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t. Sin
e the early days of programming and automated reason-ing, resear
hers have developed methods for systemati
ally 
onstru
tingprograms from their spe
i�
ations. Espe
ially the last de
ade has seen a
urry of a
tivities in
luding the advent of spe
ialized 
onferen
es, su
has LOPSTR, 
overing the synthesis of programs in 
omputational logi
.In this paper we analyze and 
ompare three state-of-the-art methods forsynthesizing re
ursive programs in 
omputational logi
. The three ap-proa
hes are 
onstru
tive/dedu
tive synthesis, s
hema-guided synthesis,and indu
tive synthesis. Our 
omparison is 
arried out in a systemati
way where, for ea
h approa
h, we des
ribe the key ideas and synthesizea 
ommon running example. In doing so, we explore the synergies be-tween the approa
hes, whi
h we believe are ne
essary in order to a
hieveprogress over the next de
ade in this �eld.1 Introdu
tionProgram synthesis is 
on
erned with the following question: Given a not ne
-essarily exe
utable spe
i�
ation, how 
an an exe
utable program satisfying thespe
i�
ation be developed? The notions of \spe
i�
ation" and \exe
utable" are



here interpreted broadly. The obje
tive of program synthesis is to develop meth-ods and tools to me
hanize or automate (part of) this pro
ess.In the last 30 years, program synthesis has been an a
tive resear
h area; seee.g. [14, 4, 40, 13, 26, 29℄ for a des
ription of major a
hievements. The startingpoint of program synthesis is usually a formal spe
i�
ation, that is an expressionin some formal language (a language having a syntax, a semanti
s, and usually aproof theory). Program synthesis thus has many relationships with formal spe
i-�
ation [69℄. As the end produ
t is a veri�ed 
orre
t program, program synthesisis also related to formal methods in the development of 
omputer systems [22℄,and to automated software engineering. All of these dis
iplines share the goal ofimproving the quality of software.Program Synthesis in Computational Logi
. It is generally re
ognizedthat a good starting point for program synthesis is to use de
larative formalismssu
h as fun
tional programming or 
omputational logi
, where one spe
i�es whata program should do instead of how. We fo
us here on the synthesis of re
ur-sive programs in 
omputational logi
, whi
h provides an expressive and uniformframework for program synthesis. On the one hand, the spe
i�
ation, the result-ing program, and their relationship, 
an all be expressed in the same logi
. Onthe other hand, logi
 spe
i�
ations 
an des
ribe 
omplete spe
i�
ations as wellas in
omplete ones, su
h as examples or properties of the relation that is to be
omputed. Sin
e all this information 
an be expressed in the same language, it
an be treated uniformly in a synthesis pro
ess.There exist many di�erent approa
hes to program synthesis in 
omputationallogi
 and di�erent ways of viewing and 
ategorizing them. For example, one 
andistinguish 
onstru
tive from dedu
tive synthesis. In 
onstru
tive synthesis, a
onje
ture based on the spe
i�
ation is 
onstru
tively proved, and from thisproof a program is extra
ted. In the dedu
tive approa
h, a program is dedu
eddire
tly from the spe
i�
ation by suitably transforming it. As will be shownin this paper, these two approa
hes 
an pro�tably be viewed together and ex-pressed in a uniform framework. In a di�erent approa
h, 
alled s
hema-basedsynthesis, the idea is to use program s
hemas, that is some abstra
tion of a
lass of a
tual programs, to guide and enhan
e the synthesis pro
ess. Anotherapproa
h is indu
tive synthesis, where a program is indu
ed from an in
ompletespe
i�
ation.Obje
tives. Our intent in this paper is to analyze and 
ompare three state-of-the-art methods for synthesizing re
ursive programs in 
omputational logi
. The
hosen approa
hes are 
onstru
tive/dedu
tive synthesis, s
hema-guided synthe-sis, and indu
tive synthesis. We perform our 
omparison in a systemati
 way: we�rst identify 
ommon, generi
 features of all approa
hes and afterwards we usea 
ommon example to explain these features for ea
h approa
h. This analysisforms the basis for an in-depth 
omparison. We show, for example, that froman appropriately abstra
t viewpoint, there are a number of synergies betweenthe approa
hes that 
an be exploited. For example, by identifying rules withs
hemas, all three methods have a 
ommon, underlying synthesis me
hanism



and it be
omes easier to see how the methods 
an be fruitfully 
ombined, or dif-ferentiated. Overall, we hope that our 
omparison will deepen the 
ommunitiesunderstanding of the approa
hes | their relationships, synergies, where theyex
el, and why | and thereby 
ontribute to a
hieving progress in this �eld.We see this paper as 
omplementary to surveys of program synthesis in 
om-putational logi
 (or more pre
isely in logi
 programming), in parti
ular [26, 29℄.Rather than a making a broad survey, we fo
us on the analysis and in-depth
omparison of the di�erent approa
hes and we also 
onsider s
hema-guided syn-thesis. Due to la
k of spa
e and to 
omply with our obje
tives, some te
hni
aldetails are omitted. Here, the reader may rely on his or her intuitive understand-ing of relevant 
on
epts or follow pointers to referen
es in the literature.Organization. Se
tion 2 presents the di�erent elements that will be used topresent and 
ompare the 
hosen synthesis approa
hes. These elements in
ludegeneral features of program synthesis approa
hes as well as the example thatwill be used for their 
omparison. Se
tions 3 through 5 des
ribe the three 
ho-sen approa
hes: 
onstru
tive/dedu
tive synthesis, s
hema-guided synthesis, andindu
tive synthesis. To fa
ilitate a systemati
 analysis and 
omparison of themethods, ea
h se
tion has a similar stru
ture. Se
tion 6 
ompares the threeapproa
hes. Finally, Se
tion 7 draws 
on
lusions and presents perspe
tives forfuture developments.2 Elements of ComparisonIn the subsequent se
tions, we will present three synthesis approa
hes. For ea
happroa
h, one representative method is des
ribed. However, before des
ribingthem, we �rst present their general features. These features are developed in the
ontext of ea
h parti
ular method and serve both to fa
ilitate our analysis andsystematize our 
omparison. We also introdu
e our example.2.1 General FeaturesSpe
ifi
ation. The starting point for program synthesis is a spe
i�
ation ex-pressed in some language. For ea
h synthesis method, we must �x the spe
i�-
ation language and the form of the spe
i�
ation (e.g., a formula or a set ofexamples).Me
hanism. Program synthesis methods are based on 
al
uli and pro
edurespres
ribing how program are synthesized from spe
i�
ations. Although the un-derlying me
hanisms of the various systems di�er, there are, in some 
ases,similar underlying 
on
epts.Heuristi
s. Program synthesis is sear
h intensive and heuristi
s are required inpra
ti
e to guide the synthesis pro
ess. Are the heuristi
s spe
i�
 to a synthesismethod or are there 
ommon heuristi
s? How e�e
tive are the heuristi
s in thedi�erent methods and to what extent do di�erent methods stru
ture and restri
tthe sear
h spa
e?



Ba
kground Knowledge. Usually, non-trivial spe
i�
ations refer to ba
k-ground knowledge that formalizes information about the properties of obje
tsused in the spe
i�
ation, e.g., theories about the relevant data types.Human Intera
tion. Human intera
tion involves two di�erent issues. First,how mu
h 
an a human be automati
ally assisted? Se
ond, what is the nature ofhuman-
omputer intera
tion in synthesis? How 
an the human step in and, forexample, give key steps rather than leave the matter to blind sear
h? Allowinginput at 
riti
al points requires appropriate system support.Tool Support. What kind of tool support is needed for turning a synthesismethod into a viable system?S
alability. S
alability is a major 
on
ern in program synthesis. Synthesissystems should not only be able to synthesize small simple programs, but theyshould also be able to ta
kle large or 
omplex programs that solve real-life prob-lems.2.2 The Chosen ExampleThe same example will be used throughout the paper to fa
ilitate a 
omparisonof the di�erent methods. We have 
hosen a problem simple enough to presentin full, but 
omplex enough to illustrate the main issues asso
iated with ea
happroa
h.Spe
i�
ation 21 Let L be a list, I a natural number, and E a term. The rela-tion atpos(L; I; E) holds i� E is the element of L at position I. By 
onvention,the �rst element of a list is at position 0. The atpos relation 
an be formallyspe
i�ed as follows:atpos(L; I; E)$ 9P; S : append (P;E � S;L) ^ length(P; I)where append and length have their usual meaning, and are assumed to be de�nedin the ba
kground theory.In the formula above, and in the rest of the paper, free variables are assumedto be universally quanti�ed over the entire formula. As list notation, we use nilto represent the empty list, and H � T for the list with head H and tail T .3 Constru
tive and Dedu
tive SynthesisWe will now look at two approa
hes to synthesizing programs that are oftengrouped together: 
onstru
tive and dedu
tive synthesis. We shall highlight theirsimilarities by viewing both from the same perspe
tive: In both 
ases, dedu
-tion 
an be used to synthesize programs by solving for unknowns during theappli
ation of rules.



3.1 Ba
kgroundFor histori
al reasons, and be
ause the ideas are simplest to present there, webegin by 
onsidering synthesis of fun
tional programs in 
onstru
tive type the-ory.Constru
tive type theories are logi
s used for reasoning about fun
tionalprograms. The simplest example is the simply typed �-
al
ulus [5, 48℄, whi
h webrie
y review here. Programs in the simply typed �-
al
ulus are terms in the�-
al
ulus, whi
h are built from variables, appli
ation, and abstra
tion. Typesare built from a set of base types, 
losed under the fun
tion spa
e 
onstru
tor!. One reasons about judgments that assert that a term t has a type T , relativeto a sequen
e of bindings � , of the form x1 : A1; : : : ; xn : An, whi
h asso
iatevariables to types. The valid judgments are indu
tively de�ned by the followingrules: x : A 2 � hyp� ` x : A �; x : A `M : B abst� ` (�x:M) : (A! B)� `M : A! B � ` N : A appl� ` (MN) : BThese rules 
omprise a dedu
tion system for proving that a program t hasa type T . Under the propositions-as-types interpretation, this type may also beunderstood as a logi
al proposition (reading `!' as intuitionisti
 impli
ation)that spe
i�es t's properties. Of 
ourse, the spe
i�
ation language is quite weak,so it is diÆ
ult to spe
ify many interesting properties. In stronger type theories,su
h as [24, 56℄, types 
orrespond to propositions in ri
her logi
s and one 
an,for example, spe
ify sorting as` t : (8x : int list : 9y : int list : perm(x; y) ^ ord (y)) : (1)This asserts that the program t is a fun
tion that, on input x, returns an orderedpermutation y.The given dedu
tion system 
an be used for program veri�
ation: given aprogram t and a spe
i�
ation T , prove ` t : T . For example, for p and q types,we 
an verify that the program �x: �y: x satis�es the spe
i�
ation p! (q ! p):x : p 2 x : p; y : q hypx : p; y : q ` x : p abstx : p ` �y: x : q ! p abst` �x: �y: x : p! (q ! p) (2)Perhaps less obviously, the same rules 
an be used for program synthesis :given a spe
i�
ation T , 
onstru
t a program t su
h that ` t : T . This 
an bedone by1. Reversing the dire
tion in whi
h rules are applied and proofs are 
onstru
ted.That is, build the proof in a goal-dire
ted, \re�nement style" way by startingwith the goal and working towards the axioms.



