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PIERRE FLENERAND YVES DEVILLE

Unité d’Informatique, Université Catholique de Louvain
Place Sainte Barbe 2, B — 1348 Louvain-la-Neuve, Belgium

We develop a framework for stepwise synthesis of logic programs from i
plete specifications. After the definition of logic formalisms for specificatior
programs, logic program correctness and comparison criteria are propose
we define criteria for upward and downward progression, in order to state
gies for incremental and non-incremental stepwise synthesis. It is shown hc
strategies can be applied in practice. Finally, we instantiate the framewo
particular synthesis mechanism that we have developed. Our synthesis
called SYNAPSE, is non-incremental, both deductive and inductive, and
by a divide-and-conquer schema.We describe the objectives and methoc
crucial steps, and illustrate them on a sample problem.

1. Introduction

Program synthesis research aims at maximally automating the passage from specifica-
tions to programs (see the survey by Biermann, 1992). We define possible formalisms
for the starting points (specifications: see Section 1.1) and results (programs: see
Section 1.2) of synthesis, and state existing approaches and related work, before pinning
down the objectives (Section 1.3) of this paper. Some familiarity with logic program-
ming is assumed.

1.1. SPECIFICATIONS

There are many specification formalisms (natural language, first-order logic, pre/post
conditions, algebraic specifications, examples, ...). In this paper, we focus on specifica-
tions (of logic programs) that are written in first-order logic.

Specifications by examples (an extreme case of logic statements), e.g.:

firstPlateau[a,a,a,b,b,c,c,cl¢c[a,a,d, [b,b,c,c,c,p)
lead to synthesis based on inductive inference. Biermann’s systems (1979, 1984), and
THESYS (Summers, 1977) synthesizéSP functions from positive examples, using
matching techniques. ShapirolIS (1982) and its derivatives (e.g. (Drabestt
al., 1988), (Tinkham, 1990)) synthesize Prolog procedures from positive and negative

0747-7171/93/5-6775 + 31 $08.00/0 © 1993 Academic Press Limited



776 P. Flener and Y. Deville

examples, using machine learning techniques. Such specifications have the advantages
of naturalness (examples are easy to elaborate, and to understand) and conciseness (ex-
amples can implicitly describe manipulations of parameters). Their disadvantages are
limited expressive power and ambiguity (examples can’t completely specify a problem).

Axiomatizations of a problem in (some subset of) first-order logic, e.g.:

firstPlateau(List,Plateau, Suffix) <
append(Plateau,Suffix,List) allEqual(Plateau) (] break(Plateau,Suffix)

lead to synthesis based on deductive inference. The systems of, e.g., @undy
al., 1990), (Fribourg, 1990), (Wiggins, 1992) perform proofs-as-programs synthesis:
programs are extracted from constructive proofs of the satisfiability of specifications.
The systems of, e.g., (Clark, 1981), (Hansson, 1980), (Hogger, 1981), (Lau and
Prestwich, 1990), perform transformational synthesis: programs are derived from spec-
ifications by applications of transformation rules. Such specifications have the advantag-
es of expressiveness (axioms benefit from the full expressive power of logic) and non-
ambiguity (axioms can completely specify a problem). Their disadvantages are artifici-
ality (axioms can be difficult to elaborate, and to understand) and length (axioms require
a complex formalization process).

It turns out that examples and axioms have complementary strengths and weaknesses.
The idea is then to combine both approaches, taking advantage of the pros, while trying
to alleviate the cons of each existing approach. This may be achieved by relaxing axioms
into properties a potentially incomplete source of information.

Let O be the relation one has in mind when elaborating a specification of a procedure
for a predicate/n. We calll] theintended relationin contrast to the relation actually
specified, called thgpecified relationwhich is what logically follows from the specifi-
cation. This distinction is very important in general, but crucial with incomplete speci-
fications, where one deliberately admits a gap between the two. We assume the specifier
knows(, even if s/he has no formal definition of it.

DEFINITION 1.1. A specification by examples and propertiés procedure for a pred-
icater/n consists of:
» a setE(r) of examples of/n, partitioned into:
—a setE™ (r) of positive examples afn (i.e. ground atoms whosetuples are sup-
posed to belong tQ);
—a setE™(r) of negative examples oh (i.e. ground atoms whosetuples are sup-
posed not to belong 0);
 a setP(r) of properties (first-order logic statementsy/of ¢

EXAMPLE 1.1. Non-formally speaking, let theum(L,Syelation hold iff intege6Bis the
sum of the elements of the integer list et Sum denote this intended relation. A sample
specification by positive examples and properties is:
E(sum) = ZE*(sum) ={ sum([],0)
sum([1],1)
sum([3,2],5)
sum([2,6,4],12) }
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Hsum) ={ sum([X],X)
sum([X,Y],S) O add(X,Y,S) }
whereadd(l,J,S)olds iff integerSis the sum of the integefandJ. ¢

The only syntactic choice so far is the deliberate decision that properties are any first-
order logic statements that are not examples.

Very few systems, e.g. (Drabeattal, 1988) (De Raedt and Bruynooghe, 1992), start
from both examples and properties. Although our considerations also hold for the ex-
treme cases where one of these sets is empty, or where properties are axioms in the above
sense, this paper achieves its full relevance only if both sets are non-empty, and if prop-
erties are an incomplete source of information.

1.2. LOGIC ALGORITHMS

Since we aim at the synthesis of logic programs with negation, synthesized programs
are completed programs. We express programs in a logic formalism close to the one of
Deville (1990), called logic algorithms. For syntactic convenience, we here restrict the-
oretical considerations to binary relations.

DEFINITION 1.2. A logic algorithmof a predicat&, denoted A(r), is a formula of the
form: r(X,Y) = Def[X,Y], whereDef (called thebody) is a formula that only involves
the logicaland () andor (L) connectives. The left-hand atom is called liead of
LA(r). The variableX andY are called theniversal variableof LA(r), and all other
variables are called thexistential variablesf LA(r).

EXAMPLE 1.2. A sample logic algorithm fosum2 is:

LAs(sun: sum(L,S) - L=(] 0S=0
O L=[HL|TL] Osum(TL,TS)
Oadd(HL,TS,S) .

Executable Prolog programs can easily be derived from such logic algorithms
(Deville, 1990).

EXAMPLE 1.3. The logic program derived froinA,(sum)is the following:
sum(L,S) « L=[],S=0
sum(L,S) < L=[HL|TL],sum(TL,TS),add(HL,TS,S)
or, with the unifications moved into the heads:
sum([],0) -
sum([HL|TL],S) « sum(TL,TS),add(HL,TS,S) .

