
1Synthesis of Composition andDiscrimination Operators forDivide-and-Conquer LogicProgramsPIERRE FLENER, YVES DEVILLEThis chapter gives a brief overview of our framework for stepwise synthesis of logicprograms from examples and properties. Directives are extracted for the developmentof a particular synthesis mechanism whose steps are guided by a divide-and-conquerschema. It features deductive and inductive reasoning. Examples and properties arepresented to it in a non-incremental fashion. The objectives and methods of its laststeps (synthesis of composition and discrimination operators) are formalized, and il-lustrated on some sample problems.This chapter is organized as follows. After the introduction, three sample problemsare presented in section 1.2. Sections 1.3 to 1.5 present the objectives and methods ofsome synthesis steps, and illustrate them on the sample problems. Some conclusionson the results are drawn in section 1.6, related work is stated, and future researchdirections are outlined.1.1 INTRODUCTIONProgram synthesis research [Bie92] aims at automating the passage from speci�ca-tions to programs, in opposition to more traditional, mostly manual, programmingtechniques. The key question here is: \what is a speci�cation?". Today, an emergingConstructing Logic Programs, J.-M. Jacquet (editor)c
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2 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSconsensus is that one may speak of synthesis if the speci�cation does not explicitlyreveal recursion or iteration. Otherwise, the technique could be classi�ed as transfor-mation. In this introductory section, we present a brief overview of our framework forthe stepwise synthesis of logic programs from examples and properties of the relationto be implemented. This framework is developed in more detail in [Fle93], [FD91],and [FD93].1.1.1 Speci�cations by examples and propertiesWe �rst de�ne a possible starting point of synthesis.De�nition 1 A speci�cation by examples and properties of a procedure r=n consistsof:i) a set E(r) of ground examples of the behavior of r;ii) a set P (r) of properties (�rst-order logic statements) of r.Examples are a very appealing means of conveying information about a relation:they are easy to elaborate or understand, and they implicitly reveal some manipula-tions of the parameters. However, examples alone constitute an incomplete informationsource, and they lack in expressive power. We believe the speci�er knows the miss-ing details, and should thus be able to provide them, rather than have the synthesismechanism guess them. We depart thus from traditional example-based synthesis andallow a property set in our speci�cations, where properties are meant to overcomethe drawbacks of examples, and yet have the same appeal as examples. Non-recursiveHorn clauses are a very convenient format. (Since we assume here that synthesis startsfrom a non-recursive speci�cation, we do not consider recursive properties.) Samplesets of examples and properties appear in section 1.2.1.1.2 Logic algorithmsWe are actually only interested in synthesizing algorithms, rather than full-
edgedprograms. Indeed, algorithm design in itself is already very hard, and we do not wantto encumber ourselves with the additional burdens of algorithm optimization, trans-formation, and implementation, which are well-researched topics anyway ( [Dev90]).Algorithms expressed in a logic formalism are here called logic algorithms ( [Dev90]).De�nition 2 A logic algorithm of a procedure r, denoted LA(r), consists of a for-mula of the form: r(X;Y ) , Def [X;Y ], where the body Def is a �rst-order logicstatement.1Executable Prolog programs can be easily derived from logic algorithms with bodiesin disjunctive normal form [Dev90]. Sample logic algorithms appear in section 1.2.1 Extending the syntactical conventions stated in section ??, (predicate) variable names start withan uppercase; functors and predicate names start with a lowercase. The string F [X;Y ] denotesa formula F whose free variables are X and Y ; the string F [a; b] denotes F [X;Y ] where the freeoccurrences of X and Y have been replaced by the terms a and b, respectively. The variablesX andY are assumed to be universally quanti�ed over LA(r); other free variables in Def are assumed tobe existentially quanti�ed over Def .12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



INTRODUCTION 3R(X;Y ), Minimal(X) ^ Solve(X;Y )_W1�k�c NonMinimal(X) ^Decompose(X;HX;TX)^Discriminatek(HX;TX; Y )^R(TX;TY)^ Processk(HX;HY)^ Composek(HY;TY; Y )Figure 1.1 The divide-and-conquer logic algorithm schema1.1.3 Schema-guided design of logic algorithmsAlgorithm schemata are an old idea of computer science (see an early survey in[Man74]). They are template algorithms with �xed control 
ows. They embody theessence of algorithm design strategies (such as divide-and-conquer, generate-and-test,global search, : : : ) and are thus an invaluable knowledge source for guiding (semi-)automated algorithm design.Example 1 Loosely speaking, a divide-and-conquer algorithm for a binary predicater over parameters X and Y works as follows. Let X be the induction parameter. IfX is minimal, then Y is found by directly solving the problem. Otherwise, i.e. if X isnon-minimal, we decompose X into a series2 HX of heads of X and a series TX of tailsof X, the latter being of the same type as X, as well as smaller than X according tosome well-founded relation. The tails TX recursively yield tails TY of Y . The headsHX are processed into a series HY of heads of Y . Finally, Y is composed from itsheads HY and tails TY. It may happen that di�erent processing and compositionoperators emerge for the non-minimal form of X: we have to discriminate betweenthem according to the values of HX, TX, and Y . Non-determinism of the intendedrelation results in some discriminants that are always true. 3Logic algorithm schemata can be expressed as second-order logic algorithms. Forinstance, many logic algorithms designed by a divide-and-conquer strategy, and havinga single minimal case and a single non-minimal case, �t the schema of �gure 1.1, whereR(TX;TY) stands for an optional conjunction of recursive atoms. To simplify thepresentation of this chapter, the proposed examples will be based on the schema of�gure 1.2. This is a particular case of �gure 1.1, where the induction parameter X isa list, decomposed in the traditional head/tail form. In this particular case, the non-minimal test and the decomposition operator could have been merged. We also assumethat the processing and composition operators are handled by a single predicate.2 In a logic algorithm schema, a bold term (resp. atom) denotes a vector (resp. conjunction) of terms(resp. atoms).12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