2. Leaving the program t as an unknown, or metavariable, whi
h is solvedduring proof.Let's try this out in the example above. Using 
apital letters to indi
atemetavariables, we begin with ` R : p! (q ! p) :Resolving this with the (
on
lusion of the) abst rule yields the new goalx : p ` R1(x) : (q ! p) ;where R is uni�ed with �x:R1(x). Applying abst again results inx : p; y : q ` R2(x; y) : p ;where R1(x) = �y:R2(x; y). Finally, applying hyp uni�es the assumption x : pwith R2(x; y) : p, instantiating R2(x; y) to x and 
ompleting the proof. Compos-ing the substitutions yields the previously veri�ed program t = �x: �y: x.The a

ount above is 
ompli
ated by the fa
t that the abstra
tion operator �binds variables and, to work properly, higher-order uni�
ation is required whenapplying rules. The rules 
onstitute 
lauses in a higher-order (meta-)languageand proofs are 
onstru
ted by higher-order resolution. A higher-order logi
 pro-gramming language or logi
al framework based on higher-order resolution like�-Prolog [27℄, ELF [61℄, or Isabelle [59℄ would support this kind of proof.There are two 
on
lusions we would like to draw. First, veri�
ation andsynthesis are 
losely related a
tivities. In fa
t, when rules are applied using(higher-order) resolution, they are essentially identi
al. The only di�eren
e iswhether uni�
ation is between ground or non-ground terms, i.e., whether ornot an answer substitution is built. This 
on
lusion should not be surprising tothose working in logi
 programming: the same sequen
e of resolution steps 
anbe used to establish a ground query p(t) or a non-ground one p(X), generatingthe substitution X = t.Se
ond, 
onstru
tive synthesis is of a dedu
tive nature and the line betweenthe two 
an be �ne. As the analogy with Prolog shows, proofs 
onstru
t obje
ts.In type theory, the obje
ts are programs. Indeed, the idea of proofs synthesizingprograms, sometimes 
alled proofs-as-programs, 
an be de
omposed intoproofs-as-programs = proofs-as-obje
ts + obje
ts-as-programs.In our example, uni�
ation, not the 
onstru
tivity of the logi
, is responsiblefor 
onstru
ting an obje
t. Constru
tivity does not play a role in the synthesisof obje
ts, but rather in their exe
ution and meaning. That is, be
ause thelogi
 is 
onstru
tive, the synthesized terms 
an be exe
uted and their evaluationbehavior agrees with the semanti
s of the type theory. In 
ontrast, [49℄, forexample, presents a 
lassi
al type theory where programs 
orrespond to (non-
omputable) ora
les that 
annot be exe
uted. There one might say that theline is 
rossed from 
onstru
tive (and dedu
tive) program synthesis to dedu
tiveobje
t synthesis.



The use of uni�
ation is at the heart of dedu
tive and 
onstru
tive synthesis.Uni�
ation is driven by resolution, to synthesize, or solve for, programs duringproofs. This idea goes ba
k to work in the 1960s on using �rst-order resolutionto 
onstru
t terms that represent plans or, more generally, programs [19, 42℄. Inthe logi
al framework 
ommunity, the use of higher-order metalogi
s to representrules and the use of higher-order uni�
ation to apply them is now standard, e.g.,[2, 8, 9, 23℄. For example, the Isabelle distribution [59℄ 
omes with en
odings of anumber of type theories, where programs 
an be synthesized as des
ribed here.The vast majority of approa
hes for synthesizing logi
 programs are basedon �rst-order reasoning, e.g., equivalen
e preserving transformations. There havebeen many proposed methods and [26℄ 
ontains a good survey. They di�er inthe form of their axioms (Horn 
lauses, i� -de�nitions, et
.), exa
t notion ofequivalen
e used (and there are many, see e.g., [55℄), and ease of automation.Many of these, for example unfold-fold based transformations [60℄, 
an be re
astas synthesis by resolution using rules like those presented here [7, 10℄.3.2 OverviewSpe
ifi
ations. In type theory, programs and spe
i�
ations belong to di�er-ent languages. When synthesizing logi
 programs, the spe
i�
ation language istypi
ally the language of a �rst-order theory and the programming language issome suitable, exe
utable subset thereof. By sharing the same language, logi
programs are well suited for dedu
tive synthesis where spe
i�
ations are manip-ulated, using equivalen
e preserving transformations, until a formula with somedesired form or property is rea
hed.Me
hanism. The me
hanism for synthesizing logi
 programs during proofs isessentially the same as what we have just seen for type theory. However, what isproved (i.e., the form of the theorem to be proven), and the proof rules used toestablish it, are of 
ourse di�erent. Namely, we will prove theorems about equiv-alen
es between spe
i�
ations and programs and we will prove these theoremsusing rules suitable for establishing su
h equivalen
es.For our example, we will employ the following rules:$�re
A$ A A1 $ B1 A2 $ B2 _�split(A1 _ A2)$ (B1 _ B2)In addition, for building re
ursive programs that re
urse over lists we employthe rule s
hema A1 A2 A3 ind ;8L;X : P (L;X)$ Q(L;X)where L is a variable ranging over lists, X denotes sequen
es of zero or morevariables of any type, and the assumptions Ai are:A1 � 8L;X : Q(L;X)$ (L = nil ^ B(X))_9H;T : L = H � T ^ S(H;T;X)



A2 � 8X : P (nil;X)$ B(X)A3 � 8T : (8X : P (T;X)$ Q(T;X))! 8H;X : P (H � T;X)$ S(H;T;X)This rule, whi
h 
an be derived by indu
tion on the list L, states the equiv-alen
e between predi
ates P and Q (whi
h are metavariables). For the purposeof synthesis, we 
an take A1 as the de�nition of Q, and A2 and A3 
onstrain(and will be used to de�ne) Q's base and re
ursive 
ases. In A3, we are allowedto use the existen
e of Q, when de�ning Q, but only on smaller arguments.We will show below how, by applying these rules (using higher-order resolu-tion), we 
an 
onstru
t R while proving its equivalen
e to atpos .Heuristi
s and Human Intera
tion. Proof rules, like those given above,
an be applied intera
tively, semi-intera
tively, or even automati
ally. The useof a ta
ti
 based theorem prover [41℄, whi
h allows users to write programs that
onstru
t proofs, leaves open the degree of automation.[50, 51℄, for example, show how to 
ompletely automate the 
onstru
tion ofsu
h synthesis proofs in a ta
ti
 based setting. In this work, the most importantta
ti
 implements the rippling heuristi
 of [17, 12℄. This heuristi
 automates theappli
ation of rewrite or equivalen
e preserving transformation rules in a waythat minimizes di�eren
es between terms or formulas. Rippling is typi
ally usedin indu
tive theorem proving to enable the use of the indu
tion hypothesis insimplifying the indu
tion 
on
lusion and it 
an be used in a similar way dur-ing program synthesis where rules that introdu
e re
ursion (like ind ) produ
eindu
tion-like proof obligations. Rippling has been used to automate 
ompletelythe synthesis of a number of non-trivial logi
 programs. However, it should benoted that some intera
tion with the user is often desirable sin
e the appli
ationof proof rules, in parti
ular rules that build re
ursive programs, determines theeÆ
ien
y of the synthesized program.Ba
kground Knowledge. The approa
h we present here for synthesizinglogi
 programs involves two kinds of rules. The �rst kind are rules, like $�re
and _�split , whi
h are derived rules of �rst-order logi
. These derived rulesare not, stri
tly speaking, ne
essary (provided we are working in a 
ompleteaxiomatization of �rst-order logi
), but their addition makes it easier to 
onstru
tsynthesis proofs by reasoning about equivalen
es. The se
ond kind of rules aretheory spe
i�
 rules, e.g., rules about indu
tively de�ned data types like numbersand lists. The rule ind given above is an example of su
h a rule. It is derivablein a theory that axiomatizes lists and formalizes indu
tion over lists.Tool Support. For synthesizing the atpos example, we have used the Isabellesystem. Isabelle's basi
 me
hanism for proof 
onstru
tion is top-down proof byhigher-order resolution, whi
h is pre
isely what we require. Moreover, as a logi-
al framework, Isabelle supports the derivation of new rules, so we 
an formallyderive, and thus insure the 
orre
tness of, the spe
ialized rules needed for synthe-sis; in our example, we derive the rules just presented in a standard �rst-order



theory of lists. Finally, ta
ti
s 
an be used to partially, or entirely, automateproof 
onstru
tion. The Isabelle distribution 
omes with simpli�ers and de
isionpro
edures that we used to semi-automate synthesis.S
alability. The sear
h spa
e in most approa
hes to dedu
tive synthesis isquite large. In pra
ti
e, building non-trivial programs requires an environmentthat supports heuristi
s for automating simple proof steps, e.g., by the appli
a-tion of ta
ti
s. It is also important that the user 
an safely augment a synthesissystem with derived rules. As we will later observe, s
hemas, for s
hema guidedsynthesis, 
an be seen as derived rules spe
ialized for synthesizing programs of aparti
ular form, and their integration with dedu
tive synthesis approa
hes 
anhelp with large s
ale developments. Examples of this are provided in [1℄.3.3 ExampleLet us illustrate our synthesis method on the atpos example. We wish to 
on-stru
t a logi
 program equivalent to the spe
i�
ation 21. As with synthesis inthe type theory, we use a metavariable, R, to stand in for the desired program.Hen
e we start with̀ 8L; I; E : atpos(L; I; E)$ R(L; I; E) : (3)Working ba
kwards, resolving (using higher-order uni�
ation) this 
on
lusionwith the 
on
lusion of the ind rule yields the three subgoals8L; I; E : R(L; I; E)$ (L = nil ^ B(I; E))_9H;T : L = H � T ^ S(H;T; I; E)8I; E : atpos(nil; I; E)$ B(I; E)8T : (8I; E : atpos(T; I; E)$R(T; I; E)! 8H; I; E : atpos(H � T; I; E)$ S(H;T; I; E)and Q is uni�ed with R.The �rst subgoal 
onstitutes a program template, whi
h will later be �lledout by solving the other subgoals. In the se
ond subgoal, expanding the de�nitionof atpos results in` 8I; E : (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) :Let I and E be arbitrary. To show` (9P ;S : append (P ; E � S ; nil) ^ length(P ; I))$ B(I; E) ;observe that there are no values for P or S for whi
h append (P ; E � S ; nil) istrue. Hen
e this subgoal is equivalent to` false $ B(I; E) :We 
an 
omplete the proof with $�re
 , whi
h uni�es B(I; E) with false .



