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Synthesis of Composition and
Discrimination Operators for
Divide-and-Conquer Logic
Programs

PIERRE FLENER, YVES DEVILLE

This chapter gives a brief overview of our framework for stepwise synthesis of logic
programs from examples and properties. Directives are extracted for the development
of a particular synthesis mechanism whose steps are guided by a divide-and-conquer
schema. It features deductive and inductive reasoning. Examples and properties are
presented to it in a non-incremental fashion. The objectives and methods of its last
steps (synthesis of composition and discrimination operators) are formalized, and il-
lustrated on some sample problems.

This chapter is organized as follows. After the introduction, three sample problems
are presented in section 1.2. Sections 1.3 to 1.5 present the objectives and methods of
some synthesis steps, and illustrate them on the sample problems. Some conclusions
on the results are drawn in section 1.6, related work is stated, and future research
directions are outlined.

1.1 INTRODUCTION

Program synthesis research [Bie92] aims at automating the passage from specifica-
tions to programs, in opposition to more traditional, mostly manual, programming
techniques. The key question here is: “what is a specification?”. Today, an emerging
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2 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

consensus 1s that one may speak of synthesis if the specification does not explicitly
reveal recursion or iteration. Otherwise, the technique could be classified as transfor-
mation. In this introductory section, we present a brief overview of our framework for
the stepwise synthesis of logic programs from examples and properties of the relation
to be implemented. This framework is developed in more detail in [F1e93], [FD91],
and [FD93].

1.1.1 Specifications by examples and properties

We first define a possible starting point of synthesis.

Definition 1 A specification by examples and properties of a procedure r/n consists
of:

i) a set E(r) of ground examples of the behavior of r;

ii) a set P(r) of properties (first-order logic statements) of r.

Examples are a very appealing means of conveying information about a relation:
they are easy to elaborate or understand, and they implicitly reveal some manipula-
tions of the parameters. However, examples alone constitute an incomplete information
source, and they lack in expressive power. We believe the specifier knows the miss-
ing details, and should thus be able to provide them, rather than have the synthesis
mechanism guess them. We depart thus from traditional example-based synthesis and
allow a property set in our specifications, where properties are meant to overcome
the drawbacks of examples, and yet have the same appeal as examples. Non-recursive
Horn clauses are a very convenient format. (Since we assume here that synthesis starts
from a non-recursive specification, we do not consider recursive properties.) Sample
sets of examples and properties appear in section 1.2.

1.1.2 Logic algorithms

We are actually only interested in synthesizing algorithms, rather than full-fledged
programs. Indeed, algorithm design in itself is already very hard, and we do not want
to encumber ourselves with the additional burdens of algorithm optimization, trans-
formation, and implementation, which are well-researched topics anyway ([Dev90]).
Algorithms expressed in a logic formalism are here called logic algorithms ( [Dev90]).

Definition 2 A logic algorithm of ¢ procedure v, denoted LA(r), consists of a for-
mula of the form: r(X,Y) < Def[X,Y], where the body Def is a first-order logic
statement.

Executable Prolog programs can be easily derived from logic algorithms with bodies
in disjunctive normal form [Dev90]. Sample logic algorithms appear in section 1.2.

1 Extending the syntactical conventions stated in section 77, (predicate) variable names start with
an uppercase; functors and predicate names start with a lowercase. The string F[X,Y] denotes
a formula F' whose free variables are X and Y'; the string F|a,b] denotes F[X,Y] where the free
occurrences of X and Y have been replaced by the terms a and b, respectively. The variables X and
Y are assumed to be universally quantified over LA(r); other free variables in Def are assumed to
be existentially quantified over Def.
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INTRODUCTION 3

R(X,Y)<
Minimal(X) A Solve(X,Y)
VVicie. NonMinimal(X) A Decompose( X, HX, TX)
- A Discriminater (HX, TX,Y)
AR(TX,TY)
A Processiy(HX, HY)
A Composer,(HY, TY,Y)

Figure 1.1 The divide-and-conquer logic algorithm schema

1.1.3 Schema-guided design of logic algorithms

Algorithm schemata are an old idea of computer science (see an early survey in
[Man74]). They are template algorithms with fixed control flows. They embody the
essence of algorithm design strategies (such as divide-and-conquer, generate-and-test,
global search, ...) and are thus an invaluable knowledge source for guiding (semi-)
automated algorithm design.

Example 1 Loosely speaking, a divide-and-conquer algorithm for a binary predicate
r over parameters X and Y works as follows. Let X be the induction parameter. If
X is minimal, then Y is found by directly solving the problem. Otherwise, i.e. if X is
non-minimal, we decompose X into a series? HX of heads of X and a series TX of tails
of X, the latter being of the same type as X, as well as smaller than X according to
some well-founded relation. The tails TX recursively yield tails TY of Y. The heads
HX are processed into a series HY of heads of Y. Finally, Y is composed from its
heads HY and tails TY. It may happen that different processing and composition
operators emerge for the non-minimal form of X: we have to discriminate between
them according to the values of HX, TX, and Y. Non-determinism of the intended
relation results in some discriminants that are always true. <&

Logic algorithm schemata can be expressed as second-order logic algorithms. For
instance, many logic algorithms designed by a divide-and-conquer strategy, and having
a single minimal case and a single non-minimal case, fit the schema of figure 1.1, where
R(TX,TY) stands for an optional conjunction of recursive atoms. To simplify the
presentation of this chapter, the proposed examples will be based on the schema of
figure 1.2. This is a particular case of figure 1.1, where the induction parameter X is
a list, decomposed in the traditional head/tail form. In this particular case, the non-
minimal test and the decomposition operator could have been merged. We also assume
that the processing and composition operators are handled by a single predicate.

2 In a logic algorithm schema, a bold term (resp. atom) denotes a vector (resp. conjunction) of terms
(resp. atoms).
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4 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

=] A Solve(X,Y)

— [ AX=[HX|TX]
A Discriminate,(HX, TX,Y)
AR(TX,TY)
A ProcCompp(HX, TY,Y)

Figure 1.2 The divide-and-conquer logic algorithm schema for lists

1.1.4 Directives for the development of a synthesis mechanism

We have developed in [FD91, FD93] a general strategy for stepwise, progressive, con-
sistent, and sound synthesis of logic algorithms from specifications by examples and
properties. In stepwise synthesis, there is a series of refinements towards a correct logic
algorithm:

LAi(r),LAs(r), -+, LA;(r),---, LA (r)

At each step, we measure the current logic algorithm against the intended relation:
correctness criteria useful for characterizing the soundness of synthesis have been iden-
tified. Across several steps, we measure the progression of the synthesized logic algo-
rithms towards the intended relation: comparison criteria useful for characterizing the
progression of synthesis have also been identified. These criteria may be used during
the development of a synthesis mechanism to ensure a sound synthesis.