1. (Predicate) variable names start with an uppercase; functors and predicates start with a
lowercase.F[X,Y] denotes a formul& whose free variables adéandY; F[a,b] denotes
F[X,Y] where the free occurrences XfandY have been replaced by the termandb,
respectively. The variablesandY are assumed to be universally quantified avr); oth-
er free variables ibefare assumed to be existentially quantified &efr



778 P. Flener and Y. Deville

1.3. OBJECTIVES OF THIS PAPER

The objectives of this paper aii¢ the elaboration of a generic framework for logic
algorithm synthesis from specifications by examples and propertiesi)ahd (lescrip-
tion, within this framework, of a particular synthesis mechanism that has been devel-
oped and is being implemented. This paper is then organized as follows. In Section 2,
we define correctness criteria for specifications and logic algorithms. In Section 3, we
propose comparison criteria for logic algorithms. This provides an adequate framework
for the formulation, in Section 4, of stepwise synthesis strategies. In Section 5, we in-
stantiate this framework and discuss the design choices used for our synthesis mecha-
nism. In Section 6 to Section 8, we present the objectives and methods of the major steps
of our synthesis mechanism, and illustrate them on a sample problem. Finally, in
Section 9, we draw some conclusions on the results presented here. This paper extends
results presented by Flener and Deville (1992, 1993). A full development of this paper
can be found in (Flener, 1993).

2. Correctness of Logic Algorithms

It is important to measure a logic algorithm against its intended relation. Since we are
concerned with the declarative semantics of logic algorithms, we define model-theoretic
criteria, rather than proof-theoretic ones.

Let LA(r) be r(X,Y) = Def[X,Y], andO be the intended relation. We here assume that
Defcontains only primitive predicates and possiblyhis amounts to assuming that all
the predicates involved in the designLéf(r) have been—or will be—correctly imple-
mented, and can thus be seen as primitives for the desigh(f This restriction can
be overcome by simultaneously considerit®y(r) and its non-primitive predicates
(Deville, 1990).

The idea behind correctness is to state that the intended rélacgquivalent to the
relation defined by A(r):

O =LA*(r) with LA"(r) ={<a,b>| LA(r) F=r(a,b)}

O =LA(r) with LAY(r) ={<a,b>| LA(r) E=-r(a,b)}
where [ is the complement ofl, and where the considered interpretations are
Herbrand interpretations in which the primitive predicates are interpreted according to
their specifications. Correctness thus states an equivalence, in the madg(s,die-
tween the intended relati@h and the interpretation of predicatd he second criterion,
which in general is not a consequence of the first one, is necessary to handle logic algo-
rithms with negation (Deville, 1990).

When a logic algorithm is designed by structural induction (see (Deville, 1990) for a
precise methodology for this) on some parameter, then predicartebe interpreted in
any Herbrand model dfA(r):

THEOREM 2.1.1f LA(r) is designed by structural induction, then the interpretation of r
is the same in all the Herbrand models of LA(r).
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PROOF. Base casdn a design by structural induction@éf, there exist disjuncts iDef

that are without recursion. Since all predicates otherrthane a fixed interpretation in

all the Herbrand models, so will the instance rpfsatisfying the non-recursive
disjuncts. Induction SinceLA(r) is designed by structural induction, in any recursive
disjunct the recursive atoms involve parameters that are smaller, according to some
well-founded relation, than those in the head. More precisely, for every ground instance
of the logic algorithm such that the non-recursive literals in the disjuntuaré¢he re-
cursive literals have smaller parameters than the head of the considered ground instance
of the logic algorithm. Hence, by the induction hypothesis, the recursive instance of
also has a fixed interpretation in all the Herbrand models. Since the other non-recursive
literals have a fixed interpretation, so willor the non-recursive disjuncts[]

In the sequel, we only consider recursive logic algorithms where some well-founded
relation can be defined between the recursive literals and the head. We thus have to en-
force that a synthesis mechanism doesn’'t synthesize non-terminating recursion (for
ground queries).

In this framework, the s&AT(r) is thus the complement bA* (r). Total correctness
reduces t@] = LA*(r). Partial correctness is achieved whefl LA*(r) (i.e. when the
atoms “computed” byLA(r) are correct), and completeness is achieved when
O OLA™(r) (i.e. when all the correct atoms are “computedLibyr)).

For convenience, correctness definitions will be formalized wrt a single Herbrand in-
terpretatiori], called thentended interpretatiorsuch that the next two conditions hold:

* r(a,b)istruein O iff O(a,b)holds,

» [is a model of all primitive predicates.

Note that’] captures] since the interpretation ofin Jis[0. Sol does not have to be
explicitly considered in the correctness criteria.
EXAMPLE 2.1. Here are three other logic algorithms $omi2:
LA(sum: sum(L,S) = L=[] 0OS=0
LAg(sunj: sum(L,S) - L=[]] 0OS=0
O length(L,N) ON>0 [Osub(S,TS,HL)
LA4(sun): sum(L,S) - L=[]] 0OS=0
O L=[HL|TL]
wherelength(L,N)holds iff integem is the number of elements of listandsub(l,J,D)
holds iff add(J,D,l)holds.
Three layers of correctness criteria are now defined.

2.1. LOGIC ALGORITHM vs. INTENDED RELATION

Total correctness can now be re-expressed as follows:

DEFINITION 2.1. LA(r) istotally correctwrt 0 iff r(X,Y) = Def[X,Y]istruein L.
One can show that Definition 2.1 is equivalent to the critéfigrL A" (r). For partial

correctness and completeness, slightly stronger criteria are used:

DEFINITION 2.2. LA(r) is partially correctwrt O iff r(X,Y)O Def[X,Y] is truein O.

DEFINITION 2.3. LA(r) iscompletewrt O iff r(X,Y)O Def[X,Y] is truein O.
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One can show that Definition 2.2 (respectively Definition 2.3) implies the criterion
O OLA™(r) (respectivelyd O LA"(r)), but not the converse. This prevents logic algo-
rithms that are “badly” partially correct (respectively “badly” complete), that is logic al-
gorithms that cannot be easily “extended” to totally correct algorithms.

EXAMPLE 2.2. LAy(sum)is totally correct wrisum. LA;(sum)is only partially correct
wrt Sum. LAg(sum)andLAy(sum)are only complete wiSum.