For the third subgoal, we assume the existen
e of an arbitrary list T andthe ante
edent of the impli
ation (whi
h amounts to an indu
tion hypothesis)and must prove the 
onsequent (the indu
tion 
on
lusion). Hen
e, expandingthe de�nition of atpos , we assume8I; E : (9P ;S : append (P ; E � S ; T ) ^ length(P ; I))$ R(T; I; E)and we must prove, for some arbitrary H , I , and E,` (9P ;S : append (P ; E � S ; H � T ) ^ length(P ; I))$ S(H;T; I; E) :Now, sin
e P ranges over lists, for any formula �(l), 9P :�(P) is equivalent(by 
ase analysis) to �(nil)_9H;T : �(H � T ). Hen
e, the above is equivalent to` ((9S : append (nil; E � S ; H � T ) ^ length(nil; I))_ (9H 0; T 0;S :append (H 0 � T 0; E � S ; H � T ) ^ length(H 0 � T 0; I)))$ S(H;T; I; E) :We pro
eed by de
omposing the disjun
tion on the left-hand side by resolvingwith _�split . Doing so builds a disjun
tion for S, by instantiating S(H;T; I; E)with S1(H;T; I; E) _ S2(H;T; I; E), and yields the two subgoals:` 9S : append (nil; E � S ; H � T ) ^ length(nil; I)$ S1(H;T; I; E)` 9H 0; T 0;S : append (H 0 � T 0; E � S ; H � T )^length(H 0 � T 0; I)$ S2(H;T; I; E)For the �rst, the left-hand side is true whenever 9S : E = H ^ S = T ^ I = 0.Hen
e, setting S to T , this subgoal is equivalent to` (E = H ^ I = 0)$ S1(H;T; I; E) :We 
an again dis
harge this using $�re
 , whi
h uni�es S1(H;T; I; E) withE = H ^ I = 0. Now, under the standard de�nition of append and length , these
ond subgoal is equivalent to` (9I 0:s(I 0) = I ^ (9T 0;S :append (T 0; E � S ; T ) ^ length(T 0; I 0)))$ S2(H;T; I; E)where s(I 0) represents the su

essor of I 0. We 
an now simplify this using theante
edent (indu
tion hypothesis), whi
h yields(9I 0:s(I 0) = I ^ R(T; I 0; E))$ S2(H;T; I; E) :We 
omplete the proof with $�re
 , unifying S2(H;T; I; E) with 9I 0:s(I 0) =I ^ R(T; I 0; E).We are done! If we apply the a

umulated substitutions to the remainingassumption A1 we have8L; I; E : R(L; I; E)$ (L = nil ^ false)_9H;T : L = H � T ^ ( (E = H ^ I = 0)_ 9I 0 : s(I 0) = I ^ R(T; I 0; E)) :



and we have proved the equivalen
e of (3) under this de�nition, i.e.,atpos(L; I; E) is equivalent to the synthesized instan
e of R(L; I; E).The alert reader may have wondered why we did not 
omplete the proofearlier by resolving with $�re
 . In this example, our goal was to transformatpos so that the result falls within a parti
ular subset of �rst-order formulae,sometimes 
alled pure logi
 programs [16℄ or logi
 des
riptions [25℄, that de�nelogi
 programs. These formulae 
an be easily translated to Horn 
lauses or rundire
tly in a language like G�odel [47℄. In this 
ase, we get the 
lauses:atpos(nil; I; E) falseatpos(H � T; I; E) E = H; I = 0atpos(H � T; I; E) s(I 0) = I; atpos(T; I 0; E)whi
h 
an be simpli�ed toatpos(E � ; 0; E) atpos( � T; s(I 0); E) atpos(T; I 0; E)3.4 AnalysisOverall, when 
ast in this way, the dedu
tive synthesis of logi
 programs is quitesimilar to the previous 
onstru
tive/dedu
tive synthesis of fun
tional programs.In both 
ases, we leave the program as an unknown, and solve for it, by uni-�
ation, during proof. Of 
ourse, the metatheoreti
 properties of the programsprodu
ed are quite di�erent. In the 
ase of logi
 program synthesis, the rules,as they are given, do not enfor
e that the obje
t 
onstru
ted has any spe
ialsynta
ti
 properties (e.g., is a pure logi
 program); we only know that it is anequivalent formula. Moreover, we do not a priori know anything about its ter-mination behavior (although it is not diÆ
ult to show that the indu
tion rulebuilds predi
ates that terminate when the �rst argument is ground).This kind of development, as with most approa
hes to logi
 program synthe-sis, is best des
ribed as dedu
tive synthesis. They are 
onstru
tive only in theweak sense that, at the metalevel (or metalogi
, if one is 
arrying out the proofin a logi
al framework), one is essentially proving a theorem of the form9R : 8L; I; E :atpos(L; I; E)$ R(L; I; E)and building a witness (in this 
ase, a predi
ate de�nition) for R. (For moreon this notion of 
onstru
tivity and the proof theory behind it, see [11℄.) Manyproposed methods for the 
onstru
tive synthesis of logi
 programs 
an also beexplained in this way. For example, the Whelk Cal
ulus of [71℄, whi
h is moti-vated by experiments in synthesizing relations in a 
onstru
tive type theory, 
anbe re
ast as this kind of synthesis [6℄.



4 S
hema-Guided SynthesisWe here outline Flener, Lau, Ornaghi, and Ri
hardson's de�nition, representa-tion, and semanti
s of program s
hemas: see [33℄ for details.4.1 Ba
kgroundIntuitively, a program s
hema is an abstra
tion of a 
lass of a
tual programs,in the sense that it represents their data-
ow and 
ontrol-
ow, but neither 
on-tains all their a
tual 
omputations nor all their a
tual data stru
tures. Programs
hemas have been shown to be useful in a variety of appli
ations. In synthesis,the main idea is to simplify the proof obligations by taking the diÆ
ult oneso�ine, so that they are proven on
e and for all at s
hema design time. Also, thereuse of existing programs is made the main synthesis me
hanism.A symbol o

urring in a theory T is open [52℄ in T if it is neither de�ned in T ,nor a prede�ned symbol. A non-open symbol in T is 
losed in T . A theory with atleast one open symbol is an open theory; otherwise it is 
losed. This terminologyapplies to formal spe
i�
ations and logi
 programs. An (open) program for arelation r is steadfast [25, 53℄ with respe
t to its spe
i�
ation if it is 
orre
t withrespe
t to its spe
i�
ation whenever 
omposed with programs that are 
orre
twith respe
t to the spe
i�
ations of its (open) relations other than r.Among the many possible forms of programs, there are the divide-and-
onquerprograms with one re
ursive 
all: if a distinguished formal parameter, 
alled theindu
tion parameter, say X , has a minimal value, then one 
an dire
tly solvefor a 
orresponding other formal parameter, 
alled the result parameter, say Y ;otherwise, X is de
omposed into a \smaller" value T (under some well-foundedrelation �) by splitting o� a quantity H , so that a sub-result V 
orresponding toT 
an be 
omputed by a re
ursive 
all, and an overall result Y 
an be 
omposedfrom H and V . A third formal parameter, 
alled the passive parameter, say Z,parti
ipates un
hanged in these operations. Formally, this problem-independentdata
ow and 
ontrol-
ow 
an be 
aptured in the following open program for r:r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de
(X;Z;H; T );r(T; V; Z); 
omp(H;Z; V; Y ) (DC)The relationsmin, solve, de
, 
omp are open. When I is the indu
tion parameter,L the result, and E the passive parameter, so that atpos(L; I; E)$ r(I; L;E), a
losed program for atpos is the instan
e of DC under the program substitutionmin(X;Z) X = 0 solve(X;Y; Z) Y = Z � Sde
(X;Z;H; T ) X = s(T ) 
omp(H;Z; V; Y ) Y = F � V (�1)This substitution 
aptures the problem-dependent 
omputations of that program.But programs by themselves are synta
ti
 entities, hen
e some programsare undesired instan
es of open programs. For instan
e, the generate-and-test



program r(X;Y; Z)  g(X;Y; Z); t(Y; Z) is an instan
e of DC under the sub-stitution min(X;Z) true solve(X;Y; Z) g(X;Y; Z); t(Y; Z)de
(X;Z;H; T ) true 
omp(H;Z; V; Y ) trueAn open program su
h as DC thus has no �xed meaning. The knowledge 
ap-tured by an open program is not 
ompletely formalized, and the domain knowl-edge and underlying language are still impli
it. In order for su
h open programsto be useful for guiding synthesis, su
h undesired instan
es need to be preventedand some semanti
 
onsiderations need to be expli
itly added.A program s
hema [33℄ has a name, a set of formal sort and relation pa-rameters, a signature with sorted relation and fun
tion de
larations, a set ofaxioms de�ning the de
lared symbols, a set of 
onstraints restri
ting the a
tualparameters, an open program T 
alled the template, and spe
i�
ations S of therelations in T , su
h that T is steadfast with respe
t to S in that axiomatization.The s
hema DC 
an be abdu
ed, as in [32℄, from our informal a

ount of howdivide-and-
onquer programs work. The parameters SX, SY, SZ, SH are sorts;they are used in the signatures of the other parameters, whi
h are relations.There are no axioms be
ause the signature de
lares no other symbols than theparameters. The template is the open program DC, whi
h de�nes the relation rand hasmin, solve, de
, 
omp as open relations. The 
losed relation r is spe
i�edby Sr, and the open relations have Smin, Ssolve, Sde
, S
omp as spe
i�
ations.The 
onditional spe
i�
ation Sr exhibits ir, or as the input/output 
onditionsof r, while Sde
 exhibits ide
, ode
 as the input/output 
onditions of de
. Theinput/output 
onditions of the remaining open relations are also expressed interms of the parameters ir, ide
, or, ode
. The 
onstraints restri
t de
 to su

eedat least on
e if its input 
ondition holds, and then to yield a value that satis�esthe input 
ondition of r (so that a re
ursive 
all to r is \legal") and that issmaller than X a

ording to �, whi
h must be a well-founded relation (so thatre
ursion terminates). The open program DC is steadfast with respe
t to Sr,within the given axiomatization.In the s
hema REUSE , the parameters SX, SY, SZ are sorts; they are usedin the signatures of the other parameters, whi
h are relations. There are noaxioms be
ause the signature de
lares no other symbols than the parameters.The template is the open program fr(X;Y; Z) q(X;Y; Z)g, whi
h de�nes therelation r and has q as the open relation. The relation r is spe
i�ed by Sr, and therelation q has the same input/output 
onditions as r. There are no 
onstraintson the parameters. This s
hema provides for the reuse of a program for q whenstarting from a spe
i�
ation for r. The open program Reuse is steadfast withrespe
t to Sr, within the given axiomatization.4.2 OverviewLet us now examine the spe
i�
ations, me
hanism, heuristi
s, ba
kground knowl-edge, human intera
tion, tool support, and s
alability of s
hema-guided synthe-sis.