4 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSR(X;Y ), X = [ ] ^ Solve(X;Y )_W1�k�c X = [ j ] ^X = [HX j TX]^Discriminatek (HX;TX; Y )^R(TX; TY )^ ProcCompk(HX;TY; Y )Figure 1.2 The divide-and-conquer logic algorithm schema for lists1.1.4 Directives for the development of a synthesis mechanismWe have developed in [FD91, FD93] a general strategy for stepwise, progressive, con-sistent, and sound synthesis of logic algorithms from speci�cations by examples andproperties. In stepwise synthesis, there is a series of re�nements towards a correct logicalgorithm: LA1(r); LA2(r); � � � ; LAi(r); � � � ; LAf (r)At each step, we measure the current logic algorithm against the intended relation:correctness criteria useful for characterizing the soundness of synthesis have been iden-ti�ed. Across several steps, we measure the progression of the synthesized logic algo-rithms towards the intended relation: comparison criteria useful for characterizing theprogression of synthesis have also been identi�ed. These criteria may be used duringthe development of a synthesis mechanism to ensure a sound synthesis.This general strategy can be particularized to schema-guided synthesis, where eachstep instantiates some predicate variable(s) of a schema. We adopt the divide-and-conquer schema of �gure 1.1 for guiding synthesis. Indeed, the class of algorithms thatcan be designed by this strategy is fairly large and important. There are eight stepsto our mechanism [Fle91]:Step 1: Syntactic creation of a �rst approximationStep 2: Synthesis of Minimal and NonMinimalStep 3: Synthesis of DecomposeStep 4: Introduction of the recursive atomsStep 5: Synthesis of SolveStep 6: Synthesis of the Processk and ComposekStep 7: Synthesis of the DiscriminatekStep 8: Syntactic generalizationSteps 1 to 3 are straightforward, and are based on type knowledge. Step 4 is relativelyeasy, and is performed by deductive reasoning from the property set. Step 5 is aparticular case of steps 6 and 7. The latter are the real challenges of synthesis, andare the main topics of this paper. Step 8 is straightforward again, but is also coveredhere. The development of all these steps can be found in [Fle93].Note that the divide-and-conquer schema is not an input to the synthesis mecha-nism, but rather hardwired into it.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SAMPLE PROBLEMS 5We implement deterministic and non-deterministic relations using the same synthe-sis mechanism. The choice of an induction parameter is a priori independent of theway (mode) the resulting program can be used.Examples give rise to inductive synthesis (generalization ( [Sum77, BS79, Bie84]),learning ( [Sha82, Tin90, Mug92])), whereas axiomatic speci�cations (and thus prop-erties) give rise to deductive synthesis (proofs-as-programs ( [MW79, BSW90, Fri90]),transformations ( [Han80, Cla81, Hog81, LP90])). Since we have both kinds of spec-i�cation information, we want to avoid using only one kind of inference, and thusdegrading the non-used information source into validation information. We thereforestrive for inductive and deductive synthesis, using whichever inference kind is bestsuited at each step. This approach of course precludes synthesis if only examples oronly properties are given. It also gives a constructive role to each kind of speci�cationinformation.There are two ways of presenting examples (and properties): one-by-one (incremen-tally), or all-at-once. The former approach, advocated in [Sha82] and by the Induc-tive Logic Programming (ILP) school of thought [Mug92], has some nice convergenceproperties. But we adhere to the school of thought advocated in [Sum77], where theexamples are presented all-at-once, so that a maximum of information is available ateach step.With example-based synthesis, constants from E(r) inevitably appear in the logicalgorithms, thus destroying completeness unless they are generalized. We thus needone more notion:De�nition 3 Let � be a total function in the set of logic algorithms, such that�(LA(r)) is LA(r) without its equality atoms involving constants introduced from E(r).This is illustrated in subsequent sections. It can be shown that � is a generalizationfunction, i.e. that �(LA(r)) is at least as general as LA(r). Informally speaking, alogic algorithm is more general than another one i� its body is more often true thanthe body of the other one.The rest of this chapter is organized as follows. In section 1.2, we present threesample problems. In sections 1.3 to 1.5, we present the objectives and methods ofsteps 6 to 8, respectively, and illustrate them on the sample problems. In section 1.6,we draw some conclusions on our results, state some related work, and outline futureresearch directions.1.2 SAMPLE PROBLEMSIn this section, we state three sample problems that are used throughout the remainderof this chapter. The problems can be studied independently, both here and in subse-quent sections. But they are complementary in the sense that they illustrate distinctintricacies of logic algorithm synthesis. Each problem is �rst speci�ed informally, thenby examples and properties. These examples and properties are supposed to be given:this chapter does not discuss the elaboration of such speci�cations. For each problem,a sample logic algorithm (constructed by the methodology of [Dev90]) is shown inorder to illustrate what the synthesis mechanism should achieve. For each problem,12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



6 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSE(efface) = f efface(a,[a],[]) (EE1)efface(b,[b,c],[c]) (EE2)efface(e,[d,e],[d]) (EE3)efface(f,[f,g,h],[g,h]) (EE4)efface(j,[i,j,k],[i,k]) (EE5)efface(p,[m,n,p],[m,n]) g (EE6)P (efface) = f efface(X,[X|T],T) (PE1)efface(X,[Y,X|T],[Y|T])( X 6= Y g (PE2)Figure 1.3 Sample versions of E(efface) and P (efface)efface(E;L;R) ,L = [HLjTL] ^ E = HL ^ R = TL_ L = [HLjTL] ^ E 6= HL^ efface(E; TL; TR)^ R = [HLjTR]Figure 1.4 A sample version of LA(efface)we also give the logic algorithm synthesized by step 5, but, again, we do not discusshow this is performed.1.2.1 The efface=3 problemThe efface(E,L,R) procedure succeeds i� term E belongs (at least once) to the non-empty list L, and list R is L without its �rst occurrence of E.Figure 1.3 gives sample versions of E(efface) and P (efface). Note that proper-ties PE1 and PE2 generalize the examples of fEE1; EE2; EE4g and fEE3; EE5g,respectively.Figure 1.4 gives a sample version of LA(efface).Figure 1.5 shows LA5(efface), where disjunct DEi corresponds to example EEi.We assume that step 2 chose L as induction parameter, and introduced one minimalcase (disjunct DE1, where L has exactly one element), and one non-minimal case(disjuncts DE2 to DE6, where L has at least two elements). Step 3 decomposed thenon-minimal form into its head HL and tail TL. Step 4 introduced recursive atomsinto some non-minimal disjuncts. Note that E was judged to be an auxiliary parameter(because it is of a non-inductive type3): this prevented the search for a tail TE of Ewhile introducing recursive atoms; moreover, this prevented a super
uous introduction3 Inductive types are here assumed to be either integers or lists.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SAMPLE PROBLEMS 7e�ace(E;L;R),L = [ ] ^ L = [E] ^ R = [ ]^ E = a ^ L = [a] ^ R = [ ] (DE1)_ L = [ ; j ] ^ L = [HLjTL]^ E = HL ^ R = TL^ E = b ^ L = [b; c] ^ R = [c]^ HL = b ^ TL = [c] (DE2)_ L = [ ; j ] ^ L = [HLjTL]^ e�ace(E;TL;TR)^ E = e ^ L = [d; e] ^ R = [d]^ HL = d ^ TL = [e] ^ TR = [ ] (DE3)_ L = [ ; j ] ^ L = [HLjTL]^ E = HL ^ R = TL^ E = f ^ L = [f; g; h] ^ R = [g; h]^ HL = f ^ TL = [g; h] (DE4)_ L = [ ; j ] ^ L = [HLjTL]^ e�ace(E;TL;TR)^ E = j ^ L = [i; j; k] ^ R = [i; k]^ HL = i ^ TL = [j; k] ^ TR = [k] (DE5)_ L = [ ; j ] ^ L = [HLjTL]^ e�ace(E;TL;TR)^ E = p ^ L = [m;n; p] ^ R = [m;n]^ HL = m ^ TL = [n; p] ^ TR = [n] (DE6)Figure 1.5 LA5(efface)of recursion in disjuncts DE2 and DE4. Step 5 solved the minimal case and the non-recursive, non-minimal case. The atoms in boldface represent �(LA5(efface)).1.2.2 The perm=2 problemThe perm(L,P) procedure succeeds i� list P is a permutation of list L.Figure 1.6 gives sample versions of E(perm) and P (perm). Note that propertiesPP1 to PP3 generalize examples EP2 to EP4, respectively.Figure 1.7 gives a sample version of LA(perm).Figure 1.8 shows LA5(perm), where disjunct DPi corresponds to example EPi. Weassume that step 2 chose L as induction parameter, and introduced one minimal case(disjunct DP1, where L is empty), and one non-minimal case (disjuncts DP2 to DP10,where L has at least one element). Step 3 decomposed the non-minimal form intoits head HL and tail TL. Step 4 introduced a recursive atom into each non-minimaldisjunct: note that the values of TP (the tail of P ) could not have been computed12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