2.2. LOGIC ALGORITHM vs. SPECIFIED RELATION

Next come criteria for measuring a logic algorithm against its specification by exam-
ples and properties. Given a set of examglg3y = £*(r) O £7(r), a logic algorithm
LA(r) is complete wrt(r) iff the examples are covered by the relation defineldAgy)
(E*(r) O LA (r) and £7(r) O LA(r)). And LA(r) is partially correct wrtg(r) iff the
positive examples cover the defined relatisii(f) O LA* (r); note that it is meaningless
to include here the partial correctness of the negative examples).

Similar criteria can be expressed for a set of proped(gs In the above criteria, the
setsZ” (r) and£7(r) then have to be replaced by the following two sets:

P*(r) = {<a,b>| () F=r(a,b)}
P(r) = {<a,b>| 2(r) F=-r(a,b)}

The following formalization of all these criteria is defined in terms of the intended in-
terpretatior]. Although slightly different from the above criteria, the following defini-
tions are more adapted to a framework of logic algorithm synthesis (see (Flener, 1993)
and (Deville and Flener, 1993) for a precise account on this subject):

DEFINITION 2.4. LA(r) is completewrt £(r) iff the following conditions hold:

* r(a,b) 0 £*(r) O Def[a,b istrueinO;

* r(a,b)0E£7(r) O Def[a,h is falsein .

DEFINITION 2.5. LA(r) is partially correctwrt E(r) iff the following condition holds:

* r(a,b) 0 £ (r) O Def[a,b istruein 0.

DEFINITION 2.6. LA(r) is completewrt 2(r) iff the following conditions hold:

* P(r) E=r(a,b) O Def[a,b istruein J;

* P(r) F=-r(a,b) O Defl[a,b is falsein [l.

DEFINITION 2.7. LA(r) is partially correctwrt 2(r) iff the following condition holds:

* P(r) F=r(a,b) O Defl[a,b is truein .

DEFINITION 2.8. LA(r) istotally correctwrt E(r) (respectively?(r)) iff LA(r) is com-
plete and partially correct w#i(r) (respectively?(r)).

EXAMPLE 2.3. LAy(sum) LAg(sum) andLA,(sum)are complete wrE?(sum)

2.3. SPECIFIED RELATION vs. INTENDED RELATION

Finally, there is consistency of a specification by examples and properties wrt the in-
tended relation. For instance, consistency of the examp{gswrt the intended
relation] means that the positive examples arlé jmand that the negative examples are
in its complementd.
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DEFINITION 2.9. Z(r) is consistentith [ iff the following conditions hold:

*r@@b)JE%(r) O r(ab)istruein O (i.e. £*(r) O D);

*r(@@,b)0E~(r) O r(ab)isfalseinO (i.e.£7(r) O 0O).

DEFINITION 2.10. (r) is consistenwith [ iff the following condition holds:

«pO2(r) O pistrueinO (i.e.P*(r) OO and?~(r) O0).

EXAMPLE 2.4. E(sum)and?(sum)are consistent witl§um.

The specified relation of a consistent specification is a subset of the intended relation.
Moreover, ifLA(r) is partially or totally correct wrE(r) (respectively?(r)), andE(r)
(respectivelyP(r)) is consistent witlil, thenLA(r) is partially correct wril.

If there is no formal definition of the intended relatidnsome correctness criteria
cannot be applied in a formal way. But they can be used to state features and heuristics
of a synthesis mechanism.

3. Comparison of Logic Algorithms

Let L, be the set of all possible logic algorithmsrofvhere the bodies only involve
some fixed set of primitive predicates as well as the binamnedicate, and wheng
andY are the distinct variables used in the heads.

It is important to compare logic algorithms for the same intended relation. Indeed, this
is useful in stepwise synthesis to establish strategies of progression towards a correct al-
gorithm. Let:

o LA(N: r(X,Y) = Def[X,Y]

o LAyN): r(X,Y) = Deb[X,Y]
be two logic algorithms i,. We define a criterion for comparing logic algorithms in
terms of generality (Section 3.1). Since verifying this criterion is only semi-decidable,
we then introduce a sound approximation thereof (Section 3.2).

3.1. SEMANTIC GENERALIZATION

Intuitively, LA(r) is less general thaoAy(r) iff Def; is “less often” true thaDef,.
More formally:

DEFINITION 3.1. LA((r) is less generalthan LAy(r) (denoted LA(r) < LAY(r))
iff OXOY Def O Def istruein .

The fact of beingnore genera(>) is defined dually. Two logic algorithms, each more
general than the other, a¥quivalent(). We use< for < and[l

EXAMPLE 3.1. We havelLA;(sum)< LA,y(sum)< LAz(sum)< LA4(sum)

The setL,modquD(denotedLr[ﬁ is partially ordered undet. It includes as least el-
ement;, (defined asr(X,Y) < false and calledottorn) and as greatest elemdnt(de-
fined asr(X,Y) = true, and calledop). In order to have an upper bound to any ascend-
ing sequence of logic algorithms, let's extefydto #, by allowing an infinite number
of literals in the body of a logic algorithm. Letbe the considered Herbrand universe.
Itis clear thathrD,s) is isomorphic tof(’(‘uz), 0), whereP(S)denotes the set of subsets
of setS. Hence IMrD, <) is a complete lattice, whose lub operator is the logicél),
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and whose glb operator is the logieald () connective over the bodies of logic algo-
rithms.

Comparing logic algorithms in terms of generality can be a difficult task, and is only
semi-decidable anyway. We thus define a particular case of this generality relation, but
in terms of purely syntactic criteria.

3.2. SYNTACTIC GENERALIZATION

We represent formulas by multisets, so as to exclude ordering problems. A similar de-
velopment, though for second-order expressions, but without negation, has been made
by Tinkham (1990).

DEFINITION 3.2. Let F be a conjunction of literals (respectively a disjunction of con-
junctions of literals). Thep(F) isO if F is the predicat&ue (respectivelyfalse), and

the multiset of the literals d¥ (respectively the multiset of the conjunctions of literals
of F), otherwise.

Let’s first define syntactic generalization over conjunctions of literals, and then over
logic algorithms:

DEFINITION 3.3. A conjunctionC; is syntactically less gener#ihan a conjunctio©,
(denotedC, « C,) with a substitutio® iff p(C,0) O p(Cy).
EXAMPLE 3.2. p(a,X)dq(Y) « p(V,W) namely with the substitutionga, W/X.

DEFINITION 3.4. LA4(r) is syntactically less generalthan LA(r) (denoted
LA{(r) « LAy(r)) iff there is a total functiop from p(Def,) to p(Det), such that, for ev-
ery disjunctD in p(Defy), there is a substitutio® that only binds existential variables
of LAy(r), such thaD « @(D) with substitutiorb.