S
hema DC(SX; SY; SZ; SH;�; ir; or; ide
; ode
)sorts: SX; SY; SZ; SHrelations: ir; ide
 : (SX; SZ) � : (SX; SX)or : (SX; SY; SZ) ode
 : (SX; SZ; SH; SX)axioms: (none)
onstrs: ide
(X;Z)! 9H : SH : 9T : SX : ode
(X;Z;H; T )ide
(X;Z) ^ ode
(X;Z;H; T )! ir(T; Z) ^ T � XwellFounded(�) (C1)(C2)(C3)spe
ifs: ir(X;Z)! ( r(X;Y; Z)$ or(X;Y; Z) )ir(X;Z)! ( min(X;Z)$ :ide
(X;Z) )ir(X;Z) ^ :ide
(X;Z)! ( solve(X;Y; Z)$ or(X;Y; Z) )ide
(X;Z)! ( de
(X;Z;H; T )$ ode
(X;Z;H; T ) )ode
(X;Z;H; T ) ^ or(T; V; Z)!( 
omp(H;Z; V; Y )$ or(X;Y; Z) ) (Sr)(Smin)(Ssolve)(Sde
)(S
omp)template: r(X;Y; Z) min(X;Z); solve(X;Y; Z)r(X;Y; Z) :min(X;Z); de
(X;Z;H; T );r(T; V; Z); 
omp(H;Z; V; Y ) (DC)S
hema REUSE(SX; SY; SZ; ir; or)sorts: SX; SY; SZrelations: ir : (SX; SZ) or : (SX; SY; SZ)axioms: (none)
onstraints: (none)spe
ifi
ations: ir(X;Z)! ( r(X;Y;Z)$ or(X;Y; Z) )ir(X;Z)! ( q(X;Y; Z)$ or(X;Y; Z) ) (Sr)(Sq)template: r(X;Y; Z)  q(X;Y; Z) (Reuse)Spe
ifi
ations. Among the many possible forms of spe
i�
ations, there arethe 
lassi
al 
onditional spe
i�
ations : under some input 
ondition ir on inputsX , Z, a program for relation r su

eeds i� some output 
ondition or on X , Zand output Y holds. Formally, this gives rise to the following open spe
i�
ationof r: 8X : SX : 8Y : SY : 8Z : SZ :ir(X;Z)! ( r(X;Y; Z)$ or(X;Y; Z) ) (Cond)The open symbols are the relations ir, or and the sorts SX, SY, SZ. Other formsof spe
i�
ation 
an also be handled.Me
hanism. S
hema-guided synthesis from a spe
i�
ation S0 is a tree 
on-stru
tion pro
ess 
onsisting of 5 steps, where the initial tree has just one node,namely S0:1. Choose a spe
i�
ation Si that has not been handled yet.2. Choose a program s
hema with parameters P , axioms A, 
onstraints C,template T , and spe
i�
ations S.



3. Infer a substitution �1 under whi
h Si is an instan
e of the spe
i�
ation(available in S) of the de�ned relation in template T . This instantiates some(if not all) of the parameters P .4. Choose a substitution �2 that instantiates the remaining (if any) parametersin P , su
h that the 
onstraints C hold (i.e., su
h that �1 [ �2 ` C) and su
hthat one 
an reuse existing programs PQ for some (if not all) of the now fullyinstantiated spe
i�
ations S [ �1 [ �2 of the open relations in template T .Simplify the remaining (if any) spe
i�
ations in S [ �1 [ �2, yielding SG.5. Add T [ PQ | 
alled the reused program | to the node with Si and addthe elements of SG to the unhandled spe
i�
ations, as 
hildren of Si.These steps are iterated until all spe
i�
ations have been handled; the overall re-sult program P0 for S0 is then assembled by 
onjoining, at ea
h node, the reusedprograms. If any of these steps fails, synthesis ba
ktra
ks to its last 
hoi
e point.S
hema-guided program synthesis is thus a re
ursive spe
i�
ation (problem) de-
omposition pro
ess followed by a re
ursive program (solution) 
omposition pro-
ess.The REUSE s
hema 
an be 
hosen at Step 2; it for
es the reuse at Step 4 ofa program for q, be
ause q is its only open relation. Every s
hema leads to somereuse at Step 4; for instan
e, DC results in the reuse of a program for de
.Heuristi
s. Many 
hoi
e points reside in s
hema-guided synthesis, so heuristi
sare needed to make good de
isions, possibly by looking ahead into the synthesis.Some heuristi
s 
an be applied when designing a s
hema. For instan
e, asynthesis strategy is the 
hoi
e at Step 4 of the open relations for whi
h programsare reused. All templates envisaged by us so far have only a few meaningfulstrategies, hen
e it is best to hardwire these. For instan
e, template DC hasonly two interesting strategies: when starting with de
, the divide-and-
onquers
hema is as above; when starting with 
omp, it would have to be reexpressedin terms of the input/output 
onditions of r and 
omp, giving rise to anothers
hema, with the same template.Other heuristi
s 
an be expressed as appli
ability 
onditions. For instan
e,the question arises of what program s
hema to apply at Step 2. An impli
itheuristi
 
an be a
hieved by ordering the s
hemas; putting REUSE �rst wouldenfor
e our emphasis on reuse. There also is the question of how to apply a 
hosenprogram s
hema at Step 3. For instan
e, with DC, one of the formal parametersin the given spe
i�
ation Sr has to be the indu
tion parameter, and anotherthe result parameter. This 
an be done based on the sort information in Sr:only a parameter of an indu
tively de�ned sort 
an be the indu
tion parameter.One 
an also augment spe
i�
ations with mode information, be
ause parametersde
lared to be ground at 
all-time are parti
ularly good indu
tion parameters[25℄.Ba
kground Knowledge. Step 2 assumes a base of program s
hemas, 
aptur-ing a range of program 
lasses. Also, Step 4 relies on a base of reusable programs.For instan
e, for the DC s
hema, a base of spe
i�
ations and programs for de
programs and � well-founded relations needs to be available.



Human Intera
tion. S
hema-guided synthesis 
an be fully automated, asdemonstrated withCypress [65℄,Kids [66℄,DesignWare [67℄, and PlanWare[15℄. However, intera
tive synthesis is preferable, with the human programmertaking the 
reative, high-level, heuristi
 design de
isions, and the synthesizerdoing the more 
leri
al work. The design issues are intelligible to humans be
ausethe very obje
tive of program s
hemas is to 
apture re
ognized, useful, human-designed programming strategies and program 
lasses.Tool Support. An implementation of s
hema-guided synthesis 
an be made ontop of any existing proof planner, exploiting the fa
t that program s
hemas 
anbe seen as proof methods [35℄. This provides support for the ne
essary higher-order mat
hing and dis
harging of proof obligations.S
alability. The sear
h spa
e of s
hema-guided synthesis is mu
h smaller thanfor dedu
tive synthesis. First, s
hema-guided synthesis by de�nition bottomsout in reuse, both of the template itself and of existing programs. One 
ansigni�
antly redu
e the number of reuse queries by applying heuristi
s dete
tingthat an ad ho
 program 
an be trivially built from the spe
i�
ation. Se
ond,the proof obligations of Steps 3 and 4 are quite lightweight. S
hema-guidedsynthesis thus s
ales up to real-life synthesis tasks, espe
ially if 
oupled witha powerful program optimization workben
h and suÆ
ient domain knowledge.For instan
e, Smith [67℄ has su

essfully deployed his tools on real-life problems,su
h as transportation s
heduling.4.3 ExampleLet us synthesize a program from the following spe
i�
ation, open in sort ST:8L : list(ST) : 8I : nat : 8E : ST : true!(atpos(L; I; E)$ 9P ;S : list(ST) : append (P ; E � S ; L) ^ length(P ; I)) (Satpos)The �rst iteration of synthesis pro
eeds as follows. At Step 1, the spe
i�
ationSatpos is 
hosen be
ause it is the only unhandled spe
i�
ation. At Step 2, supposes
hema DC is 
hosen, after a failed attempt to apply s
hema REUSE . At Step 3,the spe
i�
ation Satpos is inferred to be an instan
e of Sr, when atpos(L; I; E)is seen as r(I; L;E), under the substitutionhSX; SY; SZi = hnat; list(ST); STiir(X;Z)$ trueor(X;Y; Z)$ 9P ;S : list(ST) : append (P ; Z � S ; Y )^length(P ; X) (�2)So far, 5 of the 9 parameters of DC have been instantiated. At Step 4, supposethe following substitution is 
hosen:SH = nat A � B $ B = s(A)ide
(X;Z)$ :X = 0 ode
(X;Z;H; T )$ X = s(T )



This instantiates the remaining 4 parameters of DC in a way that the 
onstraintsC1, C2, C3 hold and that the program Pde
 = fde
(X;Z;H; T ) X = s(T )g 
anbe reused to meet the now fully instantiated spe
i�
ation Sde
. The spe
i�
ationsof the remaining open relations in template DC are now also fully instantiated:true! ( min(X;Z)$ ::X = 0 ) (Smin)true ^ ::X = 0!(solve(X;Y; Z)$ 9P ;S : append (P ; Z � S ; Y ) ^ length(P ; X)) (Ssolve)X = s(T ) ^ 9P ;S : append (P ; Z � S ; V ) ^ length(P ; T )!( 
omp(H;Z; V; Y )$ 9P 0; S0 : append (P 0; Z � S0; Y )^length(P 0; X) ) (S
omp)They 
an be simpli�ed into the following spe
i�
ations:min(X;Z)$ X = 0 (S0min)X = 0! ( solve(X;Y; Z)$ 9S : list(ST) : Y = Z � S ) (S0solve)X = s(T ) ^ 9P ;S : append(P ; Z � S ; V ) ^ length(P ; T )!(
omp(H;Z; V; Y )$ 9F : ST : Y = F � V ) (S0
omp)At Step 5, the program DC [ Pde
 be
omes the reused program for Satpos ,while S0min, S0solve, and S0
omp are added to the now empty list of unhandledspe
i�
ations.The next iterations of synthesis pro
eed as follows. When S0min, S0solve, andS0
omp are 
hosen, suppose appli
ations of some suitable variants of REUSEsu

eed through the ad ho
 building of the programs Pmin = fmin(X;Z) X =0g, Psolve = fsolve(X;Y; Z)  Y = Z � Sg, and P
omp = f
omp(H;Z; V; Y )  Y = F �V g. Sin
e no new spe
i�
ations were 
reated, the synthesis is 
ompletedand has dis
overed the substitution �1. For 
all-mode atpos(+;�;+), say, the
orresponding logi
 programatpos(L; I; E) I = 0; L = E � Satpos(L; I; E) :I = 0; I = s(T ); atpos(V; T;E); L = F � V
an be implemented [25℄, say by the Mer
ury 
ompiler [68℄, into the followingsteadfast program: atpos(E � S; 0; E) atpos(F � V; s(T ); E) atpos(V; T;E)The 
omp operator had to be moved in front of the re
ursive 
all to a
hieve this.(Prolog 
annot do this, so mode-spe
i�
 implementation is left as a manual taskto the Prolog programmer.)This example illustrated a relatively simple use of the DC s
hema. In [31℄,a qui
ksort program is synthesized, using a variant of the divide-and-
onquers
hema DC with two re
ursive 
alls.