8 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSE(perm) = f perm([],[]) (EP1)perm([a],[a]) (EP2)perm([b,c],[b,c]) (EP3)perm([b,c],[c,b]) (EP4)perm([d,e,f],[d,e,f]) (EP5)perm([d,e,f],[d,f,e]) (EP6)perm([d,e,f],[e,d,f]) (EP7)perm([d,e,f],[e,f,d]) (EP8)perm([d,e,f],[f,d,e]) (EP9)perm([d,e,f],[f,e,d]) g (EP10)P (perm) = f perm([X],[X]) (PP1)perm([X,Y],[X,Y]) (PP2)perm([X,Y],[Y,X]) g (PP3)Figure 1.6 Sample versions of E(perm) and P (perm)
perm(L;P ),L = [ ] ^ P = [ ]_ L = [HLjTL] ^ perm(TL; TP )^ efface(HL;P; TP )Figure 1.7 A sample version of LA(perm)12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SAMPLE PROBLEMS 9deterministically in disjuncts DP5 toDP10. Step 5 solved the minimal case. The atomsin boldface represent �(LA5(perm)).4perm(L;P),L = [ ] ^ P = [ ]^ L = [ ] ^ P = [ ] (DP1)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [a] ^ P = [a]^ HL = a ^ TL = [ ] ^ TP = [ ] (DP2)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [b; c] ^ P = [b; c]^ HL = b ^ TL = [c] ^ TP = [c] (DP3)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [b; c] ^ P = [c; b]^ HL = b ^ TL = [c] ^ TP = [c] (DP4)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP5)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [d; e; f ] ^ P = [d; f; e]^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP6)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [d; e; f ] ^ P = [e; d; f ]^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP7)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [d; e; f ] ^ P = [e; f; d]^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP8)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [d; e; f ] ^ P = [f; d; e]^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP9)_ L = [ j ] ^ L = [HLjTL] ^ perm(TL;TP)^ L = [d; e; f ] ^ P = [f; e; d]^ HL = d ^ TL = [e; f ] ^ TP 2 f[e; f ]; [f; e]g (DP10)Figure 1.8 LA5(perm)1.2.3 The firstSeq=3 problemThe firstSeq(L,F,S) procedure succeeds i� list F is the �rst maximal sequence ofidentical elements at the beginning of list L, and list S is the corresponding su�x of L.4 The E 2 S predicate holds i� term E belongs to the set S. Note that, in a logic algorithm, boldfaceterms and atoms do not denote vectors and conjunctions, contrary to logic algorithm schemas.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