EXAMPLE 3.3. We haveLA;(sum)« LAy(sum)« LA, (sum) However,LAy(sum)and
LA3(sum)are incomparable under «, as they involve different predicates.

The fact of beingsyntactically more generdb) is defined dually. Two logic algo-
rithms, each syntactically more general than the othegyatactically equivalent=).
Note that syntactical equivalence is more general than alphabetic variance, because of
the irrelevance of the ordering of disjuncts within logic algorithms, and of literals within
disjuncts.

The set.” is partially ordered under «. The following proposition is a direct conse-
quence of the definitions:
PROPOSITION 3.1.The relations«, », and = are sub-relations ok, =, and O
respectively.

We now define an atomic refinement operator, after making two preliminary observa-
tions. A most general literain a disjunctD of LA(r) is of the formp(Z,...,4,) or
- p(4,...,4,), wherepis ann-ary predicate and,, ...,Z, are existential variables occur-
ring exactly once iD. And amost general terrm a disjunctD of LA(r) is of the form
f(Z4,....4,), wheref is ann-ary functor and?y,...,Z, are existential variables occurring
exactly once im.
DEFINITION 3.5. Letybe a refinement operator such thag(r) O y(LA(r)) iff exactly
one of the following holds:
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« LA(r) is derived fronLA,(r) by adding a disjunct tbA,(r); 2
» LA,(r) is derived fromLA(r) by replacing a disjund®, by D,, such that:
— D, is D; without a most-general literal By; 3
— D, isD; where one or more occurrences of a variatdee replaced by a new ex-
istential variableM
— D, isD; where one or more occurrences of a most general tddmare replaced
by a new existential variabl&/

The ability to add a disjunct of course often overrides the need to modify a disjunct,
as it suffices to add the modified disjunct in the first place, for instance when creating a
logic algorithm fromJ,. However, this is not always possible, for instance when mod-
ifying an existing logic algorithm into another one.

EXAMPLE 3.4. LAy(sum)O y(LA;(sum)) andLA(sum)d y(y(y(LAx(sum))))

Let us now relate the refinement operatay the generality relation «:
THEOREM 3.2. The following three assertions hold:

(1) yis a syntactic generalization operator]LA'(r) O y(LA(r)) LA(r) « LA(r);

(2) ycan generate any syntactic generalization:

LAJ(r) « LAY(r) = [h [LAY(r) Oy (LAL(r)) LAY(r) = LAY(r);
(3) ycan generate all logic algorithms af from 0,: y*([J,) = Z,..
PROOF. Analogous to the proof in (Tinkham, 1990)

An inverse operatay of y can also be defined, such tbas a syntactic specialization

operator that can generate all logic algorithmg. dfom T,.

4. Stepwise Synthesis Strategies

It is useful to decompose a synthesis process into a series of steps, each designing an
intermediate logic algorithm. Indeed, thisgllows different techniques to be deployed
at each step (thus enforcing a neat separation of concerns)i)anelds monitoring
points where correctness and comparison criteria can be applied (hence measuring the
effectiveness and progression of synthesis).

Stepwise synthesis can Imeremental(when examples and properties are presented
one-by-one, each presentation yielding a run through all synthesis steps);iocre-
mental(when examples and properties are presented all-at-once, yielding a single run
through all synthesis steps).

An interesting approach to stepwise synthesis is to progress towards the desired algo-
rithm while preserving correctness criteria.

Let's give a criterion for upward (partial-correctness preserving) progression:

DEFINITION 4.1. (See Figure 1a.) If the following two conditions hold:
o LAY(r) = LA¢(N),
* LA,(r) is partially correct wrtl,

2. By convention, adding a disjuritto [J, amounts to replacinfplseby D.
3. By convention, deleting the unique literal of a singleton disjiinamounts to replacind
by true if there is narue disjunct yet inLA(r), and to discardin®, otherwise.
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LA(r) LAL(
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Figure 1. (a) Upward and (b) downward progression

thenLA(r) is abetter partially correct approximatioaf [ thanLAq(r). ¢
Dually, the criterion for downward (completeness preserving) progression is:

DEFINITION 4.2. (See Figure 1b.) If the following two conditions hold:
o LA(r) < LA¢(N),
* LA,(r) is complete wrtJ,

thenLAy(r) is abetter complete approximatiaf O thanLA(r). ¢

EXAMPLE 4.1. LAz(sum)is a better complete approximation$afn than LA4(sum)

We now briefly sketch an incremental synthesis strategy (Section 4.1), and then devel-
op a non-incremental synthesis strategy (Section 4.2).

4.1. AN INCREMENTAL SYNTHESIS STRATEGY

In the case of incremental synthesis, let’s view the steps of one synthesis increment as
a macro-step performing a transformat®nSynthesis is then the design of a series of
logic algorithmsLAy(r), LA(r), ..., LA(r), ..., from a series of specificatiosgr), ...,

Si(n), ..., with 5i(r) O Si+1(r) (wheresi(r) is a set of examples and properties), such that
the following two conditions hold:

* LAG(N) = L,

o LA(r) = O(LA.1(r),Si(r)), fori>O0.

This coversterative synthesjsvhere only the last presented example or property is ac-
tually used byo. If @ is monotonic and continuous (wrt therder on logic algorithms),
then@®([J,) is its least fixpoint. So ® preserves partial correctness tthen the fix-

point is also partially correct wifl. Note that completeness wiit is not necessarily
achieved, and that the resulting logic algorithm can involve infinitely many literals. This

is related tddentification-in-the-limit as first presented in Gold's seminal paper on in-
ductive inference (1967). This incremental strategy is monotonic and consistent. Other
approaches are, e.g., non-monotonic synthesis (Jantke, 1991) and inconsistent synthesis
(Lange and Wiehagen, 1991).
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4.2. A NON-INCREMENTAL SYNTHESIS STRATEGY

A first idea of a non-incremental stepwise synthesis strategy (with a fixed, finite num-
berf of steps) is to achieve upward progression:

At Step 1, “create”LA4(r) such that:

» LA(r) is partially correct wril.

At Stepi (2<i <f), transformLA;_4(r) into LA; (r) such that:

* LA (r) is a better partially correct approximationfothanLA;_;(r).
But this strategy doesn’t take care of the completeness aspect. Moreover, since synthesis
is here example-based, constants extracted or derived from the examples might appear
in intermediate logic algorithms instead of variables, and thus destroy all hopes for com-
pleteness. We define a generalization operator that allows the transformation of the se-
ries of intermediate logic algorithms into a series of intermediate logic algorithms that
reflects downward progression.