This general strategy can be particularized to schema-guided synthesis, where each
step instantiates some predicate variable(s) of a schema. We adopt the divide-and-
conquer schema of figure 1.1 for guiding synthesis. Indeed, the class of algorithms that
can be designed by this strategy is fairly large and important. There are eight steps
to our mechanism [Fle91]:

Step 1: Syntactic creation of a first approximation
Step 2: Synthesis of Minimal and NonMinimal
Step 3: Synthesis of Decompose

Step 4: Introduction of the recursive atoms

Step b: Synthesis of Solve

Step 6: Synthesis of the Processy and Composey
Step 7: Synthesis of the Discriminatey

Step 8: Syntactic generalization

Steps 1 to 3 are straightforward, and are based on type knowledge. Step 4 is relatively
easy, and is performed by deductive reasoning from the property set. Step 5 is a
particular case of steps 6 and 7. The latter are the real challenges of synthesis, and
are the main topics of this paper. Step 8 is straightforward again, but is also covered
here. The development of all these steps can be found in [Fle93].

Note that the divide-and-conquer schema is not an input to the synthesis mecha-
nism, but rather hardwired into it.
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SAMPLE PROBLEMS 5

We implement deterministic and non-deterministic relations using the same synthe-
sis mechanism. The choice of an induction parameter is a priori independent of the
way (mode) the resulting program can be used.

Examples give rise to inductive synthesis (generalization ([Sum?77, BS79, Bie84]),
learning ( [Sha82, Tin90, Mug92])), whereas axiomatic specifications (and thus prop-
erties) give rise to deductive synthesis (proofs-as-programs ([MW79, BSW90, Fri90]),
transformations ( [Han80, Cla81, Hog81, LP90])). Since we have both kinds of spec-
ification information, we want to avoid using only one kind of inference, and thus
degrading the non-used information source into validation information. We therefore
strive for inductive and deductive synthesis; using whichever inference kind is best
suited at each step. This approach of course precludes synthesis if only examples or
only properties are given. It also gives a constructive role to each kind of specification
information.

There are two ways of presenting examples (and properties): one-by-one (incremen-
tally), or all-at-once. The former approach, advocated in [Sha82] and by the Induc-
tive Logic Programming (ILP) school of thought [Mug92], has some nice convergence
properties. But we adhere to the school of thought advocated in [Sum?77], where the
examples are presented all-at-once, so that a maximum of information is available at
each step.

With example-based synthesis, constants from F(r) inevitably appear in the logic
algorithms, thus destroying completeness unless they are generalized. We thus need
one more notion:

Definition 3 Let T' be a total function in the set of logic algorithms, such that
T(LA(r)) is LA(r) without its equality atoms involving constants introduced from FE(r).

This is illustrated in subsequent sections. It can be shown that I' is a generalization
function, i.e. that T'(LA(r)) is at least as general as LA(r). Informally speaking, a
logic algorithm is more general than another one iff its body is more often ¢rue than
the body of the other one.

The rest of this chapter 1s organized as follows. In section 1.2, we present three
sample problems. In sections 1.3 to 1.5, we present the objectives and methods of
steps 6 to 8, respectively, and illustrate them on the sample problems. In section 1.6,
we draw some conclusions on our results, state some related work, and outline future
research directions.

1.2 SAMPLE PROBLEMS

In this section, we state three sample problems that are used throughout the remainder
of this chapter. The problems can be studied independently, both here and in subse-
quent sections. But they are complementary in the sense that they illustrate distinct
intricacies of logic algorithm synthesis. Each problem is first specified informally, then
by examples and properties. These examples and properties are supposed to be given:
this chapter does not discuss the elaboration of such specifications. For each problem,
a sample logic algorithm (constructed by the methodology of [Dev90]) is shown in
order to illustrate what the synthesis mechanism should achieve. For each problem,
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6 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

E(efface) ={ efface(a,[al,[]) ( )
efface(b,[b,c], [c]) ( )
efface(e,[d,e]l, [d]) ( )
efface(f,[f,g,h], [g,h]) ( )
efface(j,[i,j,k],[i,k]) (EEs)
efface(p, [m,n,pl, m,nl) } ( )

P(efface) ={ efface(X,[XI|T],T) ( )
efface(X,[Y,XI|T],[YIT]) «X#Y} ( )

Figure 1.3 Sample versions of E(ef face) and P(ef face)

efface(E,L,R) <
L=[HLTL] AE=HLA R=TL
Vv L=[HLITL] A E#HL
A efface(E, TL,TR)
A R = [HL|TR]

Figure 1.4 A sample version of LA(ef face)

we also give the logic algorithm synthesized by step 5, but, again, we do not discuss
how this is performed.

1.2.1 The efface/3 problem

The efface(E,L,R) procedure succeeds iff term E belongs (at least once) to the non-
empty list L, and list R is L without its first occurrence of E.

Figure 1.3 gives sample versions of E(efface) and P(efface). Note that proper-
ties PE; and PFEs generalize the examples of {EE,, EEs, FFE4} and {EF5, EE5},
respectively.

Figure 1.4 gives a sample version of LA(ef face).

Figure 1.5 shows LAgs(efface), where disjunct DE; corresponds to example EF;.
We assume that step 2 chose L as induction parameter, and introduced one minimal
case (digjunct DFj, where L has exactly one element), and one non-minimal case
(disjuncts DE> to DEg, where L has at least two elements). Step 3 decomposed the
non-minimal form into its head HL and tail T'L. Step 4 introduced recursive atoms
into some non-minimal disjuncts. Note that # was judged to be an auziliary parameter
(because it is of a non-inductive type?): this prevented the search for a tail TE of E
while introducing recursive atoms; moreover, this prevented a superfluous introduction

3 Inductive types are here assumed to be either integers or lists.
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SAMPLE PROBLEMS 7
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efface(E, TL, TR)

EFE=enANL=[del AN R=I[d

HL=d ANTL=1[e] AN TR=1]] (DEs)
L = [HL|TL]

E=HL AN R=TL

B=fAL=[fg.h] AR=[gH]

HL=f AN TL=1g,h] (DE,)
L = [HL|TL]

efface(E, TL, TR)

E=j ANL=[ijk]l AN R=][ik]

HL=i¢ ANTL=1[jk] AN TR =[k] (DEs)
L = [HL|TL]

efface(E, TL, TR)

E=p A L=[mn,p] AN R=[m,n]

HL=m A TL=1[n,p] A TR = [n] (DFEs)

vV L=[,_]

vV L=[,_]

<

=

(l

T

i

L
>>>>>>>>>>>>>>>>>> > > > >

Figure 1.5 LAs(ef face)

of recursion in disjuncts DFE5 and DFEy. Step 5 solved the minimal case and the non-
recursive, non-minimal case. The atoms in boldface represent T'(LAs(ef face)).