10 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSE(firstSeq) = f firstSeq([a],[a],[]) (EF1)firstSeq([b,c,d,e],[b],[c,d,e]) (EF2)firstSeq([f,f,g,h],[f,f],[g,h]) (EF3)firstSeq([i,i,i,j],[i,i,i],[j]) g (EF4)P (firstSeq) = f firstSeq([X],[X],[]) (PF1)firstSeq([X,X],[X,X],[]) (PF2)firstSeq([X,Y|T],[X],[Y|T])( X 6= Y g (PF3)Figure 1.9 Sample versions of E(firstSeq) and P (firstSeq)Figure 1.9 gives sample versions of E(firstSeq) and P (firstSeq). Note that prop-erties PF1 and PF3 generalize examples EF1 and EF2, respectively.Figure 1.10 gives a sample version of LA(firstSeq).firstSeq(L;F; S) ,L = [HL] ^ F = L ^ S = [ ]_ L = [HL1;HL2jTL] ^ HL1 6= HL2 ^ F = [HL1] ^ S = [HL2jTL]_ L = [HL1;HL2jTL] ^ HL1 = HL2^ firstSeq([HL2 jTL]; TF; TS)^ F = [HL1jTF ] ^ S = TSFigure 1.10 A sample version of LA(firstSeq)Figure 1.11 shows LA5(firstSeq), where disjunct DFi corresponds to example EFi.We assume that step 2 chose L as induction parameter, and introduced one minimalcase (disjunct DF1, where L has exactly one element), and one non-minimal case(disjuncts DF2 to DF4, where L has at least two elements). Step 3 decomposed thenon-minimal form into its head HL and tail TL. Step 4 introduced a recursive atominto the last two non-minimal disjuncts only: indeed, recursion would be useless in the�rst non-minimal disjunct where F and S can already be computed directly from HLand TL. Step 5 solved the minimal case and the non-recursive, non-minimal case. Theatoms in boldface represent �(LA5(firstSeq)).1.3 SYNTHESIS OF THE PROCESSK AND COMPOSEK(STEP 6)In the non-minimal recursive case, the Processk(HX;HY) procedures process theheads HX of the induction parameter X into the heads HY of the other parame-ter Y , in case X is non-minimal. The Composek(HY;TY; Y ) procedures compose12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE PROCESSK AND COMPOSEK (STEP 6) 11
�rstSeq(L;F;S),L = [ ] ^ F = L ^ S = [ ]^ L = [a] ^ F = [a] ^ S = [ ] (DF1)_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL 6= HTL^ F = [HL] ^ S = TL^ L = [b; c; d; e] ^ F = [b] ^ S = [c; d; e]^ HL = b ^ TL = [c; d; e] (DF2)_ L = [ ; j ] ^ L = [HLjTL]^ �rstSeq(TL;TF;TS)^ L = [f; f; g; h] ^ F = [f; f ] ^ S = [g; h]^ HL = f ^ TL = [f; g; h]^ TF = [f ] ^ TS = [g; h] (DF3)_ L = [ ; j ] ^ L = [HLjTL]^ �rstSeq(TL;TF;TS)^ L = [i; i; i; j] ^ F = [i; i; i] ^ S = [j]^ HL = i ^ TL = [i; i; j]^ TF = [i; i] ^ TS = [j] (DF4)Figure 1.11 LA5(firstSeq)
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12 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSparameter Y from its heads HY (obtained via processing HX) and tails TY (ob-tained via recursion on TX). We merge each Processk(HX;HY) with its counterpartComposek(HY;TY; Y ) into ProcCompk(HX;TY; Y ) so that their implementationsare synthesized at the same time. In this section, we �rst formally present the objec-tive and methods of step 6. Then we synthesize ProcCompk operators for the sampleproblems given in section 1.2.1.3.1 Formalization: objective and methodsGiven LA5(r) as follows:r(X;Y ),minimal(X) ^ solve(X;Y )^ W1�i�bX = xi ^ Y = yi_ nonMinimal(X) ^ decompose(X;HX;TX)^ r(TX;TY)^ Wb<i�mX = xi ^ Y = yi^ HX = hxi ^ TX = txi ^ TY 2 tyi(where the last m� b of the m examples are \covered" by the non-minimal disjuncts,and the �rst b examples are \covered" by the minimal disjuncts), the aim at step 6 isto transform LA5(r) into LA6(r) such that it �ts the following schema:r(X;Y ), minimal(X) ^ solve(X;Y )^ W1�i�bX = xi ^ Y = yi_W1�k�c nonMinimal(X) ^ decompose(X;HX;TX)^ r(TX;TY)^ ProcCompk(HX;TY; Y )^ Wi2jkjX = xi ^ Y = yi^ HX = hxi ^ TX = txi ^ TY = ty0iThis amounts to partitioning the non-minimal recursive disjuncts into c equivalenceclasses (named j1j, : : : , jcj) where the disjuncts of class jkj have equal instantiations ofProcCompk. Moreover, step 4 (introduction of the recursive atoms) produces severalpotential values of the parameters TY if the intended relation is non-deterministic:the second objective of step 6 is to trim these sets tyi to singleton sets ty0i.We have identi�ed two methods to synthesize implementations of the ProcCompk:i) computation of most speci�c generalizations (msg, for short): the MSG Methodapplies if each ProcCompk is implemented as a conjunction of equality atoms;ii) synthesis from an inferred speci�cation by examples and properties: the Synthe-sis Method applies if each ProcCompk itself needs a full-
edged recursive logicalgorithm, i.e. is implemented as a disjunction of conjunctions of literals.We discuss these methods in turn.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE PROCESSK AND COMPOSEK (STEP 6) 131.3.1.1 THE MSG METHODThe MSG Method constructs equivalence classes incrementally and non-deterministically.De�nition 4 The msg of a set of disjuncts D is the msg of the hhxi; tyi; yii value-tuples extracted from the HX = hxi, TY 2 tyi, and Y = yi atoms of the disjunctsDi 2 D, if the tyi are singletons, and unde�ned otherwise.De�nition 5 A disjunct D0i is an alternative of disjunct Di i� D0i is obtained fromDi by non-deterministically trimming the sets tyi of the TY 2 tyi atoms to singletonsty0i.De�nition 6 An alternative D0i of disjunct Di is compatible with a set of disjunctsS i� the msg hhx; ty; yi between the hhxi; ty0i; yii value-tuple extracted from D0i andthe msg of S is such that y is a term whose variables are among the ones occurringin hx and ty.Now, the algorithm goes as follows. Initially, there are no classes. At any moment,the non-minimal recursive disjuncts can be classi�ed according to whether or not theybelong to some equivalence class. Progression is achieved by selecting a disjunct Dithat doesn't belong to any class. If some alternative D0i of Di is compatible with someclass C, then C becomes C [ fD0ig. Otherwise a new singleton class fD0ig is added,where D0i is some alternative of Di.Once the equivalence classes have been computed, an assessing heuristic is applied:Heuristic 1 If there are more equivalence classes than non-minimal properties, thenthe msgs probably only cover the given examples, but not examples with larger param-eters: invoke the Synthesis Method.Unless the Synthesis Method is judged to be applicable, the MSGMethod continues.Let procCompk be the chosen instantiations of ProcCompk. The msg hhxk; tyk; ykiof class jkj is rewritten as follows:procCompk(HX;TY; Y ), HX = hxk ^TY = tyk ^ Y = ykso that it can be unfolded into the corresponding disjuncts.1.3.1.2 THE SYNTHESIS METHODThe Synthesis Method assumes that there is one single equivalence class, and thatits ProcComp(HX;TY; Y ) is implemented as a possibly recursive disjunction of con-junctions of literals, i.e. it could be synthesized from scratch, just like any other logicalgorithm. Let procComp be the chosen instantiation of ProcComp. A speci�cation byexamples and properties for procComp(HX;TY; Y ) has to be inferred from LA5(r).The inference of an example set is straightforward: just extract all the hhxi; tyi; yiituples from the non-minimal disjuncts of LA5(r). If there are several alternatives,extract from the alternatives that led to compatibility during the MSG Method.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



14 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSThe inference of a property set is based on the observation that properties of theoriginal problem are inherited by the subproblem. For every property of the form:r(x,y)( Body (Pi)�nd variants: r(tx,ty) (Ej=Pj)of examples or body-less properties, such that:decompose(x,tx,ty)where decompose is the Decompose predicate synthesized at step 3. Then infer:procComp(hx,ty,y)( Body (P 0i )as a property of procComp.A logic algorithm LA(procComp) can now be synthesized from this inferred speci�-cation by examples and properties. The synthesis of LA(r) proceeds using procComp.1.3.2 Illustration on sample problemsWe illustrate the above methods and heuristic on the sample problems of section 1.2.1.3.2.1 THE EFFACE=3 PROBLEMThe logic algorithm being synthesized for the efface=3 problem is what we call apartial scan logic algorithm: the recursion may stop scanning the induction parameterbefore being through. Indeed, once E has been located in L, one can already computethe �nal value of R without further scanning L. At step 4, the actual values of theintroduced parameter TR could be determined because efface=3 is a deterministicproblem, so no lifting of non-determinacy is required here.According to the MSG Method, there are initially no classes, so no disjunct belongsto any class. We �rst consider disjunct DE3. It can't be compatible with any class,because there are none so far. So we create a singleton class fDE3g.We pursue with DE5. To see whether DE5 is compatible with class fDE3g, wecompute the msg of their hHL; TR;Ri value-tuples:HL TR Rd [ ] [d] msgfDE3gi [k] [i; k] DE5A T [AjT ] msg(msgfDE3g; DE5)Disjunct DE5 goes into class fDE3g, because it is compatible with that class ([AjT ]is constructed in terms of A and T ).We pursue with DE6. To see whether DE6 is compatible with class fDE3; DE5g,12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE PROCESSK AND COMPOSEK (STEP 6) 15e�ace(E;L;R),L = [ ] ^ L = [E] ^ R = [ ]^ E = a ^ L = [a] ^ R = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ E = HL ^ R = TL^ E = b ^ L = [b; c] ^ R = [c] ^ : : :_E = f ^ L = [f; g; h] ^ R = [g; h] ^ : : :_ L = [ ; j ] ^ L = [HLjTL]^ e�ace(E;TL;TR)^ R = [HLjTR]^ HL = d ^ TR = [ ] ^ R = [d] ^ : : :_HL = i ^ TR = [k] ^ R = [i; k] ^ : : :_HL = m ^ TR = [n] ^ R = [m;n] ^ : : :Figure 1.12 LA6(efface)we compute the msg of their hHL; TR;Ri value-tuples:HL TR RA T [AjT ] msgfDE3; DE5gm [n] [m;n] DE6A T [AjT ] msg(msgfDE3 ; DE5g; DE6)Disjunct DE6 goes into class fDE3; DE5g, because it is compatible with that class.There are no other disjuncts. We have partitioned the non-minimal disjuncts intoc = 1 equivalence class, namely fDE3; DE5; DE6g. Let pcEfface be the chosen in-stantiation of ProcComp1. It is implemented by re-expression of the msg:pcEfface(HL; TR;R) , R = [HLjTR]:This result is unfolded into the corresponding disjuncts of LA5(efface), and, afterregrouping of disjuncts, LA6(efface) looks as depicted in �gure 1.12.1.3.2.2 THE PERM=2 PROBLEMThe logic algorithm being synthesized for the perm=2 problem is what we call a totalscan logic algorithm: the recursion scans the induction parameter entirely. Indeed, allelements of L need to be visited so that they can be stu�ed into other locations inP . The other mission of step 6 is to lift the non-determinacy about the actual valuesof parameter TP introduced at step 4 because of the non-determinism of the perm=2problem.According to the MSG Method, there are initially no classes, so no disjunct belongsto any class. We �rst consider disjunct DP2, and make it a singleton class fDP2g.We pursue with DP3. To see whether DP3 is compatible with class fDP2g, we12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