We assume that, giveixr), the literals of a synthesized logic algorithm are partitioned
into two classes by the synthesis mechanismsyn¢hesized literaJsand thetrailing
atoms The latter are of the forv=t or Vt, whereV is a variable occurring in the syn-
thesized literals, antis a term or a set of terms textually extracted or derived from the
examples inE(r).
DEFINITION 4.3. Letl" be atotal function i, such thal (LA(r)) is LA(r) whose trail-
ing atoms have been deleted.

EXAMPLE 4.2. Let LAg(sum)be:
sum(L,S) =
L=[] O L=[] 0OS=0
O L=[HL|TL] O sum(TL,TS)
O HL=1 0S=1 0OTL=[] OTS=0
0 HL=3 0S=5 0OTL=[2] 0OTS=2
0 HL=2 0S=12 [0OTL=[6,4] 0TS=10
where the bold atoms are synthesized atoms, and the other atoms are trailing atoms in-
troduced fromE(sumn), as in Example 1.1. ThuB(LAs(sum))is:
sum(L,S) =
L=[]
O L=[HL|TL] O sum(TL,TS) .

Itis obvious thal can be expressed as a sequence of applicatignthoil is a gen-
eralization functionLA(r) « ' (LA(r)), henceLA(r) < T (LA(r)).

The strategy above can now be refined as follows:

At Step 1, “create”LA4(r) such that:

* LA(r) is partially correct wril,

* [(LA4(r)) is complete wrtl.

At Stepi (2<i <f), transformLA;_;(r) into LA; (r) such that:

* LA (r) is a better partially correct approximationfothanLA;_4(r),

* (LA (r)) is a better complete approximationtofthanl™ (LA_4(r)).

At Stepf, “obtain” LAs (r) such that:

« LA (1) O (LA (1).
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Thus, LA (r) is totally correct wrt]. Hence, convergence of the synthesis process is
achieved.

We now state and prove a generic theorem showing how steds2 dbthe above
generic strategy can be refined in order to obtain a practical framework:

THEOREM 4.1. GENERIC SYNTHESIS THEOREM
Let LA(r) be r(X,Y)= Uhq<m A, and LA'(r) be r(X,Y)e Digem A U B;, where A
and B are any formulas. The following two assertions hold:
(1) IfLA(r) is partially correct wrtll and AU B; (1<j=m)
then LA(r) is a better partially correct approximation@fthan LA(r).
(2) If LA(r) is complete wrt] and O(X,Y)UA O By (1<j<m)
then LA(r)) is a better complete approximation dothan LA(r).
PROOF. Let’s prove these assertions one by one:
(1) Obviously, we havélgj<mA OB U Uigj<mAy. Moreover, the second hypothesis
implies Uygjem A U Uigjem A U Bj. ThusLA'(r) T LA(r), i.e., in particular
LA'(r) = LA(r). Using the first hypothesis, we obtain thai(r) is partially correct
wrt . Thus:LA'(r) is a better partially correct approximationfothanLA(r).
(2) By Definition 2.3, the first hypothesis rea@,Y) U Uj<j<m A By the definition
of [, the second hypothesis readd<ism) r(X,Y) O A O B, or,
equivalentlyr(X,Y) 0O - A O B;. Combined with the first hypothesis, we
get r((X,Y) O (Uigjem A) U (Dicigm = A U By). The right-hand side can be
rearranged ash<m A U B; O G, whereCj is a formula involving- A;
andB; (1<ism,i#j). Hencer(X,Y)U Uhg<m A UBj, i.e.LA(r) is complete wrt
0. By construction, we haueA'(r) « LA(r), i.e., by Theorem 3.LA(r)) < LA(r).
ThusLA'(r) is a better complete approximationfothanLA(r). O
The second hypothesis of assertion (1) ensures that the introduced literals are redun-
dant with the already existing ones. In other words, as the proof shows, we then actually
haveLA'(r) OLA(r). But strict progression is achieved by the generalizations. The sec-
ond hypothesis of assertion (2) ensures that the introduced literals are “redundant” with
the intended relationl.
In practice, assertion (1) is applied to the logic algoritbA&), whereas assertion (2)
is applied to the logic algorithmigLA;(r)), wherei>1. The first hypotheses of both as-
sertions need not be proved if they are established by Step 1 and then preserved by ap-
plication of Theorem 4.1 to all previous steps. Proving the second condition of
assertion (2) can’'t be done in a formal way for lack of a formal definitiah biowever,
this can be used to guide a synthesis mechanism, for instance by means of interaction
with the specifier, hence increasing the confidence in the synthesis.

5. A Particular Synthesis Mechanism

We now instantiate the general framework above to the particular synthesis mecha-
nism we have developed. We first justify some design choices made for this mechanism
(Section 5.1), and then discuss algorithm schemata as a means to guide synthesis
(Section 5.2), before outlining the mechanism itself (Section 5.3).
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‘E(firstPlateau) = { firstPlateau([a],[a],[]) (E 1)
firstPlateau([b,b],[b,b].[]) (E 2)
firstPlateau(]c,d],[c],[d]) (E 3)
firstPlateau([e,f,g],[e].[f,a]) (E 4)
firstPlateau([h,i,i],[h],[i,i]) (E 5)
firstPlateau([j,j,k],[j.j].[K]) (E 6)
firstPlateau([m,m,m],[m,m,m],[]) } (E 7)

HfirstPlateau) ={ firstPlateau([X],[X],[]) P 1)
firstPlateau([X,Y1,[X,YL[D) O X=Y P»)
firstPlateau([X,Y1,[X], [Y]) O X£Y} (P )

Figure 2. Sample versions dE(firstPlateau)andP(firstPlateau)
firstPlateau(L,P,S) =
L=[HL] OP=L 0OS<[]

O L=[HL {,HL,|TL] OHL#HL, OP=[HL ;] OS=[HL 5|TL]
O L=[HL 4,HL,|TL] OHL ;=HL,
OfirstPlateau([HL o|TL], TP, TS)
OP=[HL 4|TP] [OS=TS
Figure 3. A sample version dfA(firstPlateau)

5.1. DESIGN CHOICES

Specification language Specifications here consist of a hon-empty set of positive
examples, and a possibly empty set of properties that are Horn clauses. Negative exam-
ples are not used. Although the mechanism could handle recursive clauses, properties
are limited to be non-recursive, so as to focus on synthesis from incomplete specifica-
tions. With recursive properties, a transformational or constructive approach would be
more appropriate than our approach.