1.2.2 The perm/2 problem

The perm(L,P) procedure succeeds iff list P is a permutation of list L.

Figure 1.6 gives sample versions of E(perm) and P(perm). Note that properties
PPy to PPs generalize examples E P to E Py, respectively.

Figure 1.7 gives a sample version of LA(perm).

Figure 1.8 shows L As(perm), where digjunct DP; corresponds to example EP;. We
assume that step 2 chose L as induction parameter, and introduced one minimal case
(disjunct D Py, where L is empty), and one non-minimal case (disjuncts DPs to DPyg,
where L has at least one element). Step 3 decomposed the non-minimal form into
its head HL and tail T'L. Step 4 introduced a recursive atom into each non-minimal
disjunct: note that the values of TP (the tail of P) could not have been computed
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8 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

E(perm) ={ perm([1,01) (EP)
perm([a]l, [a]) (EPs)
perm([b,c], [b,c]) (EPs)
perm([b,c], [c,bl) (EPy)
perm([d,e,f],[d,e,f]) (EPs)
perm([d,e,f],[d,f,e]) (EPs)
perm([d,e,f], [e,d,f]) (EP;)
perm([d,e,f], [e,f,d]) (EPs)
perm([d,e,f],[f,d,e]) (EPy)
perm([d,e,f],[f,e,d]) } (EPyo)

P(perm) ={ perm([X],[X]) (PPr)
perm( [X,Y], [X,Y]) (PP)
perm([X,Y],[¥,X]1) } (PPs)

Figure 1.6 Sample versions of F(perm) and P(perm)

perm(L, P) <
L=[] AP=)
VvV L=[HL|TIL] A perm(TL, TP)
A efface(HL, P, TP)

Figure 1.7 A sample version of LA(perm)
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SAMPLE PROBLEMS 9

deterministically in digjuncts DP5 to DPyg. Step b solved the minimal case. The atoms
in boldface represent I'(LAs(perm)).4

perm(L, P) &
L= AP =[]

ANL=[AP=[] (DP)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

A L=[a] AN P=]q

ANHL=a ANTL=[] AN TP=]] (DP3)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

A L=[bec ANP=1Ibc]

ANHL=bATL=1[] ANTP=][] (DPs)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

A L=[bec AN P=]lcb]

ANHL=bATL=1[] ANTP=][] (DPy)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

ANHL=d ANTL=1le,f] N TP {le, fl,[f €]} (DPs)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

ANL=][de flNP=[d[f e

ANHL=d ANTL=1le,f] N TP {le, fl,[f,e]} (DPs)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

AN L=][de f] N P=led,f]

ANHL=d ANTL=1le, f] N TP {le fl,[f €]} (DPr)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

ANL=][de fl NP=lelfd

ANHL=d ANTL=1le,f] N TP {le, fl,[f €]} (DPs)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

ANL=][de flNP=][fde

ANHL=d ANTL=1le,f] N TP {le, fl,[f,e]} (DPy)
vV L=[_] A L =[HL|TL] A perm(TL, TP)

ANL=][de fl NP=][fed

ANHL=d ANTL=1le, f] N TP {le, fl,[f €]} (DP)

Figure 1.8 LAs(perm)

1.2.3 The firstSeq/3 problem

The firstSeq(L,F,S) procedure succeeds iff list F is the first maximal sequence of
identical elements at the beginning of list L, and list S is the corresponding suffix of L.

4 The E € S predicate holds iff term F belongs to the set S. Note that, in a logic algorithm, boldface
terms and atoms do not denote vectors and conjunctions, contrary to logic algorithm schemas.
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10 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

E(firstSeq) ={ firstSeq([al,[al,[]1) ( )
firstSeq([b,c,d,el, [b],[c,d,el) ( )
firstSeq([f,f,g,h], [f,£], [g,h]) (EF3)
firstSeq([i,i,i,j],[1,i,i1,[j1)} (EFy)

P(firstSeq) ={ firstSeq([X],[X1,[]) ( )
firstSeq([X,X],[X,X],[1) (PFy)
firstSeq([X,YIT],[X],[YITI) «X#7Y} ( )

Figure 1.9 Sample versions of E(firstSeq) and P(firstSeq)

Figure 1.9 gives sample versions of E(firstSeq) and P(firstSeq). Note that prop-
erties PFy and PF3 generalize examples FF} and FFsy, respectively.
Figure 1.10 gives a sample version of LA(firstSeq).

firstSeq(L, F,S) &
L=[HL] F=LAS=][]
V L=[HL, HL:|TL] HL, # HLyAF = [HI)JAS = [HL2|TL]
v L= HLi=HLs

firstSeq([H Lo |TL], TF,TS)

A
A
[HLy, HL,|TL] A
A
A F=[HLI|TF] A S=TS

Figure 1.10 A sample version of LA(firstSeq)

Figure 1.11 shows LAs(firstSeq), where disjunct DF; corresponds to example EF;.
We assume that step 2 chose L as induction parameter, and introduced one minimal
case (digjunct DFy, where L has exactly one element), and one non-minimal case
(disjuncts DFs to DF,, where L has at least two elements). Step 3 decomposed the
non-minimal form into its head H L and tail T'L. Step 4 introduced a recursive atom
into the last two non-minimal disjuncts only: indeed, recursion would be useless in the
first non-minimal disjunct where ¥ and S can already be computed directly from H L
and T'L. Step 5 solved the minimal case and the non-recursive, non-minimal case. The
atoms in boldface represent T'(LAs(firstSeq)).

1.3 SYNTHESIS OF THE PROCESSx AND COMPOSEj
(STEP 6)

In the non-minimal recursive case, the Process;(HX, HY) procedures process the
heads HX of the induction parameter X into the heads HY of the other parame-
ter Y, in case X is non-minimal. The Composer(HY, TY,Y) procedures compose
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SYNTHESIS OF THE PROCESSy AND COMPOSE (STEP 6) 11

firstSeq(L,F, S) &
L=[] AF=L A S=]]
ANAL=[a] AN F=la AN S=]] (DFY)
V L=[__|] A L = [HL|TL]
A TL =[HTL|_] A HL # HTL
A F=[HL] A S=TL
AN L=[becdelNF=[b] AS=]ede
ANHL=bANTL=]ed,e¢ (DF3)
V L=[__|] A L = [HL|TL]
A firstSeq(TL, TF, TS)
NL=1ffg b A F=[f,f] A S=lgh]
ANHL=f ANTL=][fg,h]
A TE=[f] A TS = [g,h] (DFs)
V L=[__|] A L = [HL|TL]
A firstSeq(TL, TF, TS)
ANL=[iii,j] AN F=[i,i,]] A S=1]]
ANHL=1i AN TL=]Iiij]
ANTF =1ii] A TS =1[j] (DFy)

Figure 1.11 LAs(firstSeq)
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12 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

parameter Y from its heads HY (obtained via processing HX) and tails TY (ob-
tained via recursion on TX). We merge each Process;(HX, HY) with its counterpart
Composer,(HY,TY,Y) into ProcComp(HX, TY,Y) so that their implementations
are synthesized at the same time. In this section, we first formally present the objec-
tive and methods of step 6. Then we synthesize ProcComp;, operators for the sample
problems given in section 1.2.