16 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORScompute the msg of their hHL; TP; P i value-tuples:HL TP Pa [ ] [a] msgfDP2gb [c] [b; c] DP3A T [AjT ] msg(msgfDP2g; DP3)Disjunct DP3 goes into class fDP2g, because it is compatible with that class ([AjT ]is composed in terms of A and T ).We pursue with DP4. To see whether DP4 is compatible with class fDP2; DP3g, wecompute the msg of their hHL; TP; P i value-tuples:HL TP PA T [AjT ] msgfDP2; DP3gb [c] [c; b] DP4A T [BjU ] msg(msgfDP2 ; DP3g; DP4)DisjunctDP4 is not compatible with class fDP2; DP3g, because [BjU ] is not composedin terms of A and T . There are no other classes, so we create a new singleton classfDP4g.We pursue with DP5. To see whether DP5 is compatible with class fDP2; DP3g, wecompute the msg of their hHL; TP; P i value-tuples. Two alternatives arise:HL TP PA T [AjT ] msgfDP2; DP3gd [e; f ] [d; e; f ] DP5aA T [AjT ] msg(msgfDP2 ; DP3g; DP5a)or: HL TP PA T [AjT ] msgfDP2; DP3gd [f; e] [d; e; f ] DP5bA T [AjU ] msg(msgfDP2 ; DP3g; DP5b)Disjunct DP5a is compatible with class fDP2; DP3g, but DP5b isn't. So DP5a goesinto class fDP2; DP3g.The computations eventually identify c = 3 equivalence classes (see exercise 3).HL TP PA T [AjT ] msgfDP2; DP3; DP5a; DP6bgA [BjT ] [B;AjT ] msgfDP4; DP7a; DP9bgA [B;CjT ] [B;C;AjT ] msgfDP8a; DP10bgApplying heuristic 1 (there are more equivalence classes than non-minimal proper-ties), we invoke the Synthesis Method. Let pcPerm be the chosen instantiation ofProcComp1. A speci�cation by examples and properties for pcPerm(HL; TP; P ) hasto be inferred from LA5(perm).The inference of an example set is done by extracting all the hHL; TP; P i value-12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE PROCESSK AND COMPOSEK (STEP 6) 17E(pcPerm) = f pcPerm(a,[],[a]) (ES1)pcPerm(b,[c],[b,c]) (ES2)pcPerm(b,[c],[c,b]) (ES3)pcPerm(d,[e,f],[d,e,f]) (ES4)pcPerm(d,[f,e],[d,f,e]) (ES5)pcPerm(d,[e,f],[e,d,f]) (ES6)pcPerm(d,[e,f],[e,f,d]) (ES7)pcPerm(d,[f,e],[f,d,e]) (ES8)pcPerm(d,[f,e],[f,e,d]) g (ES9)P (pcPerm) = f pcPerm(X,[],[X]) (PS1)pcPerm(X,[Y],[X,Y]) (PS2)pcPerm(X,[Y],[Y,X]) g (PS3)Figure 1.13 Derived example and property sets for pcPerm(E;L;R)tuples from the non-minimal disjuncts of LA5(perm). If there are several possiblevalues for TP , we extract the one that led to compatibility during the MSG Method.The result is shown in �gure 1.13. Note that example ES5 is a variant of ES4, thatES8 is a variant of ES6, and that ES9 is a variant of ES7.The inference of a property set is here performed as follows. For every property:perm(x2,y2)( Body (PPi)�nd a variant: perm(x1,y1) (EPj=PPj)of an example or body-less property, such that:x2 = [h|y1]Infer: pcPerm(h,y1,y2)( Body (PSi)as a property of pcPerm.In our case, the pairs hPP1; EP1i, hPP2; PP1i, and hPP3; PP1i infer the propertiesshown in �gure 1.13. The informal speci�cation is that pcPerm(E,L,R) succeeds i�list R is list L with term E stu�ed into a random location. But, in order to preventredundant solutions, element E should only be stu�ed into some location of L thatprecedes its own �rst occurrence (if any) in L. The following new version of PP3achieves this: perm([X,Y],[Y,X])( X 6= Y (PP 03)because PS3 then reads: pcPerm(X,[Y],[Y,X])( X 6= Y (PS03)12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