EXAMPLE 5.1. Non-formally speaking, let thgstPlateau(L,P,Sjelation hold iff listP

is the first plateau (maximal sequence of identical elements) at the beginning of non-
empty listL, and listSis the corresponding suffix &f A sample specification by exam-

ples and properties of this relation is given in Figure 2. Note that propeytie®; gen-
eralize exampleE; to Eg, respectively.

EXAMPLE 5.2. A sample version of A(firstPlateau)s given in Figure 3.

Degree of automation With incomplete specifications it is more realistic to strive for
an interactive synthesis mechanism, so as to explicitly disambiguate some situations,
rather than to have a default iteration over all possible decisions.

5.2. ALGORITHM SCHEMATA

Algorithms can be classified according to their design strategies, such as divide-and-
conquer, generate-and-test, global search, and so on. It is thus interesting to guide the
design process by an algorithm schema (a template algorithm with a fixed control flow)
that captures the essence of such a strategy. This has been done by Summers (1977),
Smith (1985, 1988), Tinkham (1990) in the context of automated program synthesis, and



788 P. Flener and Y. Deville

R(X,)Y) -
Minimal(X) O Solve(X,Y)
0 i<k<e NonMinimal(X) 0 Decompose(X, HX TX)
O Discriminate K(HX TX)Y)
O ( SolveNonMin  ((HX TX)Y)

I
R(TX,TY)
O Process | (HX HY)
O Compose,( HY, TY,Y) )
whereR(TX,TY) denotes a conjunction of recursive atoms, and whérdénotes th
exclusive-orconnective of the schema-language.

Figure 4. A divide-and-conquer logic algorithm schema

by Deville and Burnay (1989) in the context of assisted program construction. Other ap-
plications of schemata are programming tutors (Gegg-Harrison, 1989), and program
correctness or equivalence checking (see the survey by Manna, 1974).

Our synthesis mechanism is guided by a divide-and-conquer logic algorithm schema
(a particular form of design by structural induction).

Loosely speaking, divide-and-conquer algorithrior a predicate over parameters
andY works as follows. LeX be the induction parameterXfis minimal, therY is usu-
ally easily found by directly solving the problem. OtherwiseX i§ non-minimal, de-
composeX into a vectoHX of heads oK and a vectorr X of tails of X, the latter being
of the same type a§ as well as smaller thafiaccording to some well-founded relation.

The tailsTX recursively yield tailS'Y of Y. TheHX are processed into a serl¢¥ of

heads ofY. Finally, Y is composed from its hea#’ and tailsTY. It may happen that
sub-cases emerge with different processing and composition operators: discriminate be-
tween them according to the valuedH{, TX, andY. It may also happen that the non-
minimal case is partitioned into a recursive and a non-recursive case, each of which is
partitioned into sub-cases. In the non-recursive déasajsually easily found by directly
solving the problem, taking advantage of the decompositiohimtib HX andTX.

Logic algorithm schemata can be expressed as second-order logic algorithms. For in-
stance, logic algorithms designed by a divide-and-conquer strategy, and having a single
minimal case and a single non-minimal case, fit the schema of Figure 4. In the sequel,
for simplicity of the presentation, all logic algorithms follow the layout of this schema.

5.3. THE SYNTHESIS MECHANISM

Instantiating some predicate variable(s) of the above divide-and-conquer schema, and
introducing trailing atom(s), is a synthesis step. A synthesis mechanism can then be ex-
pressed as the following sequence of steps:

» Step 1: Syntactic creation of a first approximation;

» Step 2: Synthesis dflinimal andNonMinimal

» Step 3: Synthesis @ecompose

» Step 4: Syntactic introduction of the recursive atoms;



Logic Program Synthesis from Incomplete Specifications 789

 Step 5: Synthesis @olveand theSolveNonMig

* Step 6: Synthesis of tHerocesg and theComposg
 Step 7: Synthesis of tHaiscriminatg,

» Step 8: Syntactic generalization.

A detailed description of all these steps, and the motivation for this particular order of
the steps, are beyond the scope of this paper, and can be found in (Flener, 1993). Here
we quickly overview the relatively straightforward Steps 1 to 5, and illustrate them on
thefirstPlateau3 relation, before presenting the truly creative Steps 6 to 8 in greater de-
tail in Section 6 to Section 8, respectively. But first two more design choices:

Types of inference With specifications by examples (which traditionally give rise to
inductive synthesis) and properties (which traditionally give rise to deductive synthesis),
it is natural to use both inductive and deductive inference in the synthesis mechanism,
whichever is best suited for each step.

Strategy criteria Our synthesis mechanism is stepwise and non-incremental: exam-
ples are presented to it in an all-at-once fashion. It conforms to the strategy described in
Section 4.2.

Step 1 yieldd.A¢(r) by mere syntactic transformation of the exampleZgget into a
logic algorithm. For instance, the definition parLé¥ (firstPlateau)is (L=[a] U P=[a]
OS=[]) O(L=[b,b OP=[b,b] OS=[]) O... Thus,LA(r) is totally correct wr(r). Un-
der the hypothesis thai(r) is consistent witfil, LA(r) is even partially correct wii.
Moreover,[(LA(r)) isT,, and hence complete wit Step 1 thus conforms to the strat-
egy of Section 4.2.

Steps 2 and 3 rely on databases of type-specific predicates. For instance, we here as-
sume that Step 2 seledtsas induction parameter, and introduces one minimal form
(L=[_D]), and one non-minimal formL€[_, | _]), and that Step 3 decomposes the non-
minimal form into its head#lL and tailTL.

Step 4 syntactically introduces recursive atoms, as dictated by the selected decompo-
sition operator. It performs deductive inference from the specification for computing the
witnesses of the trailing atoms. For instance, in examEgl@iven the tail k] of L,
propertyP allows the inference dirstPlateay] j,K],[ j],[K]), i.e. TP=[j] OTS=[K]. Note
that recursion is detected to be useless for some examples.

Step 5 uses patrticular cases of the methods of Steps 6 and 7 in order to solve the min-
imal case and the non-recursive, non-minimal case. Note that the latter can have differ-
ent sub-cases.

Figure 5 shows$ Ag(firstPlateau) where each disjunct has as annotation the set of ex-
amples it “covers”. The atoms in boldface repres¢bfs(firstPlateau))

Step 6 (see Section 6) performs inductive inference, and is based on the most-specific-
generalization concept. Step 7 (see Section 7) performs deductive inference, and takes a
proofs-as-programs approach.