1.3.1 Formalization: objective and methods

Given LAs(r) as follows:

rX,)Y) e
minimal(X) A solve(X,Y)
A \/lging:xi ANY =y
V' nonMinimal(X) A decompose( X, HX, TX)
A r(TX, TY)

A \/b<i§mX:xi ANY =y
AHX =hx; A TX =tx; A TY € ty;

(where the last m — b of the m examples are “covered” by the non-minimal digjuncts,
and the first b examples are “covered” by the minimal disjuncts), the aim at step 6 is
to transform LAs(r) into LAs(r) such that it fits the following schema:

"X, V)&
minimal(X) A solve(X,Y)
ANVicia X =8 AY =y
VVicre, nonMinimal(X) A decompose( X, HX, TX)
S A ¥(TX, TY)

A ProcCompr(HX, TY,Y)
AHX = hx; AN TX = tx; A TY:ty;»

This amounts to partitioning the non-minimal recursive disjuncts into ¢ equivalence
classes (named |1], ..., |¢|) where the disjuncts of class |k| have equal instantiations of
ProcCompy,. Moreover, step 4 (introduction of the recursive atoms) produces several
potential values of the parameters TY if the intended relation is non-deterministic:
the second objective of step 6 is to trim these sets ty, to singleton sets ty’;.

We have identified two methods to synthesize implementations of the ProcCompy:

i) computation of most specific generalizations (msg, for short): the MSG Method
applies if each ProcCompy is implemented as a conjunction of equality atoms;

il) synthesis from an inferred specification by examples and properties: the Synthe-
sis Method applies if each ProcCompy itself needs a full-fledged recursive logic
algorithm, i.e. is implemented as a disjunction of conjunctions of literals.

We discuss these methods in turn.
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SYNTHESIS OF THE PROCESSy AND COMPOSE (STEP 6) 13

1.3.1.1 THE MSG METHOD

The MSG Method constructs equivalence classes incrementally and non-
deterministically.

Definition 4 The msg of a set of disjuncis D is the msg of the {(hx;, ty;, y;) value-
tuples extracted from the HX = hx;, TY € ty;, and Y = y; atoms of the disjuncts
D; €D, if the ty,; are singletons, and undefined otherwise.

Definition 5 A disjunct D} is an alternative of disjunct D; iff D} is obtained from
D; by non-deterministically trimmang the sets ty; of the TY € ty; atoms to singletons

tyg.

Definition 6 An alternative D} of disjunct D; is compatible with a set of disjuncts
S iff the msg (hx,ty,y) between the (hx;, ty';, ;) value-tuple extracted from D! and
the msg of S is such that y is a term whose variables are among the ones occurring
i hx and ty.

Now, the algorithm goes as follows. Initially, there are no classes. At any moment,
the non-minimal recursive disjuncts can be classified according to whether or not they
belong to some equivalence class. Progression is achieved by selecting a disjunct D;
that doesn’t belong to any class. If some alternative D} of D; is compatible with some
class C, then € becomes C U {D}}. Otherwise a new singleton class {D;} is added,
where D! is some alternative of D;.

Once the equivalence classes have been computed, an assessing heuristic 1s applied:

Heuristic 1 If there are more equivalence classes than non-minimal properties, then
the msgs probably only cover the given examples, but not examples with larger param-
eters: invoke the Synthesis Method.

Unless the Synthesis Method is judged to be applicable, the MSG Method continues.
Let proeCompy be the chosen instantiations of ProcCompy. The msg (hxy, tyy, yr)
of class |k| is rewritten as follows:

procCompp(HX, TY,Y) < HX = hx; ATY = ty, AY =y

so that it can be unfolded into the corresponding disjuncts.

1.3.1.2 THE SYNTHESIS METHOD

The Synthesis Method assumes that there is one single equivalence class, and that
its ProcComp(HX, TY,Y) is implemented as a possibly recursive disjunction of con-
junctions of literals, i.e. it could be synthesized from scratch, just like any other logic
algorithm. Let procC'omp be the chosen instantiation of ProcComp. A specification by
examples and properties for procComp(HX, TY,Y) has to be inferred from LA5(r).
The inference of an example set is straightforward: just extract all the (hx;, ty;, v;)
tuples from the non-minimal disjuncts of LAs(r). If there are several alternatives,
extract from the alternatives that led to compatibility during the MSG Method.
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14 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

The inference of a property set is based on the observation that properties of the
original problem are inherited by the subproblem. For every property of the form:

r(x,y) < Body (F)

find variants:

r(tx,ty) (E]'/Pj)

of examples or body-less properties, such that:
decompose(x,tx,ty)
where decompose is the Decompose predicate synthesized at step 3. Then infer:
procComp (hx,ty,y) < Body (P))

as a property of procComp.
A logic algorithm LA(procComp) can now be synthesized from this inferred specifi-
cation by examples and properties. The synthesis of LA(r) proceeds using procComp.

1.3.2 Illustration on sample problems

We illustrate the above methods and heuristic on the sample problems of section 1.2.

1.3.2.1 THE EFFACFE/3 PROBLEM

The logic algorithm being synthesized for the efface/3 problem is what we call a
partial scan logic algorithm: the recursion may stop scanning the induction parameter
before being through. Indeed, once E has been located in L, one can already compute
the final value of R without further scanning L. At step 4, the actual values of the
introduced parameter TR could be determined because ef face/3 is a deterministic
problem, so no lifting of non-determinacy is required here.

According to the MSG Method, there are initially no classes, so no disjunct belongs
to any class. We first consider disjunct DFEs5. It can’t be compatible with any class,
because there are none so far. So we create a singleton class {DFEs}.