18 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSperm(L;P),L = [ ] ^ P = [ ]^ L = [ ] ^ P = [ ]_ L = [ j ] ^ L = [HLjTL]^ perm(TL;TP)^ e�ace(HL;P;TP)^ HL = a ^ TP = [ ] ^ P = [a] ^ : : :_HL = b ^ TP = [c] ^ P = [b; c] ^ : : :_HL = b ^ TP = [c] ^ P = [c; b] ^ : : :_HL = d ^ TP = [e; f ] ^ P = [d; e; f ] ^ : : :_HL = d ^ TP = [f; e] ^ P = [d; f; e] ^ : : :_HL = d ^ TP = [e; f ] ^ P = [e; d; f ] ^ : : :_HL = d ^ TP = [e; f ] ^ P = [e; f; d] ^ : : :_HL = d ^ TP = [f; e] ^ P = [f; d; e] ^ : : :_HL = d ^ TP = [f; e] ^ P = [f; e; d] ^ : : :Figure 1.14 LA6(perm)Note that when replacing all occurrences of the empty list [ ] in fPS1; PS2; PS03g bya variable T , this property set collapses into the one of the efface=3 problem, wherethe second and third parameters have been exchanged. When taking into account theabove-noted variants in E(pcPerm), then the example set also collapses into the one ofthe efface=3 problem, where the second and third parameters have been exchanged.The new synthesis is thus, up to renaming of the predicate and re-ordering of theparameters, the same as the one of the efface=3 problem. Hence LA6(perm) looks asdepicted in �gure 1.14.1.3.2.3 THE FIRSTSEQ=3 PROBLEMThe logic algorithm being synthesized for the firstSeq=3 problem a partial scan logicalgorithm: the recursion may stop scanning L before it is through. Indeed, once Fhas been identi�ed in L, one can already compute the �nal value of S without furtherscanning L. At step 4, the actual values of the introduced parameters TF and TScould be determined because firstSeq=3 is a deterministic problem, so no lifting ofnon-determinacy is required here.According to the MSG Method, there are initially no classes, so no disjunct belongsto any class. We �rst consider disjunct DF3, and create a singleton class fDF3g.We pursue with DF4. To see whether DF4 is compatible with class fDF3g, we12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE DISCRIMINATEK (STEP 7) 19�rstSeq(L;F;S),L = [ ] ^ F = L ^ S = [ ]^ L = [a] ^ F = [a] ^ S = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL 6= HTL^ F = [HL] ^ S = TL^ L = [b; c; d; e] ^ F = [b] ^ S = [c; d; e]^ HL = b ^ TL = [c; d; e]_ L = [ ; j ] ^ L = [HLjTL]^ �rstSeq(TL;TF;TS)^ F = [HLjTF] ^ S = TS^ HL = f ^ TF = [f ] ^ TS = [g; h] ^ : : :_HL = i ^ TF = [i; i] ^ TS = [j] ^ : : :Figure 1.15 LA6(firstSeq)compute the msg of their hHL; TF; TS; F; Si value-tuples:HL TF TS F Sf [f ] [g; h] [f; f ] [g; h] msgfDF3gi [i; i] [j] [i; i; i] [j] DF4A [AjT ] [BjU ] [A;AjT ] [BjU ] msgfDF3; DF4gDisjunct DF4 is compatible with class fDF3g, because [A;AjT ] is composed in termsof A, A, and T , and because [BjU ] is composed in terms of A, B, and U . Thus DF4goes into that class.There are no other disjuncts. We have partitioned the non-minimaldisjuncts into c =1 equivalence class, namely fDF3; DF4g. Let pcF irstSeq be the chosen instantiationof ProcComp1. It is implemented by re-expression of the msg:pcF irstSeq(HL; TF; TS; F; S), F = [HLjTF ]^ S = TS:This result is unfolded into the corresponding disjuncts of LA5(firstSeq), and, afterregrouping of disjuncts, LA6(firstSeq) looks as depicted in �gure 1.15.1.4 SYNTHESIS OF THE DISCRIMINATEK (STEP 7)In the non-minimal recursive case, the Discriminatek(HX;TX; Y ) procedures per-form some tests so as to ensure that the parameters e�ectively should be processedand composed as in class jkj. In this section, we �rst formally present the objectiveand methods of step 7. Then we synthesize Discriminatek operators for the sampleproblems given in section 1.2.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



20 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS1.4.1 Formalization: objective and methodsAt step 7, the aim is to transform LA6(r) into LA7(r) such that it �ts the followingschema:r(X;Y ), minimal(X) ^ solve(X;Y )^ W1�i�bX = xi ^ Y = yi_W1�k�c nonMinimal(X) ^ decompose(X;HX;TX)^ Discriminatek (HX;TX; Y )^ r(TX;TY)^ procCompk(HX;TY; Y )^ Wi2jkjX = xi ^ Y = yi^ HX = hxi ^ TX = txi ^ TY = ty0iThis objective is achieved by two consecutive tasks:i) synthesis of specialized logic algorithms of the Discriminatek ;ii) generalization of these specialized logic algorithms of the Discriminatek .They are performed by a Proofs-as-Programs Method and a Generalization Method ,respectively. We discuss these methods in turn.1.4.1.1 THE PROOFS-AS-PROGRAMS METHODThe Proofs-as-Programs Method extracts specialized implementations of theDiscriminatek from the proofs that the heads of the properties are logical conse-quences of the recursive, non-minimal disjuncts. Indeed, properties contain explicitinformation that has not yet been synthesized into these disjuncts. This is thus theright moment to use this information.When considering property Pi, let Ti be a theory composed of:i) the recursive, non-minimal disjuncts of the generalization �(LA6(r));ii) the example set E(r);iii) the property set P (r) n fPig;iv) logic algorithms of the primitive predicates, such as LA(=).The Proofs-as-Programs Method �rst attempts to prove that the head of propertyPi is a logical consequence of theory Ti. The body of property Pi is then used duringthe discriminant extraction.These proofs can be done by a slight modi�cation of SLD resolution (see section ??).A clausal version of Ti has �rst to be generated: this is straightforward due to ourrestriction to logic algorithms whose bodies are in disjunctive normal form. Examplesand properties are already in clausal form.The initial goal is the head of property Pi.The computation rule satis�es the following condition: never select an atom withpredicate r=n if there are atoms with primitive predicates.The search rule is as follows:- if the selected atom has a primitive predicate, then it is resolved according toits semantics;12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE DISCRIMINATEK (STEP 7) 21- the root of the proof tree is resolved using the clauses generated from �(LA6(r));- if the selected atom (in a non-root node) has predicate r=n, then it is resolvedusing the clauses generated from Ti n f�(LA6(r))g.In the resolution of the root, we use �(LA6(r)) rather than the examples or prop-erties because that wouldn't make sense: we are trying to prove the logic algorithmcorrect wrt its speci�cation, not to prove the speci�cation consistent. In the resolutionof atoms with predicate r=n, we use the examples and other properties rather than�(LA6(r)) because that wouldn't make sense either: �(LA6(r)) is still incorrect. Ourrestriction to properties that are non-recursive comes in handy here: there is no furthernesting of goals in r=n.A derivation of the head of property Pi succeeds i� it ends in the empty clause. Let kbe the number of the (recursive, non-minimal) disjunct of �(LA6(r)) whose generatedclause was used in the initial resolution step. Let �ki be the corresponding computedanswer substitution. We instantiate Discriminatek by discriminatek such that it ispartly de�ned by the following clause:discriminatek(HX,TX,y)�ki Bodyi�kiwhere Bodyi is the body of property Pi, and where y is the value of Y in the head ofPi.Note that this is not like classical program extraction from proofs (compare with[BSW90, Fri90, MW79]), since the program is here extracted from the unique �nalresult of the proof, rather than on-the-
y (or a posteriori) from multiple intermediateproof-steps.A derivation fails i� it doesn't succeed. Nothing is done in that case. Failure isof course not always detectable, since an in�nite derivation may occur. In practice,success is approximated by limiting the size (or the CPU time) of a derivation.The proof of a property set succeeds i� every property has at least one success-ful derivation. The revealed clauses of discriminants are then assembled into logicalgorithms:discriminatek(HXk;TXk; Yk),_i2S(k)(HXk = HX ^ TXk = TX ^ Yk = y ^ Bodyi)�kiwhere S(k) is the �nite, possibly empty, set of indices of the properties whose proofs re-vealed clauses of discriminatek . If S(k) is empty, then the corresponding discriminantalways evaluates to true.The proof of a property set fails i� some property has no successful derivation. Insuch a case, the Proofs-as-Programs Method does not synthesize the discriminants.Previous steps of the synthesis have then to be reconsidered.1.4.1.2 THE GENERALIZATION METHODSince the properties only embody fragmentary information, the discriminants obtainedso far are too specialized. The Generalization Method applies some heuristics, andpostulates that the resulting discriminants are the intended ones.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