Steps 2, 3, 5, and 6 are non-deterministic: different logic algorithms can be synthe-
sized. Steps 2 to 7 fit the hypotheses of Theorem 4.1. It can be shown that,
forid{2,...,7}, LA(r) {«,#0 LAL_4(r), and that (LA/()) {«,#,<} T(LA_(N)).
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firstPlateau(L,P,S) =
L=[] OP=L 0OS=[] 0OL=]
0 L=[a] OP=[a] 0S=]] {E 4}
O L=,_|] OL=[HL|TL]
OP=[HL] 0OS=TL OTL=[_|_]

O L=[c,d] OP=[c] 0OS=[d]
O HL=c OTL=[d] {E 3}
O L=[e,f,0] OP=[e] 0OS=[f,q]
0 HL=e OTL=[f,g] {E 4}
0 L=[h,i,i] OP=[h] 0OS=]i,]
O HL=h OTL=[i,i] {E 5}

O L=, |] OL=[HL|TL]
OfirstPlateau(TL,TP,TS)
u L=[b,b] 0 P=[b,b] 0S=[]
O HL=b OTL=[b]
O TP=[b] OTSH] {E 5}
O L=[j.j.K] O P=[j,j] 0 S=[K]
O HL=j OTL=[j,K]
O TP=[j] OTS=[K] {E 6}
O L=[m,m,m] OP=[m,m,m] OS]
O HL=m OTL=[m,m]
O TP=[m,m] OTS=[] {E <}
Figure 5. Assumed version dfAs(firstPlateau)

Step 8 (see Section 8) yieldag(r) by application of th& operator td_A(r). Indeed,
all the predicate variables of the divide-and-conquer schema have been instantiated, so
synthesis may stop there. But this transformation doesn't entirely satisfy the require-
ments for Stepin the strategy of Section 4.2, becalgg(r) can only be guaranteed to
be complete, but not necessarily totally correct,inrSuch potential over-generaliza-
tion is inherent to synthesis from incomplete specifications. We have
thatLAg(r) {»,#>} LAZ(r), and thatl (LAg(r)) =T (LA(r)).

6. Synthesis of theProcesg and Composg (Step 6)

TheProcesg(HX,HY) procedure transforms, in th¥ sub-case of the recursive case,
the head HX of the induction parametétinto head HY of the other parametdtr The
ComposgHY,TY,Y) procedure computes, in th® sub-case of the recursive case, pa-
rameterY from its heads$lY (obtained by processingX) and tais TY (obtained by re-
cursion onrX). We formally present the objective and methods of Step 6 (Section 6.1),
and illustrate them on tHestPlateau3 relation (Section 6.2). Other examples can be
found in (Flener and Deville, 1993).
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r(x,Y) -
minimal(X) Osolve(X,Y)
0 Eh ar X=Xj DY=yJ

O0i<k<y  NONMinimal(X) Odecompose(X, HX TX)
OsolveNonMin  ( (HX TX)Y)

O Eh 0% X:Xj [l Y:yj
1 Hx=hx; O TX=tx
O nonMinimal(X) Odecompose(X, HX TX)
Or(TX,TY)
O Eh ar X:Xj DYzyJ
O HX=hx, OTX=tx ;
0 TYOty |

whereI is the set of indices of the minimal exampl&sis the set of indices of t
non-recursive examples, ands the set of indices of the recursive examples,
that 7, &, £ form a partition of {1,...m}. The X form a partition ofX_. Thety; are
vectors of setty;, of witnesses such the(txj, tyj,) holds for some elemetyy,; of
tyjh (JDL)

Figure 6. LAs(r)

rx,Y) -
minimal(X) Osolve(X,Y)
O Eh ar X:Xj DYzyJ
O0y<key  NONMinimal(X) Odecompose(X, HX TX)
OsolveNonMin | (( HX TX)Y)
O Ek 0% X:Xj DYzyJ
1 HX=hx; O TX=tx |
O Ce—w<k<c NONMinimal(X) Odecompose(X, HX TX)
Or(TX,TY)
OprocComp (HX TY,Y)
O Eh ar, X:Xj DYzyJ
"0 Hx=hx, DOTX=tx
O TYOy' |
where the elementg’;, of thety’; are subsets of the sets of witnedggsgenerate
at Step 4 (Introduction of the recursive atoms). Théorm a partition ofz.
Figure 7. LAg(r)

j

6.1. FORMALIZATION: OBJECTIVE AND METHODS
GivenLAs(r) as shown in Figure 6, the aim at Step 6 is to transkgg(r) into LAg(r)

791

that fits the schema of Figure 7. A totahodlisjuncts (n being the number of examples)

can be identified by expanding the bodietAf(r) andLAg(r) into disjunctive normal

form. The trailing atoms of each disjunct are offset by additional tabulations.
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We decide to merge eaftocesg(HX,HY) with its ComposgHY,TY,Y)into aProc-
Comp(HX,TY,Y), so that their instances are synthesized at the same time.

We have identified two methods to synthesize instances &frtit€omp:

» computation of most-specific-generalizations (msg): the MSG Method applies if
eachProcComp is implemented as a conjunction of equality atoms;

* synthesis from an inferred specification by examples and properties: the Synthesis
Method applies if somBrocComp needs a full-fledged recursive algorithm, i.e. is
implemented as a disjunction of conjunctions of any literals.

We now discuss these methods in turn.

6.1.1. THE MSG METHOD

The MSG Method partitions the recursive disjunctsA{(r) incrementally and non-
deterministically. The concept of most-specific-generalization (msg) was introduced si-
multaneously, but independently, by Plotkin (1970) and Reynolds (1970).

DEFINITION 6.1. Term s is less generathan termt (denoteds < t) iff there is a
substitutiono such thas = to.

The relations/2 forms a complete lattice on the term sefmodulo variable renam-
ing) to which a least element has been added (Lass£z1987). The glb operator com-
putes the greatest common instance of two terms (by a unification algorithm, yielding
their mgu); the lub operator computes the msg of two terms (by an anti-unification algo-
rithm). The msg of two terms thus always exists, and is unique up to variable renaming.
EXAMPLE 6.1. The msg of termfa,b,X,Y,Xandf(a,c,d,Z,d)s f(a,L,M,N,M)

Intuitively, the MSG Method collects into a subset the recursive disjuntss@) in
which Y is constructed in a uniform way, by unification only, freixd andTY.

Note that, by the definition of examples, evgris ground, and that, by construction
(Step 3 only uses decomposition predicates that are deterministic given a ground value
of the induction parameter), all the; andtx; are ground. However, ifis non-deter-
ministic given a ground value of the induction parameter, then there may be several val-
ues for theTY. Hence, Step 4 yields, in all generality, sets of terntg as

DEFINITION 6.2. A determinatedisjunct has a uniguground value in its trailing at-
oms for theTY. Otherwise, it is aindeterminatadisjunct.