We pursue with DF5. To see whether DE5 is compatible with class {DFEs}, we
compute the msg of their (HL, TR, R) value-tuples:

HL|TR R
T 0@ g (D]
i | [k] | [ k] DE;s
A | T | [A|T] | msg(msg{DEs}, DE5)

Disjunct DE5 goes into class {DFE3}, because it is compatible with that class ([A|7]
is constructed in terms of 4 and 7).
We pursue with DEs. To see whether DEjs is compatible with class {DFE35, DEs},
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SYNTHESIS OF THE PROCESSy AND COMPOSE (STEP 6) 15

efface(E,L,R) &
L=[] ANL=[E]AR=][]
ANE=aANL=Jad A R=][]
V L=[__|]] A L = [HL|TL]
AN E=HL AN R=TL
ANE=bANL=[bc ANR=I[]AN...
VE=f AN L=I[fg,h] AN R=][g,h] A
V L=[__|]] A L = [HL|TL]
A efface(E,TL, TR)
A R = [HL|TR]
ANHL=d ANTR=[] AN R=[d] A
VHL=4i ANTR=1[k] AN R=1[i,k] A
VHL=m A TR=[n] AN R=[m,n] A

Figure 1.12 LAg(ef face)

we compute the msg of their (HL, TR, R) value-tuples:

HL|TR R

A | T | [AT) msg{DEs, DE5}

m | [n] | [m,n] DEs

A | T | [A|T) | msg(msg{DFEs, DE5}, DEg)

Disjunct DEs goes into class {DE3, DFEs}, because it is compatible with that class.
There are no other disjuncts. We have partitioned the non-minimal disjuncts into

¢ = 1 equivalence class, namely {DFEs, DFE5, DEg}. Let pcE f face be the chosen in-

stantiation of ProcComp;. It is implemented by re-expression of the msg:

pcEfface(HL, TR, R) < R=[HL|TR].

This result is unfolded into the corresponding disjuncts of LAs(ef face), and, after
regrouping of disjuncts, LAs(ef face) looks as depicted in figure 1.12.

1.3.2.2 THE PERM/2 PROBLEM

The logic algorithm being synthesized for the perm/2 problem is what we call a total
scan logic algorithm: the recursion scans the induction parameter entirely. Indeed, all
elements of L need to be visited so that they can be stuffed into other locations in
P. The other mission of step 6 1s to lift the non-determinacy about the actual values
of parameter T'P introduced at step 4 because of the non-determinism of the perm/2
problem.

According to the MSG Method, there are initially no classes, so no disjunct belongs
to any class. We first consider digjunct DPs, and make it a singleton class {DPs}.

We pursue with DPs. To see whether DPs is compatible with class {DPy}, we
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16 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

compute the msg of their (H L, TP, P} value-tuples:

HL|TP P

a [] [a] msg{DPs}

b | [ | [b€] DPs

A | T | [A|T] | msg(msg{DPs}, DPs)

Disjunct DPs goes into class {D P2}, because it is compatible with that class ([A|7T]
is composed in terms of A and 7).

We pursue with DP,. To see whether D Py is compatible with class {D Py, DPs}, we
compute the msg of their (H L, TP, P} value-tuples:

HL|TP P
A | T | [AT) msg{DPs, DPs}
b [c] | [eb] DPy
A | T | [B|U] | msg(msg{DPs, DPs}, DP,)

Disjunct D Py is not compatible with class { D Pa, DPs}, because [B|U] is not composed
in terms of A and 7. There are no other classes, so we create a new singleton class
{DPy}.

We pursue with DPs. To see whether DPs is compatible with class {D Py, DPs}, we
compute the msg of their (H L, TP, P) value-tuples. Two alternatives arise:

HL| TP P

A T [A|T] msg{DPs, DPs}
d [eaf] [daeaf] DPSa
A T [A|T] | msg(msg{DP>, DPs}, DPs,)

or:

HL | TP P
A T [A|T] msg{DPs, DPs}

d | [f,e]|ld e, f] DPs,

A T [A|U] | msg(msg{DPs, DPs}, DPsp)

Disjunct DPs, is compatible with class {D Py, DPs}, but DPs; isn’t. So DPs, goes
into class {D P2, DPs}.
The computations eventually identify ¢ = 3 equivalence classes (see exercise 3).

HEL TP P

A T [A|T] msg{DPz,ng,DP5a,DP6b}
A [B|T] [B, A|T) msg{DPs, DP7,4, DPg;}

A | [B,C|IT]|[B,C, AT msg{DPsq, DP1os}

Applying heuristic 1 (there are more equivalence classes than non-minimal proper-
ties), we invoke the Synthesis Method. Let pcPerm be the chosen instantiation of
ProcComp;. A specification by examples and properties for pcPerm(H L, TP, P) has
to be inferred from LAs(perm).

The inference of an example set is done by extracting all the (HL, TP, P) value-
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SYNTHESIS OF THE PROCESSy AND COMPOSE (STEP 6) 17

ES)
ESy
ESs
ES,

E(pcPerm) ={ pcPerm(a,l[],[al) (
pcPerm(b, [c], [b,c]) (
pcPerm(b, [c], [c,b]) (
pcPerm(d, [e,£],[d,e,f]) (
pcPerm(d, [£,e]l,[d,f,e]) (E'Ss
pcPerm(d, [e,£], [e,d,£]) (E'Se
pcPerm(d, [e,f], [e,f,d]) (ES;
pcPerm(d, [£,e]l, [f,d,e]) (E'Ss
pcPerm(d, [f,el, [f,e,d]) } (E'Sy

P(pcPerm) ={ pcPerm(X,[1,[X]) (PSy
pcPerm(X, [Y], [X,Y]) (PSq

pcPerm(X, [Y],[Y,X]) } (PSs

NP NN NP NN NN NN

Figure 1.13 Derived example and property sets for pcPerm(E, L, R)

tuples from the non-minimal disjuncts of LAs(perm). If there are several possible
values for TP, we extract the one that led to compatibility during the MSG Method.
The result is shown in figure 1.13. Note that example E S5 is a variant of ES4, that
E'Sg is a variant of F'Sg, and that Sy is a variant of F57.

The inference of a property set is here performed as follows. For every property:

perm(x,,y2) < Body (PP)

find a variant:
perm(x;,y1) (EP;/PP;)

of an example or body-less property, such that:
x9 = [hly1]

Infer:
pcPerm(h,yi,y2) < Body (PSi)

as a property of pcPerm.

In our case, the pairs (PP, EPy), (PPy, PPy), and (P Ps, PPy} infer the properties
shown in figure 1.13. The informal specification is that pcPerm(E,L,R) succeeds iff
list R 1s list L with term E stuffed into a random location. But, in order to prevent
redundant solutions, element E should only be stuffed into some location of L that
precedes its own first occurrence (if any) in L. The following new version of PPs
achieves this:

perm([X,Y],[Y,X]) =X £ 7Y (PPs)

because PS5 then reads:

pcPerm(X, [Y],[Y,X]) <X #£Y (PS3)
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18 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

L= AP=]

ANL=[AP=]]

V L=[_|] A L = [HL|TL]

A perm(TL, TP)

A efface(HL,P,TP)

ANHL=a ANTP=[]ANP=la] A ...
VHL=bANTP=1[c] AN P=1[bc] A .
VHL=bANTP=1[] AN P=[e,b] A ...
VHL=d ANTP=[e,f] A P=1[d,e, f] A .
VHL=d AN TP =[f,e] AN P=1[d, f,e] A ..
VHL=d ANTP=[e,f] A P=1le,d, f] A .
VHL=d AN TP =le,f] AN P=1e, f,d] A .
VHL=d AN TP =[f,e] AN P=[f,d,e] A .
VHL=d AN TP =[f,e] AN P=[f,e,d] A .