4.4 AnalysisS
hema-guided synthesis 
aptures re
ognized, useful, human-designed program-ming strategies and program 
lasses in program s
hemas. In doing so, it takesthe hardest proof obligations o�ine, preventing their repeated proof a
ross var-ious syntheses and making reuse of existing programs the 
entral me
hanism forsynthesizing programs. In the presen
e of powerful program optimization toolsand suÆ
ient domain knowledge, it thus naturally s
ales up, without any limita-tions on spe
i�
ation forms or program forms, due to the modular nature of thevarious forms of ba
kground knowledge. Heuristi
 guidan
e issues are still bestta
kled by humans, so s
hema-guided synthesis is best 
arried out intera
tively.A uni�ed view of s
hema-guided synthesis and proof planning has been pro-posed [35℄, revealing potential new aspe
ts of program s
hemas, su
h as appli-
ability 
onditions 
apturing heuristi
s, as well as the possibility of formulatingprogram s
hemas as proof methods and thereby reusing an existing proof plan-ner as a homogeneous implementation platform for both the s
hema appli
ationsand the proof obligations of s
hema-guided synthesis.Our future work in
ludes redoing the 
onstraint abdu
tion pro
ess for moregeneral divide-and-
onquer templates, where some nonMinimal(X;Z) is notne
essarily :min(X;Z), and 
rafting the 
orresponding strategies, in order toallow the synthesis of a larger 
lass of programs. Other design methodologiesneed to be 
aptured in logi
 programming s
hemas; for instan
e, a global sear
hs
hema has been proposed for the synthesis of 
onstraint logi
 programs [37℄.5 Indu
tive SynthesisFollowing a brief introdu
tion to indu
tive generalization, we present a parti
ularapproa
h to indu
tion of re
ursive logi
 program 
alled 
ompositional indu
tivesynthesis, whi
h is des
ribed in detail in [46℄.5.1 Ba
kgroundThe indu
tive approa
h to program synthesis originates in indu
tive logi
. In-du
tive logi
 is 
on
erned with the 
onstru
tion of logi
al theories T explainingavailable observations or events. This means that, given eviden
e in the formof atomi
 formulas a1; a2; : : : ; as, the logi
al indu
tion approa
h is to devise anappropriate logi
al theory T so thatT ` a1 ^ a2 ^ : : : ^ as:A major 
on
ern is to 
onstrain T so as to rule out trivial solutions, su
h asT being in
onsistent (thus supporting any eviden
e), or T being identi
al to the
onjun
tion of available eviden
e. In the more traditional appli
ation of logi
altheories of indu
tion in arti�
ial intelligen
e, the quest is for a theory T takingthe form of general rules, e.g., s
ienti�
 rules, supporting the given eviden
e. Inthe 
ontext of indu
tion of logi
 programs addressed here, the \observations" are



intended sample program input-output results in the form of atomi
 formulas,and the theory T is to be a de�nite 
lause logi
 program. Thus the 
onsisten
y ofT is guaranteed, but 
omputational properties su
h as termination and 
ompu-tational tra
tability of the synthesized program have to be separately 
onsidered.So the goal of indu
tive logi
 programming (ILP) is to obtain a 
olle
tion of
lauses with universally quanti�ed variables, whi
h subsumes the given �nite listof intended program results. The main approa
h to a
hieve this goal is synta
ti
generalization of the given examples. Consider atoms p(a; a�b�nil) and p(b; b�nil).These two unit 
lauses generalize to the 
lause program p(X;X �Y ) . This restson the existen
e of a dual of the most general uni�er of two atoms known as theleast general generalization (LGG) [63, 62℄. In this simple 
ase, the LGG yieldsthe intended program as a unit 
lause witness, p(X;X � Y ) ` p(a; a � b � nil) ^p(b; b � nil).The synta
ti
al generalization of terms has been extended to a notion ofgeneralized subsumption of 
lauses [18, 63℄ and further to a method known asinverse resolution, see e.g., [58℄. This method has proven useful for 
on
ept for-mation, dedu
tive databases and data mining. However, it is too weak for in-du
tion of re
ursive logi
 programs. Consider examples of list 
on
atenation,e.g., p(nil; a � nil; a � nil) and p(a � nil; b � nil; a � b � nil). The least general gen-eralization yields the 
lause p(X;Y � nil; a � Z)  , whi
h fails to 
apture there
ursive de�nition of 
on
atenation. Providing more examples eventually leadsto an overly general 
lause: the universal predi
ate p(X;Y; Z); whi
h subsumesall 
on
atenation examples though it blatantly fails to 
apture 
on
atenation oflists. A general remedy for over-generalization is to in
lude negative examples,whi
h are understood as examples in the 
omplement set of the intended resultset of atoms. In general, the key problem in synthesizing su
h programs is theinvention and introdu
tion of appropriate re
ursive forms of 
lauses.Compositional indu
tive synthesis employs a 
ompositional logi
al languagefor 
omputing relations in analogy to fun
tional programming languages in-tended for 
omposing and 
omputing fun
tions. The method does not apply theabove generalization me
hanisms. A program takes the form of a variable-freepredi
ate expression ' en
ompassing elementary predi
ates and operators for
ombining relations and produ
ing new resulting relations.Let ' ` e mean that the tuple (of terms) e is dedu
ible from the programpredi
ate expression '. The 
omputational semanti
s of the language 
an thenbe explained by means of inferen
e rules of the form'1 ` e1 : : : 'n ` enop('1; : : : ; 'n) ` e ;where e depends on op and e1; : : : ; en, as expli
ated in the 
on
rete rules below.Let ' ` e1 + : : :+ en mean ' ` ei for i = 1::n, so that + 
ombines result tuples.Thus, ' ` e1+e2+: : : expresses that the tuples ei of the term form ht1; t2; : : : ; tniare 
omputable from the n-ary predi
ate expression '.In the language Combilog employed here, the given elementary predi
atesare 
onstant formation, identity and list 
onstru
tion de�ned by the inferen
e



rules: 
onst
 ` h
i id ` ht; ti 
ons ` hh; t; h � tiIn addition to the elementary predi
ates, there is a 
olle
tion of operators,whi
h map argument relations to relations. The three fundamental operators arehere de�ned by: ' ` ht1; t2; : : : ; tni (make)make�1;�2;:::;�m(') ` ht�1 ; t�2 ; : : : ; t�mi'1 ` e+ e0 '2 ` e+ e00 (and )and('1; '2) ` e '1 ` e1 '2 ` e2 (or )or('1; '2) ` e1 + e2The make operator is a generalized unary proje
tion operator 
arrying an aux-iliary ve
tor of indi
es �1; : : : ; �m serving to reorder arguments and introdu
edon't 
ares. As des
ribed in [46℄, Combilog possesses a 
ompositional semanti
sin whi
h and is set interse
tion and or is set union, whi
h motivates the inferen
erules for the and and or operators. These operators re
e
t, respe
tively, logi
al
onjun
tions in 
lause bodies and multiple de�ning 
lauses.This operator language be
omes as expressive as ordinary 
lause programsif the language is extended with fa
ilities for naming predi
ate expressions andusing these names re
ursively in program predi
ate de�nitions. However, in thepresent form the language does not introdu
e predi
ate names in a program.Instead, the de�ned predi
ates are anonymous and in order to a

ommodatere
ursive formulations e.g., for list pro
essing, the iteration operators foldr andfoldl are introdu
ed. These operators are akin to the fold operators in fun
tionalprogramming and with theoreti
al underpinning in the theory of primitive re-
ursive fun
tions as dis
ussed in [45, 46℄, The asso
iated rules are: ` ht1; t3i (foldr 0)foldr (';  ) ` ht1; nil; t3ifoldr (';  ) ` ht1; t2; zi ' ` hh; z; t3i (foldr > 0)foldr (';  ) ` ht1; h � t2; t3i ` ht1; t3i (foldl 0)foldl (';  ) ` ht1; nil; t3i' ` hh; t1; zi foldl (';  ) ` hz; t2; t3i (foldl > 0)foldl (';  ) ` ht1; h � t2; t3iFor instan
e, with foldr available, the well-known append 
on
atenation predi-
ate is make2;1;3(foldr (
ons ; id )), where the make operator swaps the two �rstarguments.



Below we illustrate the appli
ation of the rules using the append program,proving make2;1;3(foldr (
ons ; id)) ` ha � nil; b � nil; a � b � nili:id ` hb � nil; b � nili (foldr 0)foldr (
ons ; id) ` hb � nil; nil; b � nili 
ons ` ha; b � nil; a � b � nili (foldr > 0)foldr (
ons ; id ) ` hb � nil; a � nil; a � b � nili (make)make2;1;3(foldr (
ons ; id )) ` ha � nil; b � nil; a � b � niliWhen the inferen
e rules are used to 
ompute result tuples, these tuples areunknown parameters to be determined in the 
ourse of the exe
ution. In 
on-trast, in the 
ompositional indu
tive synthesis method, the result tuples aregiven initially, as a 
ontribution to the result, whereas '1; : : : ; 'n are (partly)unknown program 
onstituents to be determined re
ursively in the 
ourse of thesynthesis. These inferen
e rules are used in the way des
ribed in Se
tion 3.1for building proofs in a goal dire
ted manner where the program 
onstru
ts areunknowns, given as metavariables, and instantiated during proof. This fa
ili-tates understanding of the indu
tion pro
ess as a stepwise, prin
ipled, program
omposition pro
ess.5.2 OverviewLet us now present 
ompositional indu
tive synthesis in terms of its generi
features.Spe
ifi
ations. In indu
tive synthesis, spe
i�
ations are partial extensionalde�nitions of the programs to be indu
ed, i.e., a set of atoms or tuples 
onsti-tuting sample program results. No other problem spe
i�
 spe
i�
ations need beemployed.Me
hanism. The operators are similar to s
hemas in the s
hema guided ap-proa
h to synthesis. In the present method, the program is synthesized in astri
t re
ursive divide-and-
onquer pro
ess by tentatively sele
ting an operatorand then re
ursively attempting synthesis of 
onstituent parameter programs.Our synthesis takes advantage of the metainterpreter outlined below for 
om-positional programs and does not rely on generalization me
hanisms. The ap-proa
h 
an be 
hara
terized as the top-down stepwise 
omposition and spe
ial-ization of a Combilog program intended as a solution in the sense that the pro-gram subsumes the program examples. The sear
h involved in 
hoosing betweenoperators is taken 
are of by the ba
k-tra
king me
hanism in the synthesizer.In prin
iple, our synthesis pro
eeds by introdu
ing meta-variables for the leftoperand predi
ate expressions of ` in the proof 
onstru
tion, and then su

es-sively instantiating these variables in the 
ourse of the goal-driven proof 
on-stru
tion; in doing so, we also appeal to the rule' ` e1 ' ` e2' ` e1 + e2 ;



whi
h is used for goal splitting on the program examples. Thus the above proofmay be 
on
eived of as a tra
e of a sample indu
tive synthesis proof.In our metainterpreter system, the relationship ' ` e is realized as a binarypredi
ate syn, whi
h simultaneously serves as metainterpreter and synthesizer.The key prin
iple of our synthesis method is the inverted use of our metainter-preter so that the �rst argument program predi
ate is to be instantiated in the
ourse of synthesizing a program.Thus the heart of the synthesizer is 
lauses of the following, general, divide-and-
onquer form for the available operators:syn(
omb(P1; : : : ; Pm);Ex ) apply 
omb(Ex ;Ex 1; : : : ;Exm)^ syn(P1;Ex 1) ^ : : : ^ syn(Pm;Exm):Programs 
onsisting of an elementary predi
ate are trivially synthesized withoutre
ursive invo
ation of syn. Let us 
onsider the synthesis of a basi
 predi
ateexpression for the head predi
ate yielding the head of a non-empty list, givensay the two examples ha � b � nil; ai and ha � nil; ai. Synthesis of head is initiatedwith a goal 
lause  syn(P; [[a; b℄; a℄) ^ syn(P; [[a℄; a℄):A su

essful proof instantiates P with the synthesized expressionmake3;1(
ons).Heuristi
s. A detailed des
ription of the synthesizer is found in [46℄. To pre-vent the synthesizer from running astray in the in�nite spa
e of possible pro-gram hypotheses, the sear
h is 
ondu
ted as an iterative deepening. To avoidunwanted trivial program solutions, further 
onstraints are imposed on the syn-thesizer. Consider, for instan
e, synthesis of the append predi
ate. An overlygeneral solution is obtained as the universal predi
ate, say, with the expressionmake2;3;4(
onst
) 
orresponding to the 
lause p(X1; X2; X3). As mentioned, su
hunwanted solutions might be ruled out by the use of negative examples. How-ever in our synthesizer we have 
hosen to enfor
e well-modedness 
onstraintson the synthesized programs thus suppressing the above solution in favor of there
ursive P = make2;1;3(foldr (
ons ; id ));whi
h is obtained as the synta
ti
ally smallest solution given the two sampleresults hnil; nil; nili and ha �nil; b �nil; a � b �nili and the mode pattern [+;+;�℄,and 
omplying with the usual 
lauses for append. The synthesis pro
eeds as agoal-driven proof 
onstru
tion of the sample proof shown in the above se
tion.Ba
kground Knowledge. The elementary predi
ates and the operators de-termine the admissible forms of programs and thereby 
onstitute a form of ba
k-ground knowledge. No problem-spe
i�
 ba
kground knowledge is provided buta sear
h bias may be imposed by providing additional auxiliary predi
ates.



Tool Support. For synthesizing the at pos program, a system 
alled Com-bindu
e was used, whi
h is based on the method outlined above and des
ribedin detail in [46℄.Human Intera
tion and S
alability. The 
urrent experimental system
ondu
ts the indu
tive synthesis automati
ally. The 
omputational sear
h 
ostslimit the size of indu
ible programs to around 6 predi
ates and operators.However, we envisage integration of the CombiIndu
e prin
iples into a semi-automati
 
ompositional development system. In this system, the programmer
an o�er assistan
e by proposing appropriate auxiliary predi
ates within thepertinent data type. The imposition of data types will also serve to 
onstrainfurther the sear
h spa
e of well-moded program 
andidates. Re
ursion (fold)over lists will be generalized to other data types later.5.3 ExampleSin
e at this stage, the synthesis system supports list as the only data type werepresent the number n as a list of length n with 
onstants i, where i 
an be any
onstant. Synthesis of the atpos program from the single sample ha�b�nil; i�nil; biyields the solutionatpos = foldl (make4;3;2(
ons);make3;1(
ons)))as illustrated by the following tra
e:make4;3;2(
ons) `h ; a � b � nil; b � nili make3;1(
ons) ` hb � nil; bi (foldl 0)foldl (make4;3;2(
ons);make3;1(
ons)) `hb � nil; nil; bi (foldl > 0)foldl (make4;3;2(
ons);make3;1(
ons)) ` ha � b � nil; i � nil; biThe synthesized program is the Combilog form of the de�nite 
lause programatpos(L; I; E) syn(foldl (tail 0; head); [L; I; E℄)syn(tail 0; [ ; F � T; T ℄) syn(head ; [F � T; F ℄) Synthesis with the foldr operator is not possible. However, swapping thetwo subgoals of foldr yields the operator foldrrev allowing the following variantprogram to be synthesizedatpos = make3;2;1(foldrrev (
ons ;make1;3(
ons))):The relationship between su
h a pair of variant programs is theoreti
allyestablished by a duality theorem stated and proved in [44℄.In order to fa
ilitate the 
omparison of the synthesis approa
hes, let us trans-form the �rst Combilog form of the atpos de�nite 
lause program into a re
ur-sive atpos program. We �rst unfold the atpos 
lause:atpos(L; nil; E) head(L;E)atpos(L;X � T;E) tail 0(X;L;Z); syn(foldl (tail 0; head ); [Z; T;E℄)



Now, unfolding head and tail, and folding ba
k the se
ond literal with atpos, weobtain the following logi
 program.atpos(L; nil; E) L = E � Tatpos(L;X � T;E) L = F � Z; atpos(Z; T;E)5.4 AnalysisChe
k that meaning is preserved! Designing a metainterpreter for Combilogis simpli�ed by the variable-free form of Combilog programs, the separationof predi
ate expressions and terms in separate arguments, and the eliminationof introdu
ed predi
ate names. These simpli�
ations substantially redu
e sear
hand allow us to e�e
tively use the metainterpreter as the ba
kbone of our ILPmethod by reversing the provability metalogi
 programming demo predi
ate asexamined e.g., in [43℄ and in [21℄ for ordinary de�nite 
lauses.In [46℄ we 
ompare with other indu
tive synthesis systems and report resultson su

essful automati
 synthesis of a number of textbook programs in
ludingnon-naive as well as naive reversal of lists. The latter program makes 
alls forthe auxiliary predi
ate append, whi
h is re
ursively indu
ed. This predi
ate in-vention, whi
h is generally 
onsidered problemati
 in ILP, is handled smoothlyin our 
ompositional method sin
e expli
it predi
ate names are not introdu
ed.The outlined 
ompositional method fa
ilitates a program development method-ology where 
ustomized domain spe
i�
 operators are added to the general pur-pose ones. Moreover, it seems that the 
ompositional method surpasses moretraditional ILP methods with respe
t to predi
ate invention and terminationof indu
ed programs within the 
onsidered 
lass of primitive re
ursive relationsdelineated by the available re
ursive operators.6 ComparisonIn this se
tion, the synthesis approa
hes are 
ompared from di�erent points ofview. First, we 
ompare the synthesized atpos programs. Afterwards, we 
on-trast the general features of the di�erent approa
hes. Finally, we 
on
lude byanalyzing how s
hemas are used, impli
itly or expli
itly, in program synthesisand we suggest that they play a 
entral role in understanding di�erent synthesismethods. In the following, we will refer to indu
tive synthesis, dedu
tive syn-thesis, and s
hema-guided synthesis to denote the parti
ular synthesis methodspresented in this paper.6.1 The atpos(L,I,E) ProgramAll three methods yielded the same program. This was the 
ase even though theydi�er in whi
h variable they 
hoose as an indu
tion parameter: both indu
tivesynthesis and s
hema-guided synthesis 
hoose I as the indu
tion parameter, while



dedu
tive synthesis 
hooses L. In the 
ase of dedu
tive synthesis, we 
ould justas well have 
arried out indu
tion on I . However, for s
hema-guided synthesis,swit
hing would require a separate s
hema with a di�erent template, namely withan additional non-re
ursive 
lause for the non-minimal 
ase. The same holds forindu
tive synthesis where a fold 
ombinator over numbers and an asso
iated rulewould be required.In general, the 
hoi
e of the indu
tion parameter will a�e
t the form ofthe resulting program and even its 
omplexity [25℄. In this regard, dedu
tivesynthesis o�ers more 
exibility, as one 
an perform indu
tion over any well-founded relation, and development (hen
e program 
onstru
tion) pro
eeds insmaller steps. Of 
ourse, in s
hema-guided synthesis and indu
tive synthesis, one
an always introdu
e new s
hemas, respe
tively operators, 
orresponding to newways of building programs, as the need arises.6.2 Spe
i�
ationThe forms of the spe
i�
ations in dedu
tive synthesis and s
hema-guided syn-thesis are similar. Both are �rst-order formulas asserting a possibly 
onditionalequivalen
e. In indu
tive synthesis, the spe
i�
ation is a �nite set of examples(a subset of the extensional de�nition of the relation), whi
h is by nature in-
omplete (when the extensional de�nition is in�nite). Spe
i�
ations in indu
tivesynthesis may also in
lude negative examples or properties [28, 36℄, but in gen-eral they remain in
omplete. This in
ompleteness is a signi�
ant di�eren
e and,as we will see, it has far-rea
hing 
onsequen
es. Indeed, it will play a key role indi�erentiating indu
tive synthesis from the other two approa
hes with respe
tto the other generi
 features.For the dedu
tive synthesis and s
hema-guided synthesis approa
hes, in 
on-trast to indu
tive synthesis, it is important for non-trivial appli
ations to beable to 
onstru
t 
omplex spe
i�
ations and this requires ways of parameteriz-ing and 
ombining spe
i�
ations. In our work on dedu
tive synthesis, we a
hievethis, in pra
ti
e, by using logi
al frameworks like Isabelle [59℄, whi
h providesupport for stru
tured theory presentations. In s
hema-guided synthesis, [33℄express program s
hemas as extensions of spe
i�
ation frameworks [52℄, whi
hsupport parameterized spe
i�
ations and their 
omposition.Of 
ourse, the use of �rst-order logi
 as a spe
i�
ation language has its limita-tions. For example, in s
hema-guided synthesis, we needed the well-foundednessof a relation � as a 
onstraint in the DC s
hema. However, a formalization ofwell-foundedness generally falls outside of �rst-order logi
, unless one formal-izes, e.g., set-theory. A work-around is to assume that some �xed 
olle
tion ofrelations is de
lared to be well-founded. The alternative is to use a stronger(higher-order) logi
 or theory [1℄ where 
on
epts su
h as well-foundedness 
anbe de�ned and well-founded relations 
an be 
onstru
ted. Stronger logi
s, of
ourse, have their own drawba
ks; in parti
ular it is more diÆ
ult to automatededu
tion.