Here, we only present the situation where all the recursive disjuncts are determinate,
and indicate how to extend it to the indeterminate situation. We now define a criterion
for verifying whether several disjuncts constrMéh the same way frorX andTY.

DEFINITION 6.3. Themsgof a set of determinate disjuncts is the msg of the ty;,y,>
value-tuples extracted from these disjuncts.

DEFINITION 6.4. A set of determinate disjunc®is compatibleiff the msg $ix,ty,y>
of Dis such thaleavesty) O leaves(y)whereleaves(t)ddenotes the set of constants and
variables occurring in term

A compatible setD of disjuncts is of great interest, because each of its disjuncts con-
structsY from HX andTY in the same way as its msg does.Hkgy,y> is the msg ofD,
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then all the values of in the different disjuncts @b can be computed by the same con-
junction:

HX=hx OTY=ty OY=y.
But we are of course not interested in inferring instances d?rti@Comp, that cover
“too many”, if not all, examples beyond the given ones. Compatibility is thus meant to
restrict the covered examples. Nor are we interested in inferring instancefabthe
Comp that cover “too little”, if not only one, example(s). The idea is thus to partition
the set of recursive disjunctslofs(r) into a () minimal number ofi{) compatible sub-
sets.
ALGORITHM. Initially, there are no subsets. At any moment, the recursive disjuncts can
be classified according to whether or not they belong to some subset. Progression is
achieved by selecting a disjurdt that doesn’t belong to any subset. If there is some
subsetD such thatd 1 { D;} is compatible, therD become® U { D;}. Otherwise a new
singleton subset;} is created.

In the indeterminate situation, either the non-empty sets of values foY tilesome
disjunct are ground, and choice-points will appear in the algorithm for rendering that
disjunct determinate, or some variables appear in these sets of valuesTyr dinel
choice-points will appear in the search for grounding substitutions.

Let procComp be instantiations oProcComp. The msg fx,ty,,y,> of a subset is
rewritten as follows:

procComp(HX,TY,Y) <« HX=hx, OTY=ty, OY=y,
so that it can be inserted into the corresponding disjundt8:r).

One can show that the MSG Method yields instances dPtbeComp that are as
general as possible (Flener, 1993). The MSG Method obviously is non-deterministic
(choice of unclassified disjunct, choice of ground values of theespectively choice
of grounding substitutions). Its time complexityQ¢e™. This exponential complexity
is not a drawback, as the number of exampiesually is quite small.

6.1.2. THE SYNTHESIS METHOD

The Synthesis Method assumes that there is exactly one sub%gtdnd thaProc-
Comp(HX,TY,Y) is implemented as a disjunction of conjunctions of any literals, i.e.
needs to be synthesized from scratch, just like any other logic algorithproc&€omp
be the chosen instantiation BfocComp. A specification by examples and properties
for procCompKX,TY,Y) has to be inferred fromAs(r).

The inference of an example set is easy: extracthkgty;,y,> tuples from the recur-
sive disjuncts oLAg(r). If there are several possible valuestjarthen extract the value
that was successfully used by the MSG Method: compatibility with other disjuncts is in-
deed a strong argument that this is a “good” choice.

The inference of a property set is based on the observation that the properées of
“inherited” by procComp For every property:
find variants of examples or body-less properties:
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r(tx;i, tyji) (E; or )
such that:
nonMinimal(x) [ decompose(hx;,tx;) *
wherenonMinimalis theNonMinimalpredicate selected at Step 2, dadomposes the
Decompos@redicate selected at Step 3. Then infer:
procComplix; ty;.y) U B; P
as a property gbrocComp
This works, because when unfolding Ap ther(x;,y;) atom usind-As(r) (where the
procComphas already been added), and then simplifying the conclusionkjing;,

(*), and the fact that, by Step @composé deterministic given a ground value of the
induction parameter, we effectively obtd.

A logic algorithmLA(procCompxan now be synthesized from this inferred specifica-
tion by examples and properties. The syntheslsAgf) proceeds usingrocComp as-
suming this predicate to be a primitive.

6.2. ILLUSTRATION: THEfirstPlateau3 RELATION

At Step 4 (see Figure 5), the actual values of the introduced paramBendTSare
uniquely determined, so the recursive disjuncts are all determinate. The phrase
“disjunct D;” now stands for the disjunct afg(firstPlateau)that covers examplg,.

» According to the MSG Method, there are initially no subsets. We first consider dis-

junctD,, and create a singleton subsBb).

» We pursue witlDg. To see whethddg is compatible with subseDf;}, we compute

the msg of their €L, TP, TS,P,S value-tuples:

HL | TP TS P S
b | [b] [ [b.b I msd Do}

j [i] [K] (5] [K] Ds
A A U [A,A U msg Dy, Dg}

DisjunctDg is compatible with subseD,}, becauseA, Al andU are constructed in
terms ofA, nil, andU.

* We pursue witlD. To see whethdD; is compatible with subseD,,Dg}, we com-
pute the msg of theirdL, TP, TS,P,S value-tuples:

HL | TP TS P S

AN U AN U msg D,,Dg}

[m.] ] [mmnh ] D7
A [[AT] U [AAT] U msd D,Dg,D7}
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firstPlateau(L,P,S) =
L=[] OP=L 0OS=[] 0OL=]
0 L=[a] OP=[a] 0S=]] {E 4}
O L=,_|] OL=[HL|TL]
OP=[HL] 0OS=TL OTL=[_|_]

O L=[c,d] OP=[c] 0OS=[d]
O HL=c OTL=[d] {E 3}
O L=[e,f,0] OP=[e] 0OS=[f,q]
0 HL=e OTL=[f,g] {E 4}
0 L=[h,i,i] OP=[h] 0OS=]i,]
O HL=h OTL=[i,i] {E 5}

O L=, |] OL=[HL|TL]
OfirstPlateau(TL,TP,TS)
OP=[HL|TP] 0 S=TS 0O TP=[HL|_]
O L=[b,b] O P=[b,b] OS]
00 HL=b OTL=[b]
O TP=[b] OTS=[] {E 5}
O L=k OP=[.j] 0S=[K]
O HL=j OTL=[j,K]
O TP=[]] OTS=[K] {E 6}
O L=[m,m,m] OP=[m,m,m] OS=[]
O HL=m OTL=[m,m]
O TP=[m,m] OTS=]] {E <}
Figure 8. LAg(firstPlateau)

Disjunct D7 is compatible with subseDf, D¢}, because A,Al T] andU are con-
structed in terms oA, T, andU.
There are no other disjuncts. We have partitioned the recursive disjