de�nition, representa-tion, and semanti
s of program s
hemas: see [33℄ for details.4.1 Ba
kgroundIntuitively, a program s
hema is an abstra
tion of a
lass of a
tual programs,in the sense that it represents their data-
ow and
ontrol-
ow, but neither
on-tains all their a
tual
omputations nor all their a
tual data stru
tures. Programs
hemas have been shown to be useful in a variety of appli
ations. In synthesis,the main idea is to simplify the proof obligations by taking the diÆ
ult oneso�ine, so that they are proven on
e and for all at s
hema design time. Also, thereuse of existing programs is made the main synthesis me
hanism.A symbol o

urring in a theory T is open [52℄ in T if it is neither de�ned in T ,nor a prede�ned symbol. A non-open symbol in T is
losed in T . A theory with atleast one open symbol is an open theory; otherwise it is
losed. This terminologyapplies to formal spe
i�
ations and logi
 programs. An (open) program for arelation r is steadfast [25, 53℄ with respe
t to its spe
i�
ation if it is
orre
t withrespe
t to its spe
i�
ation whenever
omposed with programs that are
orre
twith respe
t to the spe
i�
ations of its (open) relations other than r.Among the many possible forms of programs, there are the divide-and-
onquerprograms with one re
ursive
all: if a distinguished formal parameter,
alled theindu
tion parameter, say X , has a minimal value, then one
an dire
tly solvefor a
orresponding other formal parameter,
alled the result parameter, say Y ;otherwise, X is de
omposed into a \smaller" value T (under some well-foundedrelation �) by splitting o� a quantity H , so that a sub-result V
orresponding toT
an be
omputed by a re
ursive
all, and an overall result Y
an be
omposedfrom H and V . A third formal parameter,
alled the passive parameter, say Z,parti
ipates un
hanged in these operations. Formally, this problem-independentdata
ow and
ontrol-
ow
an be
aptured in the following open program for r:r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de
(X;Z;H; T);r(T; V; Z);
omp(H;Z; V; Y) (DC)The relationsmin, solve, de
,
omp are open. When I is the indu
tion parameter,L the result, and E the passive parameter, so that atpos(L; I; E)$ r(I; L;E), a
losed program for atpos is the instan
e of DC under the program substitutionmin(X;Z) X = 0 solve(X;Y; Z) Y = Z � Sde
(X;Z;H; T) X = s(T)
omp(H;Z; V; Y) Y = F � V (�1)This substitution
aptures the problem-dependent
omputations of that program.But programs by themselves are synta
ti
 entities, hen
e some programsare undesired instan
es of open programs. For instan
e, the generate-and-test

program r(X;Y; Z) g(X;Y; Z); t(Y; Z) is an instan
e of DC under the sub-stitution min(X;Z) true solve(X;Y; Z) g(X;Y; Z); t(Y; Z)de
(X;Z;H; T) true
omp(H;Z; V; Y) trueAn open program su
h as DC thus has no �xed meaning. The knowledge
ap-tured by an open program is not
ompletely formalized, and the domain knowl-edge and underlying language are still impli
it. In order for su
h open programsto be useful for guiding synthesis, su
h undesired instan
es need to be preventedand some semanti

onsiderations need to be expli
itly added.A program s
hema [33℄ has a name, a set of formal sort and relation pa-rameters, a signature with sorted relation and fun
tion de
larations, a set ofaxioms de�ning the de
lared symbols, a set of
onstraints restri
ting the a
tualparameters, an open program T
alled the template, and spe
i�
ations S of therelations in T , su
h that T is steadfast with respe
t to S in that axiomatization.The s
hema DC
an be abdu
ed, as in [32℄, from our informal a

ount of howdivide-and-
onquer programs work. The parameters SX, SY, SZ, SH are sorts;they are used in the signatures of the other parameters, whi
h are relations.There are no axioms be
ause the signature de
lares no other symbols than theparameters. The template is the open program DC, whi
h de�nes the relation rand hasmin, solve, de
,
omp as open relations. The
losed relation r is spe
i�edby Sr, and the open relations have Smin, Ssolve, Sde
, S
omp as spe
i�
ations.The
onditional spe
i�
ation Sr exhibits ir, or as the input/output
onditionsof r, while Sde
 exhibits ide
, ode
 as the input/output
onditions of de
. Theinput/output
onditions of the remaining open relations are also expressed interms of the parameters ir, ide
, or, ode
. The
onstraints restri
t de
 to su

eedat least on
e if its input
ondition holds, and then to yield a value that satis�esthe input
ondition of r (so that a re
ursive
all to r is \legal") and that issmaller than X a

ording to �, whi
h must be a well-founded relation (so thatre
ursion terminates). The open program DC is steadfast with respe
t to Sr,within the given axiomatization.In the s
hema REUSE , the parameters SX, SY, SZ are sorts; they are usedin the signatures of the other parameters, whi
h are relations. There are noaxioms be
ause the signature de
lares no other symbols than the parameters.The template is the open program fr(X;Y; Z) q(X;Y; Z)g, whi
h de�nes therelation r and has q as the open relation. The relation r is spe
i�ed by Sr, and therelation q has the same input/output
onditions as r. There are no
onstraintson the parameters. This s
hema provides for the reuse of a program for q whenstarting from a spe
i�
ation for r. The open program Reuse is steadfast withrespe
t to Sr, within the given axiomatization.4.2 OverviewLet us now examine the spe
i�
ations, me
hanism, heuristi
s, ba
kground knowl-edge, human intera
tion, tool support, and s
alability of s
hema-guided synthe-sis.

S
hema DC(SX; SY; SZ; SH;�; ir; or; ide
; ode
)sorts: SX; SY; SZ; SHrelations: ir; ide
 : (SX; SZ) � : (SX; SX)or : (SX; SY; SZ) ode
 : (SX; SZ; SH; SX)axioms: (none)
onstrs: ide
(X;Z)! 9H : SH : 9T : SX : ode
(X;Z;H; T)ide
(X;Z) ^ ode
(X;Z;H; T)! ir(T; Z) ^ T � XwellFounded(�) (C1)(C2)(C3)spe
ifs: ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z))ir(X;Z)! (min(X;Z)$:ide
(X;Z))ir(X;Z) ^ :ide
(X;Z)! (solve(X;Y; Z)$ or(X;Y; Z))ide
(X;Z)! (de
(X;Z;H; T)$ ode
(X;Z;H; T))ode
(X;Z;H; T) ^ or(T; V; Z)!(
omp(H;Z; V; Y)$ or(X;Y; Z)) (Sr)(Smin)(Ssolve)(Sde
)(S
omp)template: r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de
(X;Z;H; T);r(T; V; Z);
omp(H;Z; V; Y) (DC)S
hema REUSE(SX; SY; SZ; ir; or)sorts: SX; SY; SZrelations: ir : (SX; SZ) or : (SX; SY; SZ)axioms: (none)
onstraints: (none)spe
ifi
ations: ir(X;Z)! (r(X;Y;Z)$ or(X;Y; Z))ir(X;Z)! (q(X;Y; Z)$ or(X;Y; Z)) (Sr)(Sq)template: r(X;Y; Z) q(X;Y; Z) (Reuse)Spe
ifi
ations. Among the many possible forms of spe
i�
ations, there arethe
lassi
al
onditional spe
i�
ations : under some input
ondition ir on inputsX , Z, a program for relation r su

eeds i� some output
ondition or on X , Zand output Y holds. Formally, this gives rise to the following open spe
i�
ationof r: 8X : SX : 8Y : SY : 8Z : SZ :ir(X;Z)! (r(X;Y; Z)$ or(X;Y; Z)) (Cond)The open symbols are the relations ir, or and the sorts SX, SY, SZ. Other formsof spe
i�
ation
an also be handled.Me
hanism. S
hema-guided synthesis from a spe
i�
ation S0 is a tree
on-stru
tion pro
ess
onsisting of 5 steps, where the initial tree has just one node,namely S0:1. Choose a spe
i�
ation Si that has not been handled yet.2. Choose a program s
hema with parameters P , axioms A,
onstraints C,template T , and spe
i�
ations S.