6.3 Me
hanismAs presented, the me
hanisms used in the three methods appear quite dissimi-lar. Dedu
tive synthesis is oriented around derivations, s
hema-guided synthesiswas des
ribed using an algorithm for applying s
hemas, and indu
tive synthe-sis uses a meta-interpreter to build programs. Yet it is possible to re
ast allthree so that the 
entral me
hanism is the same: a top-down appli
ation ofrules is used to in
rementally 
onstru
t a program, during a derivation, in a
orre
tness-preserving way. In dedu
tive synthesis, derived rules are applied top-down, using higher-order uni�
ation to build programs as a \side-e�e
t" of proof
onstru
tion. Although the me
hanism for applying s
hemas has been presentedin an algorithmi
 fashion, it is possible to re
ast s
hema-guided synthesis as theappli
ation of rules in a dedu
tive system [1℄; namely, a s
hema 
onstitutes a(derivable) rule whose premises are given by the s
hema's 
onstraints and (the
ompletion of its) template and the 
on
lusion is given by the s
hema's spe
i-�
ations. Viewed in this way, s
hema-guided synthesis, like dedu
tive synthesis,
onstru
ts programs, during proofs, by the higher-order appli
ation of rules. Themain distin
tion between the two methods boils down to the rules, granularityof steps, and heuristi
s/intera
tion for 
onstru
ting proofs. Finally, in indu
tivesynthesis, rules are also given for 
onstru
ting Combilog programs. There, therules are automati
ally applied by a Prolog meta-interpreter.Although they di�er in form, the rules employed by the di�erent methodshave a similar nature. Not surprisingly, in all 
ases, mathemati
al indu
tionplays a key role in program synthesis, as it is ne
essary for 
onstru
ting itera-tive or re
ursive programs. In dedu
tive synthesis, indu
tion prin
iples 
an bederived from indu
tion prin
iples for data types or even the indu
tive (least-�xedpoint) semanti
s of logi
 programs [1℄. The indu
tion prin
iples (perhaps ina reformulated form, e.g., the ind rule of Se
tion 3.2) are then expli
itly appliedand their appli
ation 
onstru
ts a template for a re
ursive program. In s
hema-guided synthesis, the 
orre
tness of s
hemas for synthesizing re
ursive programsis also justi�ed by indu
tive arguments. Indeed, 
omplex s
hemas 
an be seen askinds of 
omplex ma
ro-development steps that pre
ompile many mi
ro steps,in
luding indu
tion. One might say that indu
tion is impli
itly applied when us-ing a s
hema to 
onstru
t re
ursive programs. In indu
tive synthesis, programsare iterative, instead of re
ursive, and programs that iterate over lists (or, moregenerally, other indu
tively de�ned data types) are built using fold rules. Again,mathemati
al indu
tion prin
iples play a role, behind-the-s
enes, in justifyingthe 
orre
tness of iteration rules, and rule appli
ation 
an be seen as an impli
ituse of indu
tion. There is, of 
ourse, a tradeo�. By 
ompiling indu
tion into spe-
ialized rules, s
hema-guided synthesis and indu
tive synthesis 
an take largersteps than dedu
tive synthesis; however, they are more spe
ialized. In parti
ular,by building only iterative programs, the indu
tive synthesis method presented
an sharply redu
e the sear
h spa
e, but at the pri
e of limited expressibility.The underlying me
hanisms are, in some respe
ts, fundamentally di�erent.Although all three methods are based on �rst-order logi
, any system imple-menting dedu
tive synthesis (respe
tively s
hema-guided synthesis) will require



higher-order uni�
ation (respe
tively higher-order mat
hing). This is ne
essaryto 
onstru
t substitution instan
es for variables in rules and s
hemas that rangeover fun
tions, relations, and more generally, 
ontexts (terms with holes); thedownside is that higher-order mat
hing and uni�
ation are more diÆ
ult thantheir �rst-order 
ounterparts, and the existen
e of multiple uni�ers (respe
tivelymat
hers) 
an lead to large bran
hing points in the synthesis sear
h spa
e. Theoperator form of Combilog means that rules in indu
tive synthesis manipulateonly �rst-order terms. Moreover, all 
ompli
ations 
on
erning obje
t languagevariables are eliminated. This simpli�es the metainterpreter and redu
es thesynthesis to sear
h in the spa
e of operator 
ombinations subje
ted to well-modedness 
onstraints.Finally, the di�ering nature of the spe
i�
ations, in parti
ular, 
omplete ver-sus in
omplete information, makes a substantial di�eren
e in the underlying se-manti
s of the di�erent methods and the relationship of the synthesized programto its spe
i�
ation. As presented here, both dedu
tive synthesis and s
hema-guided synthesis 
onstru
t programs that are (possibly under 
onditions) equiv-alent to some initial spe
i�
ation. In the 
ase of indu
tive synthesis, equivalen
eis weakened to impli
ation or entailment. This 
hanges, of 
ourse, the semanti
sof the rules. Moreover it has a signi�
ant impa
t on extra-logi
al 
onsidera-tions, i.e., 
onsiderations that are not formalized in the synthesis logi
 (e.g.,the program synthesized should have a parti
ular synta
ti
 form or 
omplexity).In indu
tive synthesis these 
onsiderations (in parti
ular, having a synta
ti
allysmall re
ursive program that entails the examples) be
ome 
entral to the syn-thesis pro
ess and it is important to use a well-spe
i�ed strategy, embodied in ametainterpreter, to ensure them.6.4 Heuristi
sEa
h of the methods presented has an in�nite sear
h spa
e. However, the spa
esare di�erently stru
tured and di�erent heuristi
s may be employed in sear
hingthem.In dedu
tive synthesis, one pro
eeds in a top-down fashion, employing in-du
tion and simpli�
ation. The sear
h spa
e has both in�nite bran
hing pointsasso
iated with the appli
ation of higher-order uni�
ation (as there may be in-�nitely many uni�ers) and bran
hes of unbounded length (as indu
tion maybe applied in�nitely often and simpli�
ation may not ne
essarily terminate).In pra
ti
e, an e�e
tive heuristi
 is to follow an indu
tion step by eager sim-pli�
ation; here, rippling 
an be used to 
ontrol the simpli�
ation pro
ess andguarantee its termination. Moreover, with the ex
eption of applying indu
tion,uni�
ation problems are usually of a restri
ted form, involving \se
ond-orderpatterns," whi
h 
an be easily solved [51℄. Hen
e, it is possible, in some 
ases,to use heuristi
s to redu
e the sear
h spa
e to the point where synthesis 
an be
ompletely automated.S
hema-guided synthesis uses a stri
t re
ursive divide-and-
onquer strategyin the sele
tion of operators and the synthesis of the parameter programs. It alsoemploys a stepwise 
omposition/spe
ialization of programs where the obje
tive is



to reuse existing 
ode. Analogous to dedu
tive synthesis, 
riti
al bran
h-pointsin
lude s
hema sele
tion and sele
tion of a substitution (higher-order mat
h-ing is required as the same s
hema 
an be used in di�erent ways). Sear
h 
anbe 
ondu
ted as an iterative deepening sear
h employing heuristi
s. Althoughs
hema-guided synthesis also has an in�nite sear
h spa
e, it is fair to say thatwhen a program is in the sear
h spa
e, one is likely to �nd it more qui
kly thanwith dedu
tive synthesis sin
e the steps in s
hema-guided synthesis are larger,and hen
e the program is at a shallower ply in the sear
h tree.The sear
h spa
e in indu
tive synthesis is more diÆ
ult to navigate thanin the other two methods be
ause of the additional extra-logi
al 
on
erns men-tioned previously. Here a stri
t 
ontrol (di
tated by a metainterpreter) is requiredto generate 
andidate programs in a parti
ular order. To make automated sear
hpra
ti
al, the sear
h spa
e is restri
ted, a priori, by restri
tions in the method.For example, the programs synthesizable are restri
ted to those involving itera-tion, instead of general re
ursion, and the use of 
ombinators ensures that �rst-order (Prolog) uni�
ation suÆ
es for program 
onstru
tion. In addition there isthe well-modedness requirement and, to redu
e explosive bran
hing, the use ofor is restri
ted. It is an interesting question as to whether any of these pruningmeasures 
ould be pro�tably used in the other approa
hes.6.5 Ba
kground KnowledgeThe three approa
hes formalize ba
kground knowledge in di�erent ways. For de-du
tive synthesis, ba
kground knowledge about data types is given by a standard�rst-order theory augmented with appropriately reformulated (for synthesis) in-du
tion s
hemas (e.g., ind ). For s
hema-guided synthesis, ba
kground knowledgemust be formalized in terms of a base of program s
hemas, 
apturing a rangeof program 
lasses, whi
h may (or may not) dire
tly in
orporate informationabout data types, as well as a database of reusable programs and informationabout well-founded relations (typi
ally asso
iated with data types). Here, morework is usually required to formalize ba
kground knowledge, but the payo� isthat this work is done on
e and for all and the resulting s
hemas 
an be usedto redu
e sear
h and guide development to spe
ialized 
lasses of programs. Forindu
tive synthesis, the ba
kground knowledge is basi
ally the elementary oper-ators (
onst, id, 
ons, et
.), whi
h en
ode knowledge about iterative programsoperating over lists. As with the other approa
hes, this knowledge is domain-dependent, and synthesizing programs operating over other data types wouldrequire additional rules.6.6 Human Intera
tion and S
alabilityThe dedu
tive synthesis proof presented was 
onstru
ted intera
tively. There,within a �rst-order formalization of list theory, spe
ialized rules for synthesiswere derived, and intera
tively applied. However, proof sear
h 
an also be auto-mated using ta
ti
s and one 
an adjust the size of proof steps by deriving newproof rules (analogous to 
omplex program s
hemas). This pro
ess of writing



ta
ti
s and deriving new rules is open, leads to a 
ustomizable approa
h, and
an, at least in theory, s
ale arbitrarily. The use of ta
ti
s also makes it possibleto arbitrarily mix automation with human intera
tion.Conversely, the s
hema-guided synthesis method was presented as fully au-tomatable, although a human 
ould be used to drive the sele
tion of s
hemasand substitution instan
es. Indeed, as with dedu
tive synthesis, this is oftenpreferable, as it provides a way of in
uen
ing extra-logi
al 
on
erns, su
h as the
omplexity of the synthesized program. The approa
h s
ales well as spe
ializeds
hemas 
an be tuned to parti
ular 
lasses of problems (divide and 
onquer,global sear
h, et
.). Moreover, there is a natural me
hanism for the reuse ofprograms.For the moment, there is no human intera
tion in the presented method forindu
tive synthesis. It is not 
lear either how feasible this is, given the impor-tan
e that extra-logi
al 
on
erns play in the synthesis pro
ess. How would ahuman know, for example, that steps suggested will generate the simplest pos-sible program? The reuse of existing programs also is not handled.It is not 
lear how the indu
tive synthesis approa
h 
an be s
aled up tosynthesize more 
omplex programs with re
ursion or iteration. For 
omplex ex-amples, the in
omplete nature of the input spe
i�
ation makes the programspa
e so intra
table that human intera
tion, heuristi
s, support for reuse, and\more 
omplete" spe
i�
ation information, su
h as properties [30, 28℄, appearne
essary. But even with these extensions, the purely indu
tive approa
h to thesynthesis of programs with re
ursion or iteration remains very hard, and it seemsdoubtful whether this approa
h will ever s
ale up to the synthesis of 
omplex,real-life programs.When the synthesized program does not feature re
ursion or iteration (andmethods for this are outside the s
ope of this paper) then the indu
tive synthesisapproa
h 
an usefully s
ale. This is witnessed by re
ent progress in ILP, onproblems in domains, su
h as fa
e re
ognition [54℄, where only (large) sets ofinput/output examples are available as humans have diÆ
ulty writing a formal,
omplete spe
i�
ation [34℄.6.7 Tool SupportFor dedu
tive synthesis, we used Isabelle [59℄, a generi
 logi
al framework, forour implementation. For s
hema-guided synthesis, the higher-order proof plan-ning system �Clam 
an be used, upon reformulation of the program s
hemas asproof planning methods [35℄; this has the ni
e side-e�e
t that the proof obliga-tions of s
hema-guided synthesis 
an also be dis
harged using the same theoremproving ma
hinery. For indu
tive synthesis, a spe
ialized Prolog implementationwas used.It is interesting to spe
ulate on whether generi
 logi
al frameworks, like Is-abelle, 
ould be e�e
tively used for all three approa
hes. And 
ould the ap-proa
hes even be pro�tably 
ombined?Our dis
ussion at the top of Se
tion 6.3 suggests that a generi
 logi
al frame-work 
an e�e
tively be used for s
hema-guided synthesis. Of 
ourse, there are