Figure 1.14 LAg(perm)

Note that when replacing all occurrences of the empty list [] in {P.Sy, PSs, PS4} by
a variable T’ this property set collapses into the one of the ef face/3 problem, where
the second and third parameters have been exchanged. When taking into account the
above-noted variants in E(pcPerm), then the example set also collapses into the one of
the efface/3 problem, where the second and third parameters have been exchanged.
The new synthesis is thus, up to renaming of the predicate and re-ordering of the
parameters, the same as the one of the ef face/3 problem. Hence L As(perm) looks as
depicted in figure 1.14.

1.3.2.3 THE FIRSTSEQ/3 PROBLEM

The logic algorithm being synthesized for the firstSeq/3 problem a partial scan logic
algorithm: the recursion may stop scanning L before it is through. Indeed, once F
has been identified in L, one can already compute the final value of .S without further
scanning L. At step 4, the actual values of the introduced parameters TF and TS
could be determined because firstSeq/3 is a deterministic problem, so no lifting of
non-determinacy 1s required here.

According to the MSG Method, there are initially no classes, so no disjunct belongs
to any class. We first consider disjunct DF5, and create a singleton class { DF5}.

We pursue with DFy. To see whether DFy is compatible with class {DF3s}, we
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SYNTHESIS OF THE DISCRIMINATE (STEP 7) 19

firstSeq(L, F,S) &
L=[]

LAS=]]

[a] A F=[a] A S=]]
[HL|TL]

TL = [HTL|_] A HL # HTL
F=[HL] A S=TL
L=1lbe,d,e] AN F=1[b] A S=]ecd,e
HL=b AN TL=]cd,e

L = [HL|TL]

firstSeq(TL, TF, TS)

F = [HL|TF] A S = TS

HL=f ATF=[f] A TS = [g, k]
VHL =i A TF = [i,i] A TS = [j]

F
L
vV L=[, ] L

e

vV L=[, ]

>>>>>> > > > > >

AN
AN

Figure 1.15 LA6(firstSeq)

compute the msg of their (HL,TF, TS, F,S) value-tuples:

HL| TF TS r S
LU gk | IS | lgsh] msg{DF5}
A [ [AT] | [BIU] | [A, A[T] | [BIU] | msg{DF5, DFy}

Disjunct DFy is compatible with class {DF3}, because [A, A|T] is composed in terms
of A, A, and T, and because [B|U] is composed in terms of A, B, and U. Thus DFy
goes into that class.

There are no other disjuncts. We have partitioned the non-minimal disjuncts into ¢ =
1 equivalence class, namely {DF5, DF4}. Let peFirstSeq be the chosen instantiation
of ProcComp;. It is implemented by re-expression of the msg:

peFirstSeq(HL, TF, TS, F,S) < F =[HL|ITFIAS =TS.

This result is unfolded into the corresponding disjuncts of LAs(firstSeq), and, after
regrouping of disjuncts, LAs(firstSeq) looks as depicted in figure 1.15.

1.4 SYNTHESIS OF THE DISCRIMIN ATEy (STEP 7)

In the non-minimal recursive case, the Discriminate,(HX, TX,Y) procedures per-
form some tests so as to ensure that the parameters effectively should be processed
and composed as in class |k|. In this section, we first formally present the objective
and methods of step 7. Then we synthesize Discriminater operators for the sample
problems given in section 1.2.
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20 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

1.4.1 Formalization: objective and methods

At step 7, the aim is to transform LAg(r) into LA (r) such that it fits the following
schema:

"X, V)&
solve(X,Y)
Viciee X =2 AY =y
decompose( X, HX, TX)
Discriminater (HX, TX,Y)
r(TX, TY)
procCompp(HX, TY,Y)
\/lelkl X=ug; NY =y
ANHX =hey N TX =te; ANTY =ty

minimal(X)

VVicie. nonMinimal(X)

> > > > > > >

This objective is achieved by two consecutive tasks:

i) synthesis of specialized logic algorithms of the Discriminatey;
il) generalization of these specialized logic algorithms of the Discriminatey,.

They are performed by a Proofs-as- Programs Method and a Generalization Method,
respectively. We discuss these methods in turn.

1.4.1.1 THE PROOFS-AS-PROGRAMS METHOD

The Proofs-as-Programs Method extracts specialized implementations of the
Discriminate, from the proofs that the heads of the properties are logical conse-
quences of the recursive, non-minimal disjuncts. Indeed, properties contain explicit
information that has not yet been synthesized into these disjuncts. This is thus the
right moment to use this information.

When considering property P;, let 7; be a theory composed of:

i) the recursive, non-minimal digjuncts of the generalization T'(LAg(r));
ii) the example set E(r);
iii) the property set P(r)\ {P;};
iv) logic algorithms of the primitive predicates, such as LA(=).

The Proofs-as-Programs Method first attempts to prove that the head of property
P; is a logical consequence of theory 7;. The body of property P; is then used during
the discriminant extraction.

These proofs can be done by a slight modification of SLD resolution (see section ?7).
A clausal version of 7; has first to be generated: this 1s straightforward due to our
restriction to logic algorithms whose bodies are in disjunctive normal form. Examples
and properties are already in clausal form.

The initial goal is the head of property F;.

The computation rule satisfies the following condition: never select an atom with
predicate r/n if there are atoms with primitive predicates.

The search rule is as follows:

- if the selected atom has a primitive predicate, then it is resolved according to
its semantics;
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SYNTHESIS OF THE DISCRIMINATE (STEP 7) 21

- the root of the proof tree is resolved using the clauses generated from I'(LAg(r));
- if the selected atom (in a non-root node) has predicate r/n, then it is resolved

using the clauses generated from 7; \ {T'(LAs(r))}.

In the resolution of the root, we use I'(LAg(r)) rather than the examples or prop-
erties because that wouldn’t make sense: we are trying to prove the logic algorithm
correct wrt its specification, not to prove the specification consistent. In the resolution
of atoms with predicate r/n, we use the examples and other properties rather than
T'(LAs(r)) because that wouldn’t make sense either: T'(LAg(r)) is still incorrect. Our
restriction to properties that are non-recursive comes in handy here: there is no further
nesting of goals in r/n.

A derivation of the head of property P; succeeds iff it ends in the empty clause. Let k
be the number of the (recursive, non-minimal) digjunct of T'(LAe(r)) whose generated
clause was used in the initial resolution step. Let oy; be the corresponding computed
answer substitution. We instantiate Discriminater by discriminate; such that it is
partly defined by the following clause:

discriminate;(HX,TX,y)oy; < Body, o,

where Body; is the body of property P;, and where y is the value of Y in the head of
P;.