3. Infer a substitution �1 under whi
h Si is an instan
e of the spe
i�
ation(available in S) of the de�ned relation in template T . This instantiates some(if not all) of the parameters P .4. Choose a substitution �2 that instantiates the remaining (if any) parametersin P , su
h that the
onstraints C hold (i.e., su
h that �1 [�2 ` C) and su
hthat one
an reuse existing programs PQ for some (if not all) of the now fullyinstantiated spe
i�
ations S [�1 [�2 of the open relations in template T .Simplify the remaining (if any) spe
i�
ations in S [�1 [�2, yielding SG.5. Add T [PQ |
alled the reused program | to the node with Si and addthe elements of SG to the unhandled spe
i�
ations, as
hildren of Si.These steps are iterated until all spe
i�
ations have been handled; the overall re-sult program P0 for S0 is then assembled by
onjoining, at ea
h node, the reusedprograms. If any of these steps fails, synthesis ba
ktra
ks to its last
hoi
e point.S
hema-guided program synthesis is thus a re
ursive spe
i�
ation (problem) de-
omposition pro
ess followed by a re
ursive program (solution)
omposition pro-
ess.The REUSE s
hema
an be
hosen at Step 2; it for
es the reuse at Step 4 ofa program for q, be
ause q is its only open relation. Every s
hema leads to somereuse at Step 4; for instan
e, DC results in the reuse of a program for de
.Heuristi
s. Many
hoi
e points reside in s
hema-guided synthesis, so heuristi
sare needed to make good de
isions, possibly by looking ahead into the synthesis.Some heuristi
s
an be applied when designing a s
hema. For instan
e, asynthesis strategy is the
hoi
e at Step 4 of the open relations for whi
h programsare reused. All templates envisaged by us so far have only a few meaningfulstrategies, hen
e it is best to hardwire these. For instan
e, template DC hasonly two interesting strategies: when starting with de
, the divide-and-
onquers
hema is as above; when starting with
omp, it would have to be reexpressedin terms of the input/output
onditions of r and
omp, giving rise to anothers
hema, with the same template.Other heuristi
s
an be expressed as appli
ability
onditions. For instan
e,the question arises of what program s
hema to apply at Step 2. An impli
itheuristi

an be a
hieved by ordering the s
hemas; putting REUSE �rst wouldenfor
e our emphasis on reuse. There also is the question of how to apply a
hosenprogram s
hema at Step 3. For instan
e, with DC, one of the formal parametersin the given spe
i�
ation Sr has to be the indu
tion parameter, and anotherthe result parameter. This
an be done based on the sort information in Sr:only a parameter of an indu
tively de�ned sort
an be the indu
tion parameter.One
an also augment spe
i�
ations with mode information, be
ause parametersde
lared to be ground at
all-time are parti
ularly good indu
tion parameters[25℄.Ba
kground Knowledge. Step 2 assumes a base of program s
hemas,
aptur-ing a range of program
lasses. Also, Step 4 relies on a base of reusable programs.For instan
e, for the DC s
hema, a base of spe
i�
ations and programs for de
programs and � well-founded relations needs to be available.

Human Intera
tion. S
hema-guided synthesis
an be fully automated, asdemonstrated withCypress [65℄,Kids [66℄,DesignWare [67℄, and PlanWare[15℄. However, intera
tive synthesis is preferable, with the human programmertaking the
reative, high-level, heuristi
 design de
isions, and the synthesizerdoing the more
leri
al work. The design issues are intelligible to humans be
ausethe very obje
tive of program s
hemas is to
apture re
ognized, useful, human-designed programming strategies and program
lasses.Tool Support. An implementation of s
hema-guided synthesis
an be made ontop of any existing proof planner, exploiting the fa
t that program s
hemas
anbe seen as proof methods [35℄. This provides support for the ne
essary higher-order mat
hing and dis
harging of proof obligations.S
alability. The sear
h spa
e of s
hema-guided synthesis is mu
h smaller thanfor dedu
tive synthesis. First, s
hema-guided synthesis by de�nition bottomsout in reuse, both of the template itself and of existing programs. One
ansigni�
antly redu
e the number of reuse queries by applying heuristi
s dete
tingthat an ad ho
 program
an be trivially built from the spe
i�
ation. Se
ond,the proof obligations of Steps 3 and 4 are quite lightweight. S
hema-guidedsynthesis thus s
ales up to real-life synthesis tasks, espe
ially if
oupled witha powerful program optimization workben
h and suÆ
ient domain knowledge.For instan
e, Smith [67℄ has su

essfully deployed his tools on real-life problems,su
h as transportation s
heduling.4.3 ExampleLet us synthesize a program from the following spe
i�
ation, open in sort ST:8L : list(ST) : 8I : nat : 8E : ST : true!(atpos(L; I; E)$ 9P ;S : list(ST) : append (P ; E � S ; L) ^ length(P ; I)) (Satpos)The �rst iteration of synthesis pro
eeds as follows. At Step 1, the spe
i�
ationSatpos is
hosen be
ause it is the only unhandled spe
i�
ation. At Step 2, supposes
hema DC is
hosen, after a failed attempt to apply s
hema REUSE . At Step 3,the spe
i�
ation Satpos is inferred to be an instan
e of Sr, when atpos(L; I; E)is seen as r(I; L;E), under the substitutionhSX; SY; SZi = hnat; list(ST); STiir(X;Z)$ trueor(X;Y; Z)$ 9P ;S : list(ST) : append (P ; Z � S ; Y)^length(P ; X) (�2)So far, 5 of the 9 parameters of DC have been instantiated. At Step 4, supposethe following substitution is
hosen:SH = nat A � B $ B = s(A)ide
(X;Z)$:X = 0 ode
(X;Z;H; T)$ X = s(T)

This instantiates the remaining 4 parameters of DC in a way that the
onstraintsC1, C2, C3 hold and that the program Pde
 = fde
(X;Z;H; T) X = s(T)g
anbe reused to meet the now fully instantiated spe
i�
ation Sde
. The spe
i�
ationsof the remaining open relations in template DC are now also fully instantiated:true! (min(X;Z)$::X = 0) (Smin)true ^ ::X = 0!(solve(X;Y; Z)$ 9P ;S : append (P ; Z � S ; Y) ^ length(P ; X)) (Ssolve)X = s(T) ^ 9P ;S : append (P ; Z � S ; V) ^ length(P ; T)!(
omp(H;Z; V; Y)$ 9P 0; S0 : append (P 0; Z � S0; Y)^length(P 0; X)) (S
omp)They
an be simpli�ed into the following spe
i�
ations:min(X;Z)$ X = 0 (S0min)X = 0! (solve(X;Y; Z)$ 9S : list(ST) : Y = Z � S) (S0solve)X = s(T) ^ 9P ;S : append(P ; Z � S ; V) ^ length(P ; T)!(
omp(H;Z; V; Y)$ 9F : ST : Y = F � V) (S0
omp)At Step 5, the program DC [Pde
 be
omes the reused program for Satpos ,while S0min, S0solve, and S0
omp are added to the now empty list of unhandledspe
i�
ations.The next iterations of synthesis pro
eed as follows. When S0min, S0solve, andS0
omp are
hosen, suppose appli
ations of some suitable variants of REUSEsu

eed through the ad ho
 building of the programs Pmin = fmin(X;Z) X =0g, Psolve = fsolve(X;Y; Z) Y = Z � Sg, and P
omp = f
omp(H;Z; V; Y) Y = F �V g. Sin
e no new spe
i�
ations were
reated, the synthesis is
ompletedand has dis
overed the substitution �1. For
all-mode atpos(+;�;+), say, the
orresponding logi
 programatpos(L; I; E) I = 0; L = E � Satpos(L; I; E) :I = 0; I = s(T); atpos(V; T;E); L = F � V
an be implemented [25℄, say by the Mer
ury
ompiler [68℄, into the followingsteadfast program: atpos(E � S; 0; E) atpos(F � V; s(T); E) atpos(V; T;E)The
omp operator had to be moved in front of the re
ursive
all to a
hieve this.(Prolog
annot do this, so mode-spe
i�
 implementation is left as a manual taskto the Prolog programmer.)This example illustrated a relatively simple use of the DC s
hema. In [31℄,a qui
ksort program is synthesized, using a variant of the divide-and-
onquers
hema DC with two re
ursive
alls.

4.4 AnalysisS
hema-guided synthesis
aptures re
ognized, useful, human-designed program-ming strategies and program
lasses in program s
hemas. In doing so, it takesthe hardest proof obligations o�ine, preventing their repeated proof a
ross var-ious syntheses and making reuse of existing programs the
entral me
hanism forsynthesizing programs. In the presen
e of powerful program optimization toolsand suÆ
ient domain knowledge, it thus naturally s
ales up, without any limita-tions on spe
i�
ation forms or program forms, due to the modular nature of thevarious forms of ba
kground knowledge. Heuristi
 guidan
e issues are still bestta
kled by humans, so s
hema-guided synthesis is best
arried out intera
tively.A uni�ed view of s
hema-guided synthesis and proof planning has been pro-posed [35℄, revealing potential new aspe
ts of program s
hemas, su
h as appli-
ability
onditions
apturing heuristi
s, as well as the possibility of formulatingprogram s
hemas as proof methods and thereby reusing an existing proof plan-ner as a homogeneous implementation platform for both the s
hema appli
ationsand the proof obligations of s
hema-guided synthesis.Our future work in
ludes redoing the
onstraint abdu
tion pro
ess for moregeneral divide-and-
onquer templates, where some nonMinimal(X;Z) is notne
essarily :min(X;Z), and
rafting the
orresponding strategies, in order toallow the synthesis of a larger
lass of programs. Other design methodologiesneed to be
aptured in logi
 programming s
hemas; for instan
e, a global sear
hs
hema has been proposed for the synthesis of
onstraint logi
 programs [37℄.5 Indu
tive SynthesisFollowing a brief introdu
tion to indu
tive generalization, we present a parti
ularapproa
h to indu
tion of re
ursive logi
 program
alled
ompositional indu
tivesynthesis, whi
h is des
ribed in detail in [46℄.5.1 Ba
kgroundThe indu
tive approa
h to program synthesis originates in indu
tive logi
. In-du
tive logi
 is
on
erned with the
onstru
tion of logi
al theories T explainingavailable observations or events. This means that, given eviden
e in the formof atomi
 formulas a1; a2; : : : ; as, the logi
al indu
tion approa
h is to devise anappropriate logi
al theory T so thatT ` a1 ^ a2 ^ : : : ^ as:A major
on
ern is to
onstrain T so as to rule out trivial solutions, su
h asT being in
onsistent (thus supporting any eviden
e), or T being identi
al to the
onjun
tion of available eviden
e. In the more traditional appli
ation of logi
altheories of indu
tion in arti�
ial intelligen
e, the quest is for a theory T takingthe form of general rules, e.g., s
ienti�
 rules, supporting the given eviden
e. Inthe
ontext of indu
tion of logi
 programs addressed here, the \observations" are

intended sample program input-output results in the form of atomi
 formulas,and the theory T is to be a de�nite
lause logi
 program. Thus the
onsisten
y ofT is guaranteed, but
omputational properties su
h as termination and
ompu-tational tra
tability of the synthesized program have to be separately
onsidered.So the goal of indu
tive logi
 programming (ILP) is to obtain a
olle
tion of
lauses with universally quanti�ed variables, whi
h subsumes the given �nite listof intended program results. The main approa
h to a
hieve this goal is synta
ti
generalization of the given examples. Consider atoms p(a; a�b�nil) and p(b; b�nil).These two unit
lauses generalize to the
lause program p(X;X �Y) . This restson the existen
e of a dual of the most general uni�er of two atoms known as theleast general generalization (LGG) [63, 62℄. In this simple
ase, the LGG yieldsthe intended program as a unit
lause witness, p(X;X � Y) ` p(a; a � b � nil) ^p(b; b � nil).The synta
ti
al generalization of terms has been extended to a notion ofgeneralized subsumption of
lauses [18, 63℄ and further to a method known asinverse resolution, see e.g., [58℄. This method has proven useful for
on
ept for-mation, dedu
tive databases and data mining. However, it is too weak for in-du
tion of re
ursive logi
 programs. Consider examples of list
on
atenation,e.g., p(nil; a � nil; a � nil) and p(a � nil; b � nil; a � b � nil). The least general gen-eralization yields the
lause p(X;Y � nil; a � Z) , whi
h fails to
apture there
ursive de�nition of
on
atenation. Providing more examples eventually leadsto an overly general
lause: the universal predi
ate p(X;Y; Z); whi
h subsumesall
on
atenation examples though it blatantly fails to
apture
on
atenation oflists. A general remedy for over-generalization is to in
lude negative examples,whi
h are understood as examples in the
omplement set of the intended resultset of atoms. In general, the key problem in synthesizing su
h programs is theinvention and introdu
tion of appropriate re
ursive forms of
lauses.Compositional indu
tive synthesis employs a
ompositional logi
al languagefor
omputing relations in analogy to fun
tional programming languages in-tended for
omposing and
omputing fun
tions. The method does not apply theabove generalization me
hanisms. A program takes the form of a variable-freepredi
ate expression ' en
ompassing elementary predi
ates and operators for
ombining relations and produ
ing new resulting relations.Let ' ` e mean that the tuple (of terms) e is dedu
ible from the programpredi
ate expression '. The
omputational semanti
s of the language
an thenbe explained by means of inferen
e rules of the form'1 ` e1 : : : 'n ` enop('1; : : : ; 'n) ` e ;where e depends on op and e1; : : : ; en, as expli
ated in the
on
rete rules below.Let ' ` e1 + : : :+ en mean ' ` ei for i = 1::n, so that +
ombines result tuples.Thus, ' ` e1+e2+: : : expresses that the tuples ei of the term form ht1; t2; : : : ; tniare
omputable from the n-ary predi
ate expression '.In the language Combilog employed here, the given elementary predi
atesare
onstant formation, identity and list
onstru
tion de�ned by the inferen
e

rules:
onst
 ` h
i id ` ht; ti
ons ` hh; t; h � tiIn addition to the elementary predi
ates, there is a
olle
tion of operators,whi
h map argument relations to relations. The three fundamental operators arehere de�ned by: ' ` ht1; t2; : : : ; tni (make)make�1;�2;:::;�m(') ` ht�1 ; t�2 ; : : : ; t�mi'1 ` e+ e0 '2 ` e+ e00 (and)and('1; '2) ` e '1 ` e1 '2 ` e2 (or)or('1; '2) ` e1 + e2The make operator is a generalized unary proje
tion operator
arrying an aux-iliary ve
tor of indi
es �1; : : : ; �m serving to reorder arguments and introdu
edon't
ares. As des
ribed in [46℄, Combilog possesses a
ompositional semanti
sin whi
h and is set interse
tion and or is set union, whi
h motivates the inferen
erules for the and and or operators. These operators re
e
t, respe
tively, logi
al
onjun
tions in
lause bodies and multiple de�ning
lauses.This operator language be
omes as expressive as ordinary
lause programsif the language is extended with fa
ilities for naming predi
ate expressions andusing these names re
ursively in program predi
ate de�nitions. However, in thepresent form the language does not introdu
e predi
ate names in a program.Instead, the de�ned predi
ates are anonymous and in order to a

ommodatere
ursive formulations e.g., for list pro
essing, the iteration operators foldr andfoldl are introdu
ed. These operators are akin to the fold operators in fun
tionalprogramming and with theoreti
al underpinning in the theory of primitive re-
ursive fun
tions as dis
ussed in [45, 46℄, The asso
iated rules are: ` ht1; t3i (foldr 0)foldr (';) ` ht1; nil; t3ifoldr (';) ` ht1; t2; zi ' ` hh; z; t3i (foldr > 0)foldr (';) ` ht1; h � t2; t3i ` ht1; t3i (foldl 0)foldl (';) ` ht1; nil; t3i' ` hh; t1; zi foldl (';) ` hz; t2; t3i (foldl > 0)foldl (';) ` ht1; h � t2; t3iFor instan
e, with foldr available, the well-known append
on
atenation predi-
ate is make2;1;3(foldr (
ons ; id)), where the make operator swaps the two �rstarguments.

Below we illustrate the appli
ation of the rules using the append program,proving make2;1;3(foldr (
ons ; id)) ` ha � nil; b � nil; a � b � nili:id ` hb � nil; b � nili (foldr 0)foldr (
ons ; id) ` hb � nil; nil; b � nili
ons ` ha; b � nil; a � b � nili (foldr > 0)foldr (
ons ; id) ` hb � nil; a � nil; a � b � nili (make)make2;1;3(foldr (
ons ; id)) ` ha � nil; b � nil; a � b � niliWhen the inferen
e rules are used to
ompute result tuples, these tuples areunknown parameters to be determined in the
ourse of the exe
ution. In
on-trast, in the
ompositional indu
tive synthesis method, the result tuples aregiven initially, as a
ontribution to the result, whereas '1; : : : ; 'n are (partly)unknown program
onstituents to be determined re
ursively in the
ourse of thesynthesis. These inferen
e rules are used in the way des
ribed in Se
tion 3.1for building proofs in a goal dire
ted manner where the program
onstru
ts areunknowns, given as metavariables, and instantiated during proof. This fa
ili-tates understanding of the indu
tion pro
ess as a stepwise, prin
ipled, program
omposition pro
ess.5.2 OverviewLet us now present
ompositional indu
tive synthesis in terms of its generi
features.Spe
ifi
ations. In indu
tive synthesis, spe
i�
ations are partial extensionalde�nitions of the programs to be indu
ed, i.e., a set of atoms or tuples
onsti-tuting sample program results. No other problem spe
i�
 spe
i�
ations need beemployed.Me
hanism. The operators are similar to s
hemas in the s
hema guided ap-proa
h to synthesis. In the present method, the program is synthesized in astri
t re
ursive divide-and-
onquer pro
ess by tentatively sele
ting an operatorand then re
ursively attempting synthesis of
onstituent parameter programs.Our synthesis takes advantage of the metainterpreter outlined below for
om-positional programs and does not rely on generalization me
hanisms. The ap-proa
h
an be
hara
terized as the top-down stepwise
omposition and spe
ial-ization of a Combilog program intended as a solution in the sense that the pro-gram subsumes the program examples. The sear
h involved in
hoosing betweenoperators is taken
are of by the ba
k-tra
king me
hanism in the synthesizer.In prin
iple, our synthesis pro
eeds by introdu
ing meta-variables for the leftoperand predi
ate expressions of ` in the proof
onstru
tion, and then su

es-sively instantiating these variables in the
ourse of the goal-driven proof
on-stru
tion; in doing so, we also appeal to the rule' ` e1 ' ` e2' ` e1 + e2 ;