22 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSHere are some valuable heuristics:Heuristic 2 If the value of some TXk or Yk is not changed by the computed answersubstitution, then this parameter is irrelevant and its value can be generalized to theanonymous variable.Heuristic 3 The parameter TXk should be a compound induction parameter ofLA(discriminatek): if necessary, some values of the TXk should be generalized sothat the TXk range across their entire domain.The Generalization Method is always applicable.1.4.2 Illustration on sample problemsWe illustrate the above methods and heuristics on the sample problems of section 1.2.1.4.2.1 THE EFFACE=3 PROBLEMThe Proofs-as-Programs Method attempts to prove, by SLD-resolution, that the headof property PEi is a logical consequence of theory T E i.Starting with PE1, we have:5 efface(X; [XjT ]; T )disjunct 3 of �(LA6(efface)) fg [XjT ] = [HLjTL]; efface(X;TL; TR); T = [HLjTR]LA(=) fHL=X; TL=Tg efface(X;T; TR); T = [XjTR]LA(=) fT=[XjTR]g efface(X; [XjTR]; TR)The last goal doesn't unify with the head of any clause in T E1: the derivation fails.The head of property PE1 is not a logical consequence of theory T E1. So nothing isdone to disjunct 3.5 In a goal, the underlined atom(s) are the selected atom(s) for the next resolution step(s).12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE DISCRIMINATEK (STEP 7) 23We pursue with PE2:  efface(X; [Y;XjT ]; [Y jT ])disjunct 3 of �(LA6(efface)) fg [Y;XjT ] = [HLjTL]; efface(X;TL; TR); [Y jT ] = [HLjTR]LA(=) fHL=Y; TL=[XjT ]g efface(X; [XjT ]; TR); [Y jT ] = [Y jTR]LA(=) fTR=Tg efface(X; [XjT ]; T )PE1 fg2The head of property PE2 is a logical consequence of theory T E2. A specializeddiscriminant for disjunct 3 is partly de�ned as follows:discEfface(HL,TL,X,[X|T])� X 6= Y�where � is the computed answer substitution of the above SLD-derivation. This yields:discEfface(Y,[X|T],X,[X|T]) X 6= YThere is no other property. There are no alternative derivations.The Generalization Method applies heuristic 2 to decide that the values of thesecond and fourth parameters of the discriminant are irrelevant in this case. Aftergeneralization of the implication into an equivalence, plus renaming of some variables,the discriminant reads:discEfface(HL; TL;E;R) , E 6= HL ^ TL = ^R = :This result is simpli�ed and then unfolded into disjunct 3, so LA7(efface) looks asdepicted in �gure 1.16.1.4.2.2 THE PERM=2 PROBLEMAt step 6, the Synthesis Method has been invoked for the perm=2 problem, becausethere is only one equivalence class. The properties of perm=2 have been inherited by12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



24 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSe�ace(E;L;R),L = [ ] ^ L = [E] ^ R = [ ]^ E = a ^ L = [a] ^ R = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ E = HL ^ R = TL^ E = b ^ L = [b; c] ^ R = [c] ^ : : :_E = f ^ L = [f; g; h] ^ R = [g; h] ^ : : :_ L = [ ; j ] ^ L = [HLjTL]^ E 6= HL^ e�ace(E;TL;TR)^ R = [HLjTR]^ HL = d ^ TR = [ ] ^ R = [d] ^ : : :_HL = i ^ TR = [k] ^ R = [i; k] ^ : : :_HL = m ^ TR = [n] ^ R = [m;n] ^ : : :Figure 1.16 LA7(efface)the inferred subproblem, so no discriminant is needed. Hence LA7(perm) is identicalto LA6(perm).1.4.2.3 THE FIRSTSEQ=3 PROBLEMThe Proofs-as-Programs Method attempts to prove, by SLD-resolution, that the headof property PFi is a logical consequence of theory T F i.We start with PF1:  firstSeq([X]; [X]; [ ])disjunct 3 of �(LA6(firstSeq)) fg [X] = [HLjTL]; firstSeq(TL; TF; TS); [X] = [HLjTF ]; [ ] = TSLA(=) fHL=X; TL=[ ]; TF=[ ]; TS=[ ]g firstSeq([ ]; [ ]; [ ])The last goal doesn't unify with the head of any clause in T F1: the derivation fails.The head of property PF1 is not a logical consequence of theory T F1. So nothing isdone to disjunct 3.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



SYNTHESIS OF THE DISCRIMINATEK (STEP 7) 25We pursue with PF3:  firstSeq([X;Y jT ]; [X]; [Y jT ])disjunct 3 of �(LA6(firstSeq)) fg [X;Y jT ] = [HLjTL]; firstSeq(TL; TF; TS); [X] = [HLjTF ]; [Y jT ] = TSLA(=) fHL=X; TL=[Y jT ]; TF=[ ]; TS=[Y jT ]g firstSeq([Y jT ]; [ ]; [Y jT ])The last goal doesn't unify with the head of any clause in T F3: the derivation fails.The head of property PF3 is not a logical consequence of theory T F3. So nothing isdone to disjunct 3.We pursue with PF2:  firstSeq([X;X]; [X;X]; [ ])disjunct 3 of �(LA6(firstSeq)) fg [X;X] = [HLjTL]; firstSeq(TL; TF; TS); [X;X] = [HLjTF ]; [ ] = TSLA(=) fHL=X; TL=[X]; TF=[X]; TS=[ ]g firstSeq([X]; [X]; [ ])PF1 fg2The head of property PF2 is a logical consequence of theory T F2. A specializeddiscriminant for disjunct 3 is partly de�ned as follows:discFirstSeq(HL,TL,[X,X],[])�  true�where � is the computed answer substitution of the above SLD-derivation. This yields:discFirstSeq(X,[X],[X,X],[])There is no other property. There are no alternative derivations.The Generalization Method applies heuristic 2 to decide that the values of the thirdand fourth parameters are irrelevant in this case. It applies heuristic 3 to generalizethe TL parameter into non-empty lists. After generalization of the implication into an12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



26 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORS�rstSeq(L;F;S),L = [ ] ^ F = L ^ S = [ ]^ L = [a] ^ F = [a] ^ S = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL 6= HTL^ F = [HL] ^ S = TL^ L = [b; c; d; e] ^ F = [b] ^ S = [c; d; e]^ HL = b ^ TL = [c; d; e]_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL = HTL^ �rstSeq(TL;TF;TS)^ F = [HLjTF] ^ S = TS^ HL = f ^ TF = [f ] ^ TS = [g; h] ^ : : :_HL1 = i ^ TF = [i; i] ^ TS = [j] ^ : : :Figure 1.17 LA7(firstSeq)equivalence, plus renaming of some variables, the discriminant reads:discF irstSeq(HL; TL; F; S) , TL = [HTLj ] ^HL = HTL ^ F = ^ S = :This result is simpli�ed and then unfolded into disjunct 3, so LA7(firstSeq) looks asdepicted in �gure 1.17.1.5 SYNTACTIC GENERALIZATION (STEP 8)In this section, we �rst formally present the objective and method of step 8. Then wecompute the �nal generalizations for the sample problems given in section 1.2.1.5.1 Formalization: objective and methodAt step 8, the objective is to transform LA7(r) into LA8(r) that looks like:r(X;Y ), minimal(X) ^ solve(X;Y )_W1�k�c nonMinimal(X) ^ decompose(X;HX;TX)^ discriminatek(HX;TX; Y )^ r(TX;TY)^ procCompk(HX;TY; Y )All predicate variables of the divide-and-conquer schema have already been instanti-ated until step 7, and we have used all the information contained in the speci�cation:12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