Note that this is not like classical program extraction from proofs (compare with
[BSWI0, Fri90, MW79]), since the program is here extracted from the unique final
result of the proof, rather than on-the-fly (or a posteriori) from multiple intermediate
proof-steps.

A derivation fauls iff it doesn’t succeed. Nothing is done in that case. Failure is
of course not always detectable, since an infinite derivation may occur. In practice,
success is approximated by limiting the size (or the CPU time) of a derivation.

The proof of a property set succeeds iff every property has at least one success-
ful derivation. The revealed clauses of discriminants are then assembled into logic
algorithms:

discriminatey (HX, TXy, Vi) <

\/ (HX; =HX A TX; = TX A Yy =y A Body;)oi
i€S(E)

where S(k) is the finite, possibly empty, set of indices of the properties whose proofs re-
vealed clauses of discriminatey,. If S(k) is empty, then the corresponding discriminant
always evaluates to true.

The proof of a property set fails iff some property has no successful derivation. In
such a case, the Proofs-as-Programs Method does not synthesize the discriminants.
Previous steps of the synthesis have then to be reconsidered.

1.4.1.2 THE GENERALIZATION METHOD

Since the properties only embody fragmentary information, the discriminants obtained
so far are too specialized. The Generalization Method applies some heuristics, and
postulates that the resulting discriminants are the intended ones.
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22 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS

Here are some valuable heuristics:

Heuristic 2 If the value of some TXy or Yy is not changed by the computed answer
substitution, then this parameter is irrelevant and its value can be generalized to the
anonymous variable.

Heuristic 3 The parameter TX; should be a compound induction parameter of
LA(discriminatey): if necessary, some values of the TXy should be generalized so
that the TXy range across their entire domain.

The Generalization Method is always applicable.

1.4.2 Illustration on sample problems

We illustrate the above methods and heuristics on the sample problems of section 1.2.

1.4.2.1 THE EFFACFE/3 PROBLEM

The Proofs-as-Programs Method attempts to prove, by SLD-resolution, that the head
of property PF; is a logical consequence of theory T&;.
Starting with PFE;, we have:®

— ef face(X, [X|T], T)

disjunct 3 of T(LAgs(ef face)) {}

— [X|T] = [HL|TL], ef face(X,TL, TR), T = [HL|TR]

LA(=) | {HL/X,TL/T}

—efface(X,T,TR), T = [X|TR]

LA(=) | {T/[X[TR]}

—efface(X,[X|TR],TR)

The last goal doesn’t unify with the head of any clause in 7&;: the derivation fails.
The head of property PE; is not a logical consequence of theory 7&;. So nothing is
done to disjunct 3.

5 In a goal, the underlined atom(s) are the selected atom(s) for the next resolution step(s).
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SYNTHESIS OF THE DISCRIMINATE (STEP 7) 23

We pursue with PFE5:

—efface(X, [V, X|T],[Y|T])

disjunct 3 of T(LAgs(ef face)) {}

— [V, X|T] = [HL|TL], ef face(X,TL,TR), [Y|T] = [HL|TR]

LA(=) | {HL/Y,TL/[X|T]}

—efface(X,[X|T],TR), [Y|T] =[Y|TR]

LA(=) | {TR/T}

— ef face(X, [X|T], T)

PEL | {}

O

The head of property PFEs is a logical consequence of theory 7&5. A specialized
discriminant for disjunct 3 is partly defined as follows:

discEfface(HL,TL,X, [XIT])o — X # Yo
where o is the computed answer substitution of the above SLD-derivation. This yields:
discEfface(Y,[XIT],X, [XIT]) — X #Y

There is no other property. There are no alternative derivations.

The Generalization Method applies heuristic 2 to decide that the values of the
second and fourth parameters of the discriminant are irrelevant in this case. After
generalization of the implication into an equivalence, plus renaming of some variables,
the discriminant reads:

discEfface(HL,TL,E,R) < FE# HLATL=_AR=_.

This result is simplified and then unfolded into disjunct 3, so LAz(ef face) looks as
depicted in figure 1.16.

1.4.2.2 THE PERM/2 PROBLEM

At step 6, the Synthesis Method has been invoked for the perm/2 problem, because
there is only one equivalence class. The properties of perm/2 have been inherited by
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L=1[] AN L=[E] A R=][]
ANE=aANL=Jad A R=]]

V o L=[__|]] A L =[HL|TL]
AE=HL A R=TL
ANE=bANL=Ibc AR=][]A

VE=f ANL=I[fg,h] AN R=[g,h] A

V o L=[__|]] A L =[HL|TL]

A E # HL

A efface(E, TL,TR)

A R = [HL|TR]

ANHL=dANTR=[] AN R=[d] A
VHL=4i ANTR=[k] AN R=1[i,k] A

VHL=m ANTR=[n] A R=[m,n] A ...

Figure 1.16 LA;(ef face)

the inferred subproblem, so no discriminant is needed. Hence LAz(perm) is identical
to LAg(perm).

1.4.2.3 THE FIRSTSEQ/3 PROBLEM

The Proofs-as-Programs Method attempts to prove, by SLD-resolution, that the head
of property PFj is a logical consequence of theory 7 F;.
We start with PFy:

= firStseQ([X]a [X]a H)

disjunct 3 of T(LAg(firstSeq)) {}

— [X] = [HL|TL], firstSeq(TL,TF,TS), [X]=[HL|TF],[]=TS

LA(=) | {HL/X,TL/[}, TF/[],TS/[]}

= firStseQ(Ha []a H)

The last goal doesn’t unify with the head of any clause in 7 F;: the derivation fails.
The head of property PF} 1s not a logical consequence of theory 7F;. So nothing is
done to disjunct 3.
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We pursue with PF3:

— firstSeq([X,Y|T], [X],[YIT])

disjunct 3 of T(LAg(firstSeq)) {}

— [X,Y|T] = [HL|TL], firstSeq(TL,TF,TS), [X] = [HL|TF), [Y|T]=TS

LA(=) | {HL/X,TL/[Y|T), TF/[},TS/[Y|T]}

— firstSeq([Y|T], [1, [Y|T])

The last goal doesn’t unify with the head of any clause in 7 F3: the derivation fails.
The head of property PF3 is not a logical consequence of theory 7 F3. So nothing is
done to disjunct 3.