whi
h is used for goal splitting on the program examples. Thus the above proofmay be
on
eived of as a tra
e of a sample indu
tive synthesis proof.In our metainterpreter system, the relationship ' ` e is realized as a binarypredi
ate syn, whi
h simultaneously serves as metainterpreter and synthesizer.The key prin
iple of our synthesis method is the inverted use of our metainter-preter so that the �rst argument program predi
ate is to be instantiated in the
ourse of synthesizing a program.Thus the heart of the synthesizer is
lauses of the following, general, divide-and-
onquer form for the available operators:syn(
omb(P1; : : : ; Pm);Ex) apply
omb(Ex ;Ex 1; : : : ;Exm)^ syn(P1;Ex 1) ^ : : : ^ syn(Pm;Exm):Programs
onsisting of an elementary predi
ate are trivially synthesized withoutre
ursive invo
ation of syn. Let us
onsider the synthesis of a basi
 predi
ateexpression for the head predi
ate yielding the head of a non-empty list, givensay the two examples ha � b � nil; ai and ha � nil; ai. Synthesis of head is initiatedwith a goal
lause syn(P; [[a; b℄; a℄) ^ syn(P; [[a℄; a℄):A su

essful proof instantiates P with the synthesized expressionmake3;1(
ons).Heuristi
s. A detailed des
ription of the synthesizer is found in [46℄. To pre-vent the synthesizer from running astray in the in�nite spa
e of possible pro-gram hypotheses, the sear
h is
ondu
ted as an iterative deepening. To avoidunwanted trivial program solutions, further
onstraints are imposed on the syn-thesizer. Consider, for instan
e, synthesis of the append predi
ate. An overlygeneral solution is obtained as the universal predi
ate, say, with the expressionmake2;3;4(
onst
)
orresponding to the
lause p(X1; X2; X3). As mentioned, su
hunwanted solutions might be ruled out by the use of negative examples. How-ever in our synthesizer we have
hosen to enfor
e well-modedness
onstraintson the synthesized programs thus suppressing the above solution in favor of there
ursive P = make2;1;3(foldr (
ons ; id));whi
h is obtained as the synta
ti
ally smallest solution given the two sampleresults hnil; nil; nili and ha �nil; b �nil; a � b �nili and the mode pattern [+;+;�℄,and
omplying with the usual
lauses for append. The synthesis pro
eeds as agoal-driven proof
onstru
tion of the sample proof shown in the above se
tion.Ba
kground Knowledge. The elementary predi
ates and the operators de-termine the admissible forms of programs and thereby
onstitute a form of ba
k-ground knowledge. No problem-spe
i�
 ba
kground knowledge is provided buta sear
h bias may be imposed by providing additional auxiliary predi
ates.

Tool Support. For synthesizing the at pos program, a system
alled Com-bindu
e was used, whi
h is based on the method outlined above and des
ribedin detail in [46℄.Human Intera
tion and S
alability. The
urrent experimental system
ondu
ts the indu
tive synthesis automati
ally. The
omputational sear
h
ostslimit the size of indu
ible programs to around 6 predi
ates and operators.However, we envisage integration of the CombiIndu
e prin
iples into a semi-automati

ompositional development system. In this system, the programmer
an o�er assistan
e by proposing appropriate auxiliary predi
ates within thepertinent data type. The imposition of data types will also serve to
onstrainfurther the sear
h spa
e of well-moded program
andidates. Re
ursion (fold)over lists will be generalized to other data types later.5.3 ExampleSin
e at this stage, the synthesis system supports list as the only data type werepresent the number n as a list of length n with
onstants i, where i
an be any
onstant. Synthesis of the atpos program from the single sample ha�b�nil; i�nil; biyields the solutionatpos = foldl (make4;3;2(
ons);make3;1(
ons)))as illustrated by the following tra
e:make4;3;2(
ons) `h ; a � b � nil; b � nili make3;1(
ons) ` hb � nil; bi (foldl 0)foldl (make4;3;2(
ons);make3;1(
ons)) `hb � nil; nil; bi (foldl > 0)foldl (make4;3;2(
ons);make3;1(
ons)) ` ha � b � nil; i � nil; biThe synthesized program is the Combilog form of the de�nite
lause programatpos(L; I; E) syn(foldl (tail 0; head); [L; I; E℄)syn(tail 0; [; F � T; T ℄) syn(head ; [F � T; F ℄) Synthesis with the foldr operator is not possible. However, swapping thetwo subgoals of foldr yields the operator foldrrev allowing the following variantprogram to be synthesizedatpos = make3;2;1(foldrrev (
ons ;make1;3(
ons))):The relationship between su
h a pair of variant programs is theoreti
allyestablished by a duality theorem stated and proved in [44℄.In order to fa
ilitate the
omparison of the synthesis approa
hes, let us trans-form the �rst Combilog form of the atpos de�nite
lause program into a re
ur-sive atpos program. We �rst unfold the atpos
lause:atpos(L; nil; E) head(L;E)atpos(L;X � T;E) tail 0(X;L;Z); syn(foldl (tail 0; head); [Z; T;E℄)

Now, unfolding head and tail, and folding ba
k the se
ond literal with atpos, weobtain the following logi
 program.atpos(L; nil; E) L = E � Tatpos(L;X � T;E) L = F � Z; atpos(Z; T;E)5.4 AnalysisChe
k that meaning is preserved! Designing a metainterpreter for Combilogis simpli�ed by the variable-free form of Combilog programs, the separationof predi
ate expressions and terms in separate arguments, and the eliminationof introdu
ed predi
ate names. These simpli�
ations substantially redu
e sear
hand allow us to e�e
tively use the metainterpreter as the ba
kbone of our ILPmethod by reversing the provability metalogi
 programming demo predi
ate asexamined e.g., in [43℄ and in [21℄ for ordinary de�nite
lauses.In [46℄ we
ompare with other indu
tive synthesis systems and report resultson su

essful automati
 synthesis of a number of textbook programs in
ludingnon-naive as well as naive reversal of lists. The latter program makes
alls forthe auxiliary predi
ate append, whi
h is re
ursively indu
ed. This predi
ate in-vention, whi
h is generally
onsidered problemati
 in ILP, is handled smoothlyin our
ompositional method sin
e expli
it predi
ate names are not introdu
ed.The outlined
ompositional method fa
ilitates a program development method-ology where
ustomized domain spe
i�
 operators are added to the general pur-pose ones. Moreover, it seems that the
ompositional method surpasses moretraditional ILP methods with respe
t to predi
ate invention and terminationof indu
ed programs within the
onsidered
lass of primitive re
ursive relationsdelineated by the available re
ursive operators.6 ComparisonIn this se
tion, the synthesis approa
hes are
ompared from di�erent points ofview. First, we
ompare the synthesized atpos programs. Afterwards, we
on-trast the general features of the di�erent approa
hes. Finally, we
on
lude byanalyzing how s
hemas are used, impli
itly or expli
itly, in program synthesisand we suggest that they play a
entral role in understanding di�erent synthesismethods. In the following, we will refer to indu
tive synthesis, dedu
tive syn-thesis, and s
hema-guided synthesis to denote the parti
ular synthesis methodspresented in this paper.6.1 The atpos(L,I,E) ProgramAll three methods yielded the same program. This was the
ase even though theydi�er in whi
h variable they
hoose as an indu
tion parameter: both indu
tivesynthesis and s
hema-guided synthesis
hoose I as the indu
tion parameter, while

dedu
tive synthesis
hooses L. In the
ase of dedu
tive synthesis, we
ould justas well have
arried out indu
tion on I . However, for s
hema-guided synthesis,swit
hing would require a separate s
hema with a di�erent template, namely withan additional non-re
ursive
lause for the non-minimal
ase. The same holds forindu
tive synthesis where a fold
ombinator over numbers and an asso
iated rulewould be required.In general, the
hoi
e of the indu
tion parameter will a�e
t the form ofthe resulting program and even its
omplexity [25℄. In this regard, dedu
tivesynthesis o�ers more
exibility, as one
an perform indu
tion over any well-founded relation, and development (hen
e program
onstru
tion) pro
eeds insmaller steps. Of
ourse, in s
hema-guided synthesis and indu
tive synthesis, one
an always introdu
e new s
hemas, respe
tively operators,
orresponding to newways of building programs, as the need arises.6.2 Spe
i�
ationThe forms of the spe
i�
ations in dedu
tive synthesis and s
hema-guided syn-thesis are similar. Both are �rst-order formulas asserting a possibly
onditionalequivalen
e. In indu
tive synthesis, the spe
i�
ation is a �nite set of examples(a subset of the extensional de�nition of the relation), whi
h is by nature in-
omplete (when the extensional de�nition is in�nite). Spe
i�
ations in indu
tivesynthesis may also in
lude negative examples or properties [28, 36℄, but in gen-eral they remain in
omplete. This in
ompleteness is a signi�
ant di�eren
e and,as we will see, it has far-rea
hing
onsequen
es. Indeed, it will play a key role indi�erentiating indu
tive synthesis from the other two approa
hes with respe
tto the other generi
 features.For the dedu
tive synthesis and s
hema-guided synthesis approa
hes, in
on-trast to indu
tive synthesis, it is important for non-trivial appli
ations to beable to
onstru
t
omplex spe
i�
ations and this requires ways of parameteriz-ing and
ombining spe
i�
ations. In our work on dedu
tive synthesis, we a
hievethis, in pra
ti
e, by using logi
al frameworks like Isabelle [59℄, whi
h providesupport for stru
tured theory presentations. In s
hema-guided synthesis, [33℄express program s
hemas as extensions of spe
i�
ation frameworks [52℄, whi
hsupport parameterized spe
i�
ations and their
omposition.Of
ourse, the use of �rst-order logi
 as a spe
i�
ation language has its limita-tions. For example, in s
hema-guided synthesis, we needed the well-foundednessof a relation � as a
onstraint in the DC s
hema. However, a formalization ofwell-foundedness generally falls outside of �rst-order logi
, unless one formal-izes, e.g., set-theory. A work-around is to assume that some �xed
olle
tion ofrelations is de
lared to be well-founded. The alternative is to use a stronger(higher-order) logi
 or theory [1℄ where
on
epts su
h as well-foundedness
anbe de�ned and well-founded relations
an be
onstru
ted. Stronger logi
s, of
ourse, have their own drawba
ks; in parti
ular it is more diÆ
ult to automatededu
tion.

6.3 Me
hanismAs presented, the me
hanisms used in the three methods appear quite dissimi-lar. Dedu
tive synthesis is oriented around derivations, s
hema-guided synthesiswas des
ribed using an algorithm for applying s
hemas, and indu
tive synthe-sis uses a meta-interpreter to build programs. Yet it is possible to re
ast allthree so that the
entral me
hanism is the same: a top-down appli
ation ofrules is used to in
rementally
onstru
t a program, during a derivation, in a
orre
tness-preserving way. In dedu
tive synthesis, derived rules are applied top-down, using higher-order uni�
ation to build programs as a \side-e�e
t" of proof
onstru
tion. Although the me
hanism for applying s
hemas has been presentedin an algorithmi
 fashion, it is possible to re
ast s
hema-guided synthesis as theappli
ation of rules in a dedu
tive system [1℄; namely, a s
hema
onstitutes a(derivable) rule whose premises are given by the s
hema's
onstraints and (the
ompletion of its) template and the
on
lusion is given by the s
hema's spe
i-�
ations. Viewed in this way, s
hema-guided synthesis, like dedu
tive synthesis,
onstru
ts programs, during proofs, by the higher-order appli
ation of rules. Themain distin
tion between the two methods boils down to the rules, granularityof steps, and heuristi
s/intera
tion for
onstru
ting proofs. Finally, in indu
tivesynthesis, rules are also given for
onstru
ting Combilog programs. There, therules are automati
ally applied by a Prolog meta-interpreter.Although they di�er in form, the rules employed by the di�erent methodshave a similar nature. Not surprisingly, in all
ases, mathemati
al indu
tionplays a key role in program synthesis, as it is ne
essary for
onstru
ting itera-tive or re
ursive programs. In dedu
tive synthesis, indu
tion prin
iples
an bederived from indu
tion prin
iples for data types or even the indu
tive (least-�xedpoint) semanti
s of logi
 programs [1℄. The indu
tion prin
iples (perhaps ina reformulated form, e.g., the ind rule of Se
tion 3.2) are then expli
itly appliedand their appli
ation
onstru
ts a template for a re
ursive program. In s
hema-guided synthesis, the
orre
tness of s
hemas for synthesizing re
ursive programsis also justi�ed by indu
tive arguments. Indeed,
omplex s
hemas
an be seen askinds of
omplex ma
ro-development steps that pre
ompile many mi
ro steps,in
luding indu
tion. One might say that indu
tion is impli
itly applied when us-ing a s
hema to
onstru
t re
ursive programs. In indu
tive synthesis, programsare iterative, instead of re
ursive, and programs that iterate over lists (or, moregenerally, other indu
tively de�ned data types) are built using fold rules. Again,mathemati
al indu
tion prin
iples play a role, behind-the-s
enes, in justifyingthe
orre
tness of iteration rules, and rule appli
ation
an be seen as an impli
ituse of indu
tion. There is, of
ourse, a tradeo�. By
ompiling indu
tion into spe-
ialized rules, s
hema-guided synthesis and indu
tive synthesis
an take largersteps than dedu
tive synthesis; however, they are more spe
ialized. In parti
ular,by building only iterative programs, the indu
tive synthesis method presented
an sharply redu
e the sear
h spa
e, but at the pri
e of limited expressibility.The underlying me
hanisms are, in some respe
ts, fundamentally di�erent.Although all three methods are based on �rst-order logi
, any system imple-menting dedu
tive synthesis (respe
tively s
hema-guided synthesis) will require

higher-order uni�
ation (respe
tively higher-order mat
hing). This is ne
essaryto
onstru
t substitution instan
es for variables in rules and s
hemas that rangeover fun
tions, relations, and more generally,
ontexts (terms with holes); thedownside is that higher-order mat
hing and uni�
ation are more diÆ
ult thantheir �rst-order
ounterparts, and the existen
e of multiple uni�ers (respe
tivelymat
hers)
an lead to large bran
hing points in the synthesis sear
h spa
e. Theoperator form of Combilog means that rules in indu
tive synthesis manipulateonly �rst-order terms. Moreover, all
ompli
ations
on
erning obje
t languagevariables are eliminated. This simpli�es the metainterpreter and redu
es thesynthesis to sear
h in the spa
e of operator
ombinations subje
ted to well-modedness
onstraints.Finally, the di�ering nature of the spe
i�
ations, in parti
ular,
omplete ver-sus in
omplete information, makes a substantial di�eren
e in the underlying se-manti
s of the di�erent methods and the relationship of the synthesized programto its spe
i�
ation. As presented here, both dedu
tive synthesis and s
hema-guided synthesis
onstru
t programs that are (possibly under
onditions) equiv-alent to some initial spe
i�
ation. In the
ase of indu
tive synthesis, equivalen
eis weakened to impli
ation or entailment. This
hanges, of
ourse, the semanti
sof the rules. Moreover it has a signi�
ant impa
t on extra-logi
al
onsidera-tions, i.e.,
onsiderations that are not formalized in the synthesis logi
 (e.g.,the program synthesized should have a parti
ular synta
ti
 form or
omplexity).In indu
tive synthesis these
onsiderations (in parti
ular, having a synta
ti
allysmall re
ursive program that entails the examples) be
ome
entral to the syn-thesis pro
ess and it is important to use a well-spe
i�ed strategy, embodied in ametainterpreter, to ensure them.6.4 Heuristi
sEa
h of the methods presented has an in�nite sear
h spa
e. However, the spa
esare di�erently stru
tured and di�erent heuristi
s may be employed in sear
hingthem.In dedu
tive synthesis, one pro
eeds in a top-down fashion, employing in-du
tion and simpli�
ation. The sear
h spa
e has both in�nite bran
hing pointsasso
iated with the appli
ation of higher-order uni�
ation (as there may be in-�nitely many uni�ers) and bran
hes of unbounded length (as indu
tion maybe applied in�nitely often and simpli�
ation may not ne
essarily terminate).In pra
ti
e, an e�e
tive heuristi
 is to follow an indu
tion step by eager sim-pli�
ation; here, rippling
an be used to
ontrol the simpli�
ation pro
ess andguarantee its termination. Moreover, with the ex
eption of applying indu
tion,uni�
ation problems are usually of a restri
ted form, involving \se
ond-orderpatterns," whi
h
an be easily solved [51℄. Hen
e, it is possible, in some
ases,to use heuristi
s to redu
e the sear
h spa
e to the point where synthesis
an be
ompletely automated.S
hema-guided synthesis uses a stri
t re
ursive divide-and-
onquer strategyin the sele
tion of operators and the synthesis of the parameter programs. It alsoemploys a stepwise
omposition/spe
ialization of programs where the obje
tive is

to reuse existing
ode. Analogous to dedu
tive synthesis,
riti
al bran
h-pointsin
lude s
hema sele
tion and sele
tion of a substitution (higher-order mat
h-ing is required as the same s
hema
an be used in di�erent ways). Sear
h
anbe
ondu
ted as an iterative deepening sear
h employing heuristi
s. Althoughs
hema-guided synthesis also has an in�nite sear
h spa
e, it is fair to say thatwhen a program is in the sear
h spa
e, one is likely to �nd it more qui
kly thanwith dedu
tive synthesis sin
e the steps in s
hema-guided synthesis are larger,and hen
e the program is at a shallower ply in the sear
h tree.The sear
h spa
e in indu
tive synthesis is more diÆ
ult to navigate thanin the other two methods be
ause of the additional extra-logi
al
on
erns men-tioned previously. Here a stri
t
ontrol (di
tated by a metainterpreter) is requiredto generate
andidate programs in a parti
ular order. To make automated sear
hpra
ti
al, the sear
h spa
e is restri
ted, a priori, by restri
tions in the method.For example, the programs synthesizable are restri
ted to those involving itera-tion, instead of general re
ursion, and the use of
ombinators ensures that �rst-order (Prolog) uni�
ation suÆ
es for program
onstru
tion. In addition there isthe well-modedness requirement and, to redu
e explosive bran
hing, the use ofor is restri
ted. It is an interesting question as to whether any of these pruningmeasures
ould be pro�tably used in the other approa
hes.6.5 Ba
kground KnowledgeThe three approa
hes formalize ba
kground knowledge in di�erent ways. For de-du
tive synthesis, ba
kground knowledge about data types is given by a standard�rst-order theory augmented with appropriately reformulated (for synthesis) in-du
tion s
hemas (e.g., ind). For s
hema-guided synthesis, ba
kground knowledgemust be formalized in terms of a base of program s
hemas,
apturing a rangeof program
lasses, whi
h may (or may not) dire
tly in
orporate informationabout data types, as well as a database of reusable programs and informationabout well-founded relations (typi
ally asso
iated with data types). Here, morework is usually required to formalize ba
kground knowledge, but the payo� isthat this work is done on
e and for all and the resulting s
hemas
an be usedto redu
e sear
h and guide development to spe
ialized
lasses of programs. Forindu
tive synthesis, the ba
kground knowledge is basi
ally the elementary oper-ators (
onst, id,
ons, et
.), whi
h en
ode knowledge about iterative programsoperating over lists. As with the other approa
hes, this knowledge is domain-dependent, and synthesizing programs operating over other data types wouldrequire additional rules.6.6 Human Intera
tion and S
alabilityThe dedu
tive synthesis proof presented was
onstru
ted intera
tively. There,within a �rst-order formalization of list theory, spe
ialized rules for synthesiswere derived, and intera
tively applied. However, proof sear
h
an also be auto-mated using ta
ti
s and one
an adjust the size of proof steps by deriving newproof rules (analogous to
omplex program s
hemas). This pro
ess of writing

ta
ti
s and deriving new rules is open, leads to a
ustomizable approa
h, and
an, at least in theory, s
ale arbitrarily. The use of ta
ti
s also makes it possibleto arbitrarily mix automation with human intera
tion.Conversely, the s
hema-guided synthesis method was presented as fully au-tomatable, although a human
ould be used to drive the sele
tion of s
hemasand substitution instan
es. Indeed, as with dedu
tive synthesis, this is oftenpreferable, as it provides a way of in
uen
ing extra-logi
al
on
erns, su
h as the
omplexity of the synthesized program. The approa
h s
ales well as spe
ializeds
hemas
an be tuned to parti
ular
lasses of problems (divide and
onquer,global sear
h, et
.). Moreover, there is a natural me
hanism for the reuse ofprograms.For the moment, there is no human intera
tion in the presented method forindu
tive synthesis. It is not
lear either how feasible this is, given the impor-tan
e that extra-logi
al
on
erns play in the synthesis pro
ess. How would ahuman know, for example, that steps suggested will generate the simplest pos-sible program? The reuse of existing programs also is not handled.It is not
lear how the indu
tive synthesis approa
h
an be s
aled up tosynthesize more
omplex programs with re
ursion or iteration. For
omplex ex-amples, the in
omplete nature of the input spe
i�
ation makes the programspa
e so intra
table that human intera
tion, heuristi
s, support for reuse, and\more
omplete" spe
i�
ation information, su
h as properties [30, 28℄, appearne
essary. But even with these extensions, the purely indu
tive approa
h to thesynthesis of programs with re
ursion or iteration remains very hard, and it seemsdoubtful whether this approa
h will ever s
ale up to the synthesis of
omplex,real-life programs.When the synthesized program does not feature re
ursion or iteration (andmethods for this are outside the s
ope of this paper) then the indu
tive synthesisapproa
h
an usefully s
ale. This is witnessed by re
ent progress in ILP, onproblems in domains, su
h as fa
e re
ognition [54℄, where only (large) sets ofinput/output examples are available as humans have diÆ
ulty writing a formal,
omplete spe
i�
ation [34℄.6.7 Tool SupportFor dedu
tive synthesis, we used Isabelle [59℄, a generi
 logi
al framework, forour implementation. For s
hema-guided synthesis, the higher-order proof plan-ning system �Clam
an be used, upon reformulation of the program s
hemas asproof planning methods [35℄; this has the ni
e side-e�e
t that the proof obliga-tions of s
hema-guided synthesis
an also be dis
harged using the same theoremproving ma
hinery. For indu
tive synthesis, a spe
ialized Prolog implementationwas used.It is interesting to spe
ulate on whether generi
 logi
al frameworks, like Is-abelle,
ould be e�e
tively used for all three approa
hes. And
ould the ap-proa
hes even be pro�tably
ombined?Our dis
ussion at the top of Se
tion 6.3 suggests that a generi
 logi
al frame-work
an e�e
tively be used for s
hema-guided synthesis. Of
ourse, there are

some potential drawba
ks. First, a logi
al framework requires re
asting any syn-thesis method as one based on theorem proving; for instan
e, s
hema-guidedsynthesis was not
ast this way in Se
tion 4. This may require some
ontortions;see [9℄ for an example of this. Se
ond, the logi
al framework will impose its owndis
ipline for presenting and stru
turing theories, and this may deviate fromthat desired by a parti
ular synthesis method; e.g., spe
i�
ation frameworks[52℄ provide more stru
turing possibilities than those possible using the Isabellesystem. Finally, a hand-
oded synthesis system will probably be more eÆ
ient.Although it is easy to write a Prolog interpreter (to realize indu
tive synthesis)as a ta
ti
 in a logi
al framework, this involves a layer of metainterpretation anda
orresponding slow-down in exe
ution time. The pri
e may be too high whensubstantial sear
h is involved.As to the question whether the approa
hes
ould be pro�tably
ombined, theanswer is a
lear `yes' for dedu
tive synthesis and s
hema-guided synthesis, andwe will develop this point in the next sub-se
tion. Combining indu
tive synthesiswith the other approa
hes raises the question of how to deal with the ensuingredundan
y in the overall spe
i�
ation, as the in
omplete part supposedly is alogi
al
onsequen
e of the
omplete one. To a human programmer, examplesatta
hed to a spe
i�
ation that is intended to be
omplete often fa
ilitate theunderstanding of the task. But an automated synthesizer probably does not needsu
h help. Should there be a
ontradi
tion between the
omplete spe
i�
ationand the examples, then the overall spe
i�
ation is almost
ertainly wrong. Inthe absen
e of su
h a
ontradi
tion, one knows nothing about the quality of theoverall spe
i�
ation and thus has to forge ahead. The question then arises ofhow to exploit the redundan
y. A
onvin
ing proposal was made by Minton [57℄:to
ope with the instan
e sensitivity of the heuristi
s used to eÆ
iently solveubiquitous, NP-hard,
onstraint satisfa
tion problems, industry-strength solversynthesizers should use training instan
es (i.e., the input parts of examples) inaddition to the spe
i�
ation of the problem, so that the most suitable heuristi
s
an be empiri
ally determined during synthesis. As long as the a
tual runs ofthe synthesised program are on instan
es within the distribution of the traininginstan
es, a good performan
e
an be guaranteed.6.8 Impli
it versus Expli
it Use of S
hemaA
entral part of our
omparison has been that the boundaries between dedu
tivesynthesis, s
hema-guided synthesis, and indu
tive synthesis are somewhat
uidwith respe
t to the use of s
hemas. In parti
ular, from the appropriate view-point, the di�eren
e between dedu
tive synthesis and s
hema-guided synthesis isvanishingly small. We would like to
lose the
omparison by driving these pointshome.The derived rules in dedu
tive synthesis for reasoning about equivalen
es arerule s
hemas, i.e., rules with metavariables ranging over predi
ates. These aremetavariables from the view of a metalogi
, but they also
an be viewed asuninterpreted relations in the obje
t logi
 and play the same role as the openrelation symbols in s
hema-guided synthesis. Viewed this way, if the ba
kground

theory of dedu
tive synthesis is formalized as a spe
i�
ation framework, thenthe inferen
e rules are a variation of the program s
hemas in s
hema-guidedsynthesis.For example, the ind rule with its assumptions A1{A3 presented here in de-du
tive synthesis is similar (although not equivalent) to theDC s
hema developedin s
hema-guided synthesis. In parti
ular:{ ind
ommits to an indu
tion parameter of type list, whereas DC has an opensort SX for the indu
tion parameter;{ ind
ommits to one-step, head-tail de
omposition of the indu
tion parame-ter, whereas DC has an open relation de
 for this;{ DC
ommits to always one re
ursive
all in the step
ase, whereas ind is
exible (there
an be any number of re
ursive
alls);{ the assumption A1 of ind plays the same role as the template DC in DC,but they di�er in
ontent;{ the predi
ate variable B of ind plays the same role as the open relation solvein DC;{ the assumption A2 of ind plays the same role as the spe
i�
ation Ssolve inDC;{ the predi
ate variable S of ind does not play the same role as the openrelation
omp in DC; indeed, an instan
e of S may in
lude re
ursive
all(s),whereas re
ursion is di
tated by the template DC and is thus not
onsideredwhen instantiating
omp;{ the assumption A3 of ind plays the same role as the spe
i�
ation S
omp inDC, but they di�er in
ontent;{ there is no expli
it equivalent of the
onstraints C1, C2, and C3 and thespe
i�
ations Smin and Sde
 of DC in ind.The di�eren
es here are not due to the underlying synthesis me
hanism, butare an artifa
t of the parti
ular impli
it s
hema used (for reasons of simpli
ity)in this presentation of dedu
tive synthesis. More elaborate rules and s
hemas,neither
ommitted to a parti
ular type nor a well-founded relation, have beendeveloped in dedu
tive synthesis, as presented in, e.g., [1, 3℄.A similar
omparison
an be made between the foldr and foldl operators inindu
tive synthesis, and the DC s
hema in s
hema-guided synthesis. The foldrand foldl operators
an also be seen as impli
it program s
hemas. More elaboraterules
ould also be used to build Combilog programs in larger steps.Program s
hemas are thus used (impli
itly or expli
itly) in the di�erentsynthesis approa
hes. In the literature, program s
hemas are often redu
ed totemplates, formalized as higher-order expressions, and applied using higher-order uni�
ation. As shown in s
hema-guided synthesis, su
h templates mustbe enhan
ed with semanti
 information, expressed for instan
e through axioms,
onstraints, and spe
i�
ations. Viewing su
h s
hemas as derivation rules, ands
hema appli
ation as logi
al inferen
e, the distin
tion vanishes between thes
hema-guided and dedu
tive/
onstru
tive approa
hes. For instan
e, in [1℄ it isshown how s
hemas for transformational development
an be formalized as de-rived rules and
ombined with other kinds of veri�
ation and synthesis. In [30,28℄, a DC-like s
hema is used in the
ontext of indu
tive synthesis.

7 Con
lusionIn this paper, we have analyzed and
ompared representative methods of threeapproa
hes to program synthesis in
omputational logi
. Despite their di�er-en
es, we established strong similarities. In parti
ular, program s
hemas are used(impli
itly or expli
itly) in ea
h of the methods and are
entral in driving thesynthesis pro
ess and exploiting synergies. We would therefore like to
on
ludeby dis
ussing some limitations of s
hemas and open issues.Despite their
entral role, s
hemas have their limitations. S
hemas are usu-ally expressed in some logi
al language, but any given language has synta
ti
alrestri
tions that in turn restri
t what
an be expressed as a s
hema. For example,a �rst-order language �xes the arity of predi
ates and fun
tions, their asso
iatedtypes, et
. There is no way to
apture
ertain simple kinds of generalization orextra-logi
al annotations, for example to employ term or atom ellipses t1; : : : ; tnof variable length n. As an example of this limitation,
onsider the ind rule ofSe
tion 3.2. There we used X to denote a sequen
e of zero or more variablesand hen
e the indu
tion rule given
annot be
aptured by a single s
hema, butrather requires a family of s
hemas, one for ea
h n. Extensions here are possible;[64, 28, 70, 39, 20℄ provide notions of s
hema patterns that des
ribe su
h familiesand
an be spe
ialized as needed before, or during, synthesis.S
hemas are here de�ned as abstra
tions of
lasses of programs. At the sametime, they formalize parti
ular design strategies, su
h as divide-and-
onquer orglobal sear
h; part of the asso
iated strategy
an also be spe
i�ed by asso
iatedta
ti
s, whi
h
hoose indu
tion parameters, �nd appropriate well-founded rela-tions, and so on. However, in their present form, s
hemas
annot handle moresophisti
ated design strategies, namely strategies abstra
ting a
lass of programsthat
annot be obtained by instantiation with formulae. Typi
al examples areso-
alled design patterns [38℄, whi
h aim at the des
ription of software designsolutions and ar
hite
tures (typi
ally des
ribed by UML diagrams and text).How to extend s
hemas to handle su
h strategies is an open problem in programsynthesis.Overall, by examining the relationships and di�eren
es between the
hosensynthesis methods, we have sought to bring out synergies and possibilities for
ross-fertilization, as well as limitations. The primary synergies involve a
om-mon me
hanism: a notion of s
hemati
 rule and the use of uni�
ation to ap-ply rules in a top-down way that in
rementally
onstru
t a program, during aderivation that demonstrates its
orre
tness. The primary di�eren
es
on
ernthe nature of the spe
i�
ations, in parti
ular the information present; this alsomanifests itself in di�erent semanti
s and radi
ally di�erent sear
h spa
es forthe di�erent methods. As it is, the purely indu
tive approa
h to the synthesisof programs with re
ursion or iteration remains very hard, and it seems doubt-ful whether this approa
h will ever s
ale up to the synthesis of
omplex, real-lifeprograms. Fortunately, fruitful
ombinations of these synthesis approa
hes exist.In the end, we believe that progress in this �eld will be based on exploiting theidenti�ed synergies and possibilities for
ross-fertilization, as well as supportingan enhan
ed,
exible use of s
hemas. We hope, with this paper, to have made a

onstru
tive analysis of the last de
ade of resear
h, thereby showing a possiblepath for the next de
ade.A
knowledgementsWe would like to thank the anonymous referees for their feedba
k and our
o-investigators on resear
h related to this paper.Referen
es1. P. Anderson and D. Basin. Program development s
hemata as derived rules. Jour-nal of Symboli
 Computation, 30(1):5{36, 2000.2. A. Ayari and D. Basin. Generi
 system support for dedu
tive program develop-ment. In T. Margaria and B. Ste�en, editors, Pro
. of TACAS'96, volume 1055 ofLNCS, pages 313{328. Springer-Verlag, 1996.3. A. Ayari and D. Basin. A higher-order interpretation of dedu
tive tableau. Journalof Symboli
 Computation, 2002. To Appear.4. R. Balzer. A 15 year perspe
tive on automati
 programming. IEEE Transa
tionson Software Engineering, 11(11):1257{1268, 1985.5. H.P. Barendregt. The Lambda Cal
ulus: Its Syntax and Semanti
s, volume 103 ofStudies in Logi
. North-Holland, se
ond, revised edition, 1984.6. D. Basin. IsaWhelk: Whelk interpreted in Isabelle. In P. Van Hentenry
k, editor,Pro
. of ICLP'94, page 741. The MIT Press, 1994.7. D. Basin. Logi
 frameworks for logi
 programs. In L. Fribourg and F. Turini,editors, Pro
. of LOPSTR'94 and META'94, volume 883 of LNCS, pages 1{16.Springer-Verlag, 1994.8. D. Basin. Logi
al-framework-based program development. ACM Computing Sur-veys, 30(3es):1{4, 1998.9. D. Basin and S. Friedri
h. Modeling a hardware synthesis methodology in Isabelle.Formal Methods in Systems Design, 15(2):99{122, September 1999.10. D. Basin and B. Krieg-Br�u
kner. Formalization of the development pro
ess. InE. Astesiano, H.-J. Kreowski, and B. Krieg-Br�u
kner, editors, Algebrai
 Founda-tions of System Spe
i�
ation, pages 521{562. Springer-Verlag, 1998.11. D. Basin and S. Matthews. Adding metatheoreti
 fa
ilities to �rst-order theories.Journal of Logi
 and Computation, 6(6):835{849, 1996.12. D. Basin and T. Walsh. Annotated rewriting in indu
tive theorem proving. Journalof Automated Reasoning, 16(1{2):147{180, 1996.13. A.W. Biermann. Automati
 programming. In S.C. Shapiro, editor, En
y
lopediaof Arti�
ial Intelligen
e, pages 59{83. John Wiley, se
ond, extended edition, 1992.14. A.W. Biermann, G. Guiho, and Y. Kodrato�, editors. Automati
 Program Con-stru
tion Te
hniques. Ma
millan, 1984.15. L. Blaine, L. Gilham, J. Liu, D.R. Smith, and S. Westfold. PlanWare: Domain-spe
i�
 synthesis of high-performan
e s
hedulers. In Pro
. of ASE'98, pages 270{279. IEEE Computer So
iety Press, 1998.16. A. Bundy, A. Smaill, and G.A. Wiggins. The synthesis of logi
 programs from in-du
tive proofs. In J.W. Lloyd, editor, Computational Logi
, Esprit Basi
 Resear
hSeries, pages 135{149. Springer-Verlag, 1990.

17. A. Bundy, A. Stevens, F. van Harmelen, A. Ireland, and A. Smaill. Rippling: Aheuristi
 for guiding indu
tive proofs. Arti�
ial Intelligen
e, 62(2):185{253, 1993.18. W. Buntine. Generalized subsumption and its appli
ation to indu
tion and redun-dan
y. Arti�
ial Intelligen
e, 36(2):375{399, 1988.19. C.-L. Chang and R.C.-T. Lee. Symboli
 Logi
 and Me
hani
al Theorem Proving.A
ademi
 Press, 1973.20. E. Chasseur and Y. Deville. Logi
 program s
hemas,
onstraints and semi-uni�
ation. In N.E. Fu
hs, editor, Pro
. of LOPSTR'97, volume 1463 of LNCS,pages 69{89. Springer-Verlag, 1998.21. H. Christiansen. Impli
it program synthesis by a reversible metainterpreter. InN.E. Fu
hs, editor, Pro
. of LOPSTR'97, volume 1463 of LNCS, pages 90{110.Springer-Verlag, 1998.22. E.M. Clarke and J.M. Wing. Formal methods: State of the art and future dire
-tions. ACM Computing Surveys, 28(4):626{643, 1996.23. M.D. Coen. Intera
tive program derivation. Te
hni
al Report 272, CambridgeUniversity Computer Laboratory, UK, 1992.24. T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Information and Com-putation, pages 95{120, 1988.25. Y. Deville. Logi
 Programming: Systemati
 Program Development. InternationalSeries in Logi
 Programming. Addison-Wesley, 1990.26. Y. Deville and K.-K. Lau. Logi
 program synthesis. Journal of Logi
 Programming,19{20:321{350, 1994.27. A. Felty and D. Miller. Spe
ifying theorem provers in a higher-order logi
 pro-gramming language. In E.L. Lusk and R.A. Overbeek, editors, Pro
. of CADE'88,volume 310 of LNCS, pages 61{80. Springer-Verlag, 1988.28. P. Flener. Logi
 Program Synthesis from In
omplete Information. Kluwer A
ademi
Publishers, 1995.29. P. Flener. A
hievements and prospe
ts of program synthesis. In A.C. Kakas andF. Sadri, editors, Computational Logi
: Logi
 Programming and Beyond; Essays inHonour of Robert A. Kowalski, volume 2407 of Le
ture Notes in Arti�
ial Intelli-gen
e, pages 310{346. Springer-Verlag, 2002.30. P. Flener and Y. Deville. Logi
 program synthesis from in
omplete spe
i�
ations.Journal of Symboli
 Computation, 15(5{6):775{805, 1993.31. P. Flener, K.-K. Lau, and M. Ornaghi. Corre
t-s
hema-guided synthesis of stead-fast programs. In Pro
. of ASE'97, pages 153{160. IEEE Computer So
iety Press,1997.32. P. Flener, K.-K. Lau, and M. Ornaghi. On
orre
t program s
hemas. In N.E. Fu
hs,editor, Pro
. of LOPSTR'97, volume 1463 of LNCS, pages 124{143. Springer-Verlag, 1998.33. P. Flener, K.-K. Lau, M. Ornaghi, and J.D.C. Ri
hardson. An abstra
t formalisa-tion of
orre
t s
hemas for program synthesis. Journal of Symboli
 Computation,30(1):93{127, 2000.34. P. Flener and D. Partridge. Indu
tive programming. Automated Software Engi-neering, 8(2):131{137, 2001.35. P. Flener and J.D.C. Ri
hardson. A uni�ed view of programming s
hemas andproof methods. In A. Bossi, editor, Pro
. of LOPSTR'99, pages 75{82. Te
h. rept.CS-99-16, Univ. of Veni
e, Italy, 1999. Also see Te
hni
al Report 2003-008 at theDepartment of Information Te
hnology, Uppsala University, Sweden, 2003.36. P. Flener and S. Y�lmaz. Indu
tive synthesis of re
ursive logi
 programs: A
hieve-ments and prospe
ts. Journal of Logi
 Programming, 41(2{3):141{195, 1999.

37. P. Flener, H. Zidoum, and B. Hni
h. S
hema-guided synthesis of CLP programs.In Pro
. of ASE'98, pages 168{176. IEEE Computer So
iety Press, 1998.38. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements ofReusable Obje
t-Oriented Software. Addison-Wesley, 1995.39. T.S. Gegg-Harrison. Extensible logi
 program s
hemata. In J. Gallagher, editor,Pro
. of LOPSTR'96, volume 1207 of LNCS, pages 256{274. Springer-Verlag, 1997.40. A.T. Goldberg. Knowledge-based programming: A survey of program design and
onstru
tion te
hniques. IEEE Transa
tions on Software Engineering, 12(7):752{768, 1986.41. M.J. Gordon, R. Milner, and C.P. Wadsworth. Edinburgh LCF: A Me
hanizedLogi
 of Computation, volume 78 of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1979.42. C. Green. Appli
ation of theorem proving to problem solving. In Pro
. of IJCAI'69,pages 219{239. Morgan Kaufmann, 1969.43. A. Hamfelt and J. Fis
her Nilsson. Indu
tive metalogi
 programming. In S. Wrobel,editor, Pro
. of ILP'94, volume 237 of GMD-Studien, pages 85{96, 1994.44. A. Hamfelt and J. Fis
her Nilsson. De
larative logi
 programming with primitivere
ursive relations on lists. In M.J. Maher, editor, Pro
. of JICSLP'96, pages230{243. The MIT Press, 1996.45. A. Hamfelt and J. Fis
her Nilsson. Towards a logi
 programming methodologybased on higher-order predi
ates. New Generation Computing, 15(4):421{448,1997.46. A. Hamfelt, J. Fis
her Nilsson, and N. Oldager. Logi
 program synthesis as problemredu
tion using
ombining forms. Automated Software Engineering, 8(2):167{193,2001.47. P. Hill and J.W. Lloyd. The G�odel Programming Language. The MIT Press, 1994.48. J.R. Hindley and J.P. Seldin. Introdu
tion to Combinators and the �-Cal
ulus.Cambridge University Press, 1986.49. D.J. Howe. On
omputational open-endedness in Martin-L�of's type theory. InPro
. of LICS'91, pages 162{172. IEEE Computer So
iety Press, 1991.50. I. Kraan, D. Basin, and A. Bundy. Logi
 program synthesis via proof planning. InK.-K. Lau and T. Clement, editors, Pro
. of LOPSTR'92, Workshops in ComputingSeries, pages 1{14. Springer-Verlag, 1993.51. I. Kraan, D. Basin, and A. Bundy. Middle-out reasoning for synthesis and indu
-tion. Journal of Automated Reasoning, 16(1{2):113{145, 1996.52. K.-K. Lau and M. Ornaghi. On spe
i�
ation frameworks and dedu
tive synthesisof logi
 programs. In L. Fribourg and F. Turini, editors, Pro
. of LOPSTR'94 andMETA'94, volume 883 of LNCS, pages 104{121. Springer-Verlag, 1994.53. K.-K. Lau, M. Ornaghi, and S.-�A. T�arnlund. Steadfast logi
 programs. Journal ofLogi
 Programming, 38(3):259{294, 1999.54. C.L. Lisett and D.E Rumelhart. Fa
ial re
ognition using a neural network. In Pro
.of the 11th International Florida AI Resear
h Symposium FLAIRS-98, pages 328{332, 1998.55. M.J. Maher. Equivalen
es of logi
 programs. In J. Minker, editor, Foundations ofDedu
tive Databases and Logi
 Programming. Morgan Kaufmann, 1987.56. P. Martin-L�of. Constru
tive mathemati
s and
omputer programming. In Pro
. ofthe Sixth International Congress for Logi
, Methodology, and Philosophy of S
ien
e,pages 153{175. North-Holland, 1982.57. S. Minton. Automati
ally
on�guring
onstraint satisfa
tion programs: A
asestudy. Constraints, 1(1{2):7{43, 1996.

58. S. Muggleton. Inverse entailment and Progol. New Generation Computing, 13(3{4):245{286, 1995.59. L.C. Paulson. Isabelle: A Generi
 Theorem Prover, volume 828 of LNCS. Springer-Verlag, 1994.60. A. Pettorossi and M. Proietti. Transformation of logi
 programs. In D.M. Gabbay,C.J. Hogger, and J.A. Robinson, editors, Handbook of Logi
 in Arti�
ial Intelli-gen
e and Logi
 Programming. Clarendon Press, 1998.61. F. Pfenning. Logi
 programming in the LF logi
al framework. In Logi
al Frame-works, pages 149{181. Cambridge University Press, 1991.62. G.D. Plotkin. A note on indu
tive generalization. In B. Meltzer and D. Mi
hie,editors, Ma
hine Intelligen
e 5, pages 153{163. Edinburgh University Press, 1970.63. J.C. Reynolds. Transformational systems and the algebrai
 stru
ture of atomi
formulas. In B. Meltzer and D. Mi
hie, editors, Ma
hine Intelligen
e 5, pages135{151. Edinburgh University Press, 1970.64. D.R. Smith. The stru
ture of divide and
onquer algorithms. Te
hni
al Report52-83-002, Naval Postgraduate S
hool, Monterey, California, USA, 1983.65. D.R. Smith. Top-down synthesis of divide-and-
onquer algorithms. Arti�
ial In-telligen
e, 27(1):43{96, 1985.66. D.R. Smith. KIDS: A semiautomati
 program development system. IEEE Trans-a
tions on Software Engineering, 16(9):1024{1043, 1990.67. D.R. Smith. Toward a
lassi�
ation approa
h to design. In M. Wirsing and M. Ni-vat, editors, Pro
. of AMAST'96, volume 1101 of LNCS, pages 62{84. Springer-Verlag, 1996.68. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury:An eÆ
ient purely de
larative logi
 programming language. Journal of Logi
 Pro-gramming, 29(1{3):17{64, 1996.69. A. van Lamsweerde. Formal spe
i�
ation: A roadmap. In A. Finkelstein, editor,The Future of Software Engineering, pages 147{159. ACM Press, 2000.70. W.W. Vas
on
elos and N.E. Fu
hs. An opportunisti
 approa
h for logi
 pro-gram analysis and optimisation using enhan
ed s
hema-based transformations. InM. Proietti, editor, Pro
. of LOPSTR'95, volume 1048 of LNCS, pages 174{188.Springer-Verlag, 1996.71. G.A. Wiggins. Synthesis and transformation of logi
 programs in the Whelk proofdevelopment system. In K.R. Apt, editor, Pro
. of JICSLP'92, pages 351{365. TheMIT Press, 1992.