CONCLUSION 27efface(E;L;R) ,L = [ ] ^ L = [E] ^ R = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ E = HL ^ R = TL_ L = [ ; j ] ^ L = [HLjTL]^ E 6= HL^ efface(E; TL; TR)^ R = [HLjTR]Figure 1.18 LA8(efface)perm(L;P ),L = [ ] ^ P = [ ]_ L = [ j ] ^ L = [HLjTL]^ perm(TL; TP )^ efface(HL;P; TP )Figure 1.19 LA8(perm)� examples are injected at step 1 and are trailed along all subsequent steps in theform of equality atoms, so that they be present when needed;� examples and properties are used at step 4 to deductively infer values of the TY;� examples and properties are used at step 6 to infer speci�cations of subproblems;� properties are used at steps 5 and 7 to infer discriminants.So we may consider the synthesis task �nished. We postulate that LA8(r) is �(LA7(r)).1.5.2 Illustration on sample problemsThe �nal generalizations for the sample problems given in section 1.2 are depicted in�gures 1.18, 1.19, and 1.20, respectively. Note that they can be proven to be equivalentto the sample logic algorithms listed in �gures 1.4, 1.7, and 1.10, respectively.1.6 CONCLUSIONIn this last section, we present the framework, results, and contributions of this re-search, and mention some related research, as well as future research.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



28 SYNTHESIS OF COMPOSITION AND DISCRIMINATION OPERATORSfirstSeq(L;F; S) ,L = [ ] ^ F = L ^ S = [ ]_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL 6= HTL^ F = [HL] ^ S = TL_ L = [ ; j ] ^ L = [HLjTL]^ TL = [HTLj ] ^ HL = HTL^ firstSeq(TL; TF; TS)^ F = [HLjTF ] ^ S = TSFigure 1.20 LA8(firstSeq)1.6.1 Framework, results, and contributionsThis research was partly led within the framework of the Folon research project(Facult�es Universitaires Notre-Dame de la Paix, Namur, Belgium) whose objectiveis twofold. First, it aims at elaborating a methodology of logic program development,such as described in [Dev90]. Second, it aims at designing an integrated set of toolssupporting this methodology. Our research tackles the aspects of logic program syn-thesis from examples and properties.The main results of our work on logic program synthesis so far are the de�nitionof a synthesis calculus ( [FD91, FD93]), the identi�cation of a particular synthesismechanism ( [Fle91]), and the development of methods for each of its steps ( [Fle91]).One of the originalities of our approach is the combination of examples with prop-erties, so as to cope with some classical di�culties of example-based synthesis.1.6.2 Related researchPointers to related research in program synthesis have been given throughout the chap-ter, and we have already stressed in detail how our approach di�ers from the stateof the art. The use of schemata is also advocated in [Smi85, DB89, GH89, Tin90](divide-and-conquer), [Smi88] (global search), and others, although sometimes in dif-ferent contexts (e.g. programming tutors/assistants). An early study of the concept ofmost speci�c generalization is [Plo70].1.6.3 Future researchIn the future, we plan to pursue research on the following aspects:Development of a proof-of-concept implementation (in Prolog) of the synthesis mech-anism, called SYNAPSE (SYNthesis of logic Algorithms from PropertieS and Exam-ples). This should allow the identi�cation of points of interaction with the speci�erso that we can better cope with incompleteness: wherever inductive inference is used,the speci�er should be able to give his feedback. It is important to keep this dialogue12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root



EXERCISES 29easy, i.e. a question-and-answer method asking for the classi�cation of ground atomsas examples or counter-examples seems to be an appropriate choice.Incorporation of counter-examples in the speci�cations, the general synthesis strategy,and the synthesis mechanism. Indeed, negative information is quite useful in avoidingover-generalization during inductive inference.Formulation of a methodology of choosing examples and properties. It is importantto guide the speci�er towards choosing \good" examples and properties. This reducesinteraction with the speci�er, and results thus in highly automated synthesis.1.7 EXERCISES1. Give a sample logic program �tting the divide-and-conquer schema, where the in-stances of the NonMinimal and the Decompose predicates are di�erent.2. Extend the schema of �gure 1.1 to n-ary relations.3. Perform the remaining msg computations of subsection 1.3.2.2.4. Perform the Proofs-as-Program Method to the perm=2 problem. Show that theobtained discriminants are redundant with the existing literals of LA6(perm).5. Show that LA8(efface), LA8(perm), and LA8(firstSeq) are logically equivalentto (i.e. have the same models than) the logic algorithms listed in �gures 1.4, 1.7,and 1.10, respectively.ACKNOWLEDGEMENTSThe authors gratefully acknowledge many insightful discussions with Prof. B. Le Char-lier (Facult�es Universitaires Notre-Dame de la Paix, Namur, Belgium). Thanks also tothe anonymous reviewers for their constructive comments on this paper. Many thanksto Jean-Marie Jacquet for his careful editing. Parts of the results presented here werefound while the �rst author was on leave at Duke University (NC, USA). The �rst au-thor is supported by the Government of Luxembourg, Ministry of Scienti�c Researchand Cultural A�airs, Grant BFR 92/017.REFERENCES[Bie84] A.W. Biermann. Dealing with Search. In A.W. Bierman, G. Guiho, and Y. Ko-drato�, editors, Automatic Program Construction Techniques, pages 375{392.Macmillan, New York, NY, USA, 1984.[Bie92] A.W. Biermann. Automatic Programming. In S.C. Shapiro, editor, Encyclopediaof Arti�cial Intelligence, Wiley Interscience Publication, pages 59{83. John Wiley& Sons, New York, NY, USA, second, extended edition, 1992.[BS79] A.W. Biermann and D.R. Smith. A Production Rule Mechanism for GeneratingLISP Code. IEEE Transactions on Systems, Man, and Cybernetics, 9(5):260{276,1979.[BSW90] A. Bundy, A. Smaill, and G. Wiggins. The Synthesis of Logic Programs fromInductive Proofs. In J.W. Lloyd, editor, Symposium on Computational Logic, EspritBasic Research Series, pages 135{149. Springer-Verlag, Heidelberg, Germany, 1990.12/8/1993 16:42|PAGE PROOFS for John Wiley & Sons Ltd (using jwcbmc02, Vers 31.08 AUGUST 1992)|root
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