We pursue with PF5:

— firstSeq([X, X],[X, X],[]

disjunct 3 of T(LAg(firstSeq)) {}

— [X,X] = [HL|TL], firstSeq(TL, TF,TS), [X,X]=[HL|TF],[]=TS

LA(=) | {HL/X,TL/[X]), TF/[X],TS/[]}

= firStseQ([X]a [X]a H)

PR {}

O

The head of property PF5 is a logical consequence of theory 7F,. A specialized
discriminant for disjunct 3 is partly defined as follows:

discFirstSeq(HL,TL, [X,X],[1)0 — truec
where o is the computed answer substitution of the above SLD-derivation. This yields:
discFirstSeq(X, [X]1,[X,X],[1)

There is no other property. There are no alternative derivations.

The Generalization Method applies heuristic 2 to decide that the values of the third
and fourth parameters are irrelevant in this case. It applies heuristic 3 to generalize
the T'L parameter into non-empty lists. After generalization of the implication into an
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firstSeq(L, F,S) &
L =[] NS =]

J]AF=[a AS=]]

= [HL|TL]

TL = [HTL|_] A HL # HTL

=[HL] A S=TL

L=1be,de] AN F=1[b] A S=]ed,e

HL=b AN TL=]cd,e

L = [HL|TL]

TL = [HTL|_] A HL = HTL

firstSeq(TL, TF, TS)

F = [HL|TF] A S = TS

HL=f ANTF=[f] AN TS =1]g,h]

VHL, =i AN TF =[i,i] A TS =1j]

[l e LS|
(l
=

vV L=[,_]

vV L=[,_]

>>>>>>>>> > > >

AN
A

Figure 1.17 LA;(firstSeq)
equivalence, plus renaming of some variables; the discriminant reads:
discFirstSeq(HL,TL,F,S) < TL =[HTL|JANHL=HTLAF=_AS=_.

This result is simplified and then unfolded into disjunct 3, so LA (firstSeq) looks as
depicted in figure 1.17.

1.5 SYNTACTIC GENERALIZATION (STEP 8)

In this section, we first formally present the objective and method of step 8. Then we
compute the final generalizations for the sample problems given in section 1.2.

1.5.1 Formalization: objective and method

At step 8, the objective is to transform LA7(r) into LAg(r) that looks like:

"X, V)<
minimal(X) A solve(X,Y)
VVicre. nonMinimal(X) A decompose(X,HX, TX)
- A discriminater,(HX, TX,Y)
A r(TX,TY)

A procCompp(HX, TY,Y)

All predicate variables of the divide-and-conquer schema have already been instanti-
ated until step 7, and we have used all the information contained in the specification:
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efface(E,L,R) <
L=1] AL=[F] A R=]

vV L=[__|] AN L=[HL|TL]
NE=HL AN R=TL

vV L=[__|] AN L=[HL|TL]
ANE+HL
A efface(E, TL,TR)
A R =[HL|TR)

Figure 1.18 LAs(ef face)

perm(L, P) <
L=[] AP=]
vV L= A L=[HL|TIL]
A perm(TL,TP)
A efface(HL, P, TP)

Figure 1.19 LAg(perm)

e examples are injected at step 1 and are trailed along all subsequent steps in the
form of equality atoms, so that they be present when needed;

e examples and properties are used at step 4 to deductively infer values of the TY;

e examples and properties are used at step 6 to infer specifications of subproblems;

e properties are used at steps b and 7 to infer discriminants.

So we may consider the synthesis task finished. We postulate that LAg(r) is T(LA7(r)).

1.5.2 Illustration on sample problems

The final generalizations for the sample problems given in section 1.2 are depicted in
figures 1.18, 1.19, and 1.20, respectively. Note that they can be proven to be equivalent
to the sample logic algorithms listed in figures 1.4, 1.7, and 1.10, respectively.

1.6 CONCLUSION

In this last section, we present the framework, results, and contributions of this re-
search, and mention some related research, as well as future research.
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firstSeq(L, F,S) &
L
L

TL=[HTL|_] A HL = HTL
firstSeq(TL,TF,TS)
F=[HL|ITF] A §=T8

=[] NF=LnNS=]]

vV o L=[]] AN L=[HL|TL]
ANTL=[HTLI] N HL# HTL
ANF=[HL]ANS=TL

vV o L=[]] AN L=[HL|TL]

A
A
A

Figure 1.20 LAs(firstSeq)

1.6.1 Framework, results, and contributions

This research was partly led within the framework of the Folon research project
(Facultés Universitaires Notre-Dame de la Paix, Namur, Belgium) whose objective
is twofold. First, it aims at elaborating a methodology of logic program development,
such as described in [Dev90]. Second, it aims at designing an integrated set of tools
supporting this methodology. Our research tackles the aspects of logic program syn-
thesis from examples and properties.

The main results of our work on logic program synthesis so far are the definition
of a synthesis calculus ([FD91, FD93]), the identification of a particular synthesis
mechanism ( [Fle91]), and the development of methods for each of its steps ( [Fle91]).

One of the originalities of our approach is the combination of examples with prop-
erties, so as to cope with some classical difficulties of example-based synthesis.

1.6.2 Related research

Pointers to related research in program synthesis have been given throughout the chap-
ter, and we have already stressed in detail how our approach differs from the state
of the art. The use of schemata is also advocated in [Smi85, DB89, GH89, Tin90]
(divide-and-conquer), [Smi88] (global search), and others, although sometimes in dif-
ferent contexts (e.g. programming tutors/assistants). An early study of the concept of
most specific generalization is [Plo70].

1.6.3 Future research

In the future, we plan to pursue research on the following aspects:

Development of a proof-of-concept implementation (in Prolog) of the synthesis mech-
anism, called SYNAPSE (SYNthesis of logic Algorithms from PropertieS and Exam-
ples).  This should allow the identification of points of interaction with the specifier
so that we can better cope with incompleteness: wherever inductive inference is used,
the specifier should be able to give his feedback. It is important to keep this dialogue
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easy, 1.e. a question-and-answer method asking for the classification of ground atoms
as examples or counter-examples seems to be an appropriate choice.

Incorporation of counter-examples in the specifications, the general synthesis strateqy,
and the synthesis mechanism. Indeed, negative information is quite useful in avoiding
over-generalization during inductive inference.

Formulation of a methodology of choosing examples and properties. It is important
to guide the specifier towards choosing “good” examples and properties. This reduces
interaction with the specifier, and results thus in highly automated synthesis.

1.7 EXERCISES

1. Give a sample logic program fitting the divide-and-conquer schema, where the in-
stances of the NonM inimal and the Decompose predicates are different.

2. Extend the schema of figure 1.1 to n-ary relations.

3. Perform the remaining msg computations of subsection 1.3.2.2.

4. Perform the Proofs-as-Program Method to the perm/2 problem. Show that the
obtained discriminants are redundant with the existing literals of LAg(perm).

5. Show that LAg(efface), LAs(perm), and LAg(firstSeq) are logically equivalent
to (i.e. have the same models than) the logic algorithms listed in figures 1.4, 1.7,
and 1.10, respectively.
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