some potential drawba
ks. First, a logi
al framework requires re
asting any syn-thesis method as one based on theorem proving; for instan
e, s
hema-guidedsynthesis was not 
ast this way in Se
tion 4. This may require some 
ontortions;see [9℄ for an example of this. Se
ond, the logi
al framework will impose its owndis
ipline for presenting and stru
turing theories, and this may deviate fromthat desired by a parti
ular synthesis method; e.g., spe
i�
ation frameworks[52℄ provide more stru
turing possibilities than those possible using the Isabellesystem. Finally, a hand-
oded synthesis system will probably be more eÆ
ient.Although it is easy to write a Prolog interpreter (to realize indu
tive synthesis)as a ta
ti
 in a logi
al framework, this involves a layer of metainterpretation anda 
orresponding slow-down in exe
ution time. The pri
e may be too high whensubstantial sear
h is involved.As to the question whether the approa
hes 
ould be pro�tably 
ombined, theanswer is a 
lear `yes' for dedu
tive synthesis and s
hema-guided synthesis, andwe will develop this point in the next sub-se
tion. Combining indu
tive synthesiswith the other approa
hes raises the question of how to deal with the ensuingredundan
y in the overall spe
i�
ation, as the in
omplete part supposedly is alogi
al 
onsequen
e of the 
omplete one. To a human programmer, examplesatta
hed to a spe
i�
ation that is intended to be 
omplete often fa
ilitate theunderstanding of the task. But an automated synthesizer probably does not needsu
h help. Should there be a 
ontradi
tion between the 
omplete spe
i�
ationand the examples, then the overall spe
i�
ation is almost 
ertainly wrong. Inthe absen
e of su
h a 
ontradi
tion, one knows nothing about the quality of theoverall spe
i�
ation and thus has to forge ahead. The question then arises ofhow to exploit the redundan
y. A 
onvin
ing proposal was made by Minton [57℄:to 
ope with the instan
e sensitivity of the heuristi
s used to eÆ
iently solveubiquitous, NP-hard, 
onstraint satisfa
tion problems, industry-strength solversynthesizers should use training instan
es (i.e., the input parts of examples) inaddition to the spe
i�
ation of the problem, so that the most suitable heuristi
s
an be empiri
ally determined during synthesis. As long as the a
tual runs ofthe synthesised program are on instan
es within the distribution of the traininginstan
es, a good performan
e 
an be guaranteed.6.8 Impli
it versus Expli
it Use of S
hemaA 
entral part of our 
omparison has been that the boundaries between dedu
tivesynthesis, s
hema-guided synthesis, and indu
tive synthesis are somewhat 
uidwith respe
t to the use of s
hemas. In parti
ular, from the appropriate view-point, the di�eren
e between dedu
tive synthesis and s
hema-guided synthesis isvanishingly small. We would like to 
lose the 
omparison by driving these pointshome.The derived rules in dedu
tive synthesis for reasoning about equivalen
es arerule s
hemas, i.e., rules with metavariables ranging over predi
ates. These aremetavariables from the view of a metalogi
, but they also 
an be viewed asuninterpreted relations in the obje
t logi
 and play the same role as the openrelation symbols in s
hema-guided synthesis. Viewed this way, if the ba
kground



theory of dedu
tive synthesis is formalized as a spe
i�
ation framework, thenthe inferen
e rules are a variation of the program s
hemas in s
hema-guidedsynthesis.For example, the ind rule with its assumptions A1{A3 presented here in de-du
tive synthesis is similar (although not equivalent) to theDC s
hema developedin s
hema-guided synthesis. In parti
ular:{ ind 
ommits to an indu
tion parameter of type list, whereas DC has an opensort SX for the indu
tion parameter;{ ind 
ommits to one-step, head-tail de
omposition of the indu
tion parame-ter, whereas DC has an open relation de
 for this;{ DC 
ommits to always one re
ursive 
all in the step 
ase, whereas ind is
exible (there 
an be any number of re
ursive 
alls);{ the assumption A1 of ind plays the same role as the template DC in DC,but they di�er in 
ontent;{ the predi
ate variable B of ind plays the same role as the open relation solvein DC;{ the assumption A2 of ind plays the same role as the spe
i�
ation Ssolve inDC;{ the predi
ate variable S of ind does not play the same role as the openrelation 
omp in DC; indeed, an instan
e of S may in
lude re
ursive 
all(s),whereas re
ursion is di
tated by the template DC and is thus not 
onsideredwhen instantiating 
omp;{ the assumption A3 of ind plays the same role as the spe
i�
ation S
omp inDC, but they di�er in 
ontent;{ there is no expli
it equivalent of the 
onstraints C1, C2, and C3 and thespe
i�
ations Smin and Sde
 of DC in ind.The di�eren
es here are not due to the underlying synthesis me
hanism, butare an artifa
t of the parti
ular impli
it s
hema used (for reasons of simpli
ity)in this presentation of dedu
tive synthesis. More elaborate rules and s
hemas,neither 
ommitted to a parti
ular type nor a well-founded relation, have beendeveloped in dedu
tive synthesis, as presented in, e.g., [1, 3℄.A similar 
omparison 
an be made between the foldr and foldl operators inindu
tive synthesis, and the DC s
hema in s
hema-guided synthesis. The foldrand foldl operators 
an also be seen as impli
it program s
hemas. More elaboraterules 
ould also be used to build Combilog programs in larger steps.Program s
hemas are thus used (impli
itly or expli
itly) in the di�erentsynthesis approa
hes. In the literature, program s
hemas are often redu
ed totemplates, formalized as higher-order expressions, and applied using higher-order uni�
ation. As shown in s
hema-guided synthesis, su
h templates mustbe enhan
ed with semanti
 information, expressed for instan
e through axioms,
onstraints, and spe
i�
ations. Viewing su
h s
hemas as derivation rules, ands
hema appli
ation as logi
al inferen
e, the distin
tion vanishes between thes
hema-guided and dedu
tive/
onstru
tive approa
hes. For instan
e, in [1℄ it isshown how s
hemas for transformational development 
an be formalized as de-rived rules and 
ombined with other kinds of veri�
ation and synthesis. In [30,28℄, a DC-like s
hema is used in the 
ontext of indu
tive synthesis.



7 Con
lusionIn this paper, we have analyzed and 
ompared representative methods of threeapproa
hes to program synthesis in 
omputational logi
. Despite their di�er-en
es, we established strong similarities. In parti
ular, program s
hemas are used(impli
itly or expli
itly) in ea
h of the methods and are 
entral in driving thesynthesis pro
ess and exploiting synergies. We would therefore like to 
on
ludeby dis
ussing some limitations of s
hemas and open issues.Despite their 
entral role, s
hemas have their limitations. S
hemas are usu-ally expressed in some logi
al language, but any given language has synta
ti
alrestri
tions that in turn restri
t what 
an be expressed as a s
hema. For example,a �rst-order language �xes the arity of predi
ates and fun
tions, their asso
iatedtypes, et
. There is no way to 
apture 
ertain simple kinds of generalization orextra-logi
al annotations, for example to employ term or atom ellipses t1; : : : ; tnof variable length n. As an example of this limitation, 
onsider the ind rule ofSe
tion 3.2. There we used X to denote a sequen
e of zero or more variablesand hen
e the indu
tion rule given 
annot be 
aptured by a single s
hema, butrather requires a family of s
hemas, one for ea
h n. Extensions here are possible;[64, 28, 70, 39, 20℄ provide notions of s
hema patterns that des
ribe su
h familiesand 
an be spe
ialized as needed before, or during, synthesis.S
hemas are here de�ned as abstra
tions of 
lasses of programs. At the sametime, they formalize parti
ular design strategies, su
h as divide-and-
onquer orglobal sear
h; part of the asso
iated strategy 
an also be spe
i�ed by asso
iatedta
ti
s, whi
h 
hoose indu
tion parameters, �nd appropriate well-founded rela-tions, and so on. However, in their present form, s
hemas 
annot handle moresophisti
ated design strategies, namely strategies abstra
ting a 
lass of programsthat 
annot be obtained by instantiation with formulae. Typi
al examples areso-
alled design patterns [38℄, whi
h aim at the des
ription of software designsolutions and ar
hite
tures (typi
ally des
ribed by UML diagrams and text).How to extend s
hemas to handle su
h strategies is an open problem in programsynthesis.Overall, by examining the relationships and di�eren
es between the 
hosensynthesis methods, we have sought to bring out synergies and possibilities for
ross-fertilization, as well as limitations. The primary synergies involve a 
om-mon me
hanism: a notion of s
hemati
 rule and the use of uni�
ation to ap-ply rules in a top-down way that in
rementally 
onstru
t a program, during aderivation that demonstrates its 
orre
tness. The primary di�eren
es 
on
ernthe nature of the spe
i�
ations, in parti
ular the information present; this alsomanifests itself in di�erent semanti
s and radi
ally di�erent sear
h spa
es forthe di�erent methods. As it is, the purely indu
tive approa
h to the synthesisof programs with re
ursion or iteration remains very hard, and it seems doubt-ful whether this approa
h will ever s
ale up to the synthesis of 
omplex, real-lifeprograms. Fortunately, fruitful 
ombinations of these synthesis approa
hes exist.In the end, we believe that progress in this �eld will be based on exploiting theidenti�ed synergies and possibilities for 
ross-fertilization, as well as supportingan enhan
ed, 
exible use of s
hemas. We hope, with this paper, to have made a




onstru
tive analysis of the last de
ade of resear
h, thereby showing a possiblepath for the next de
ade.A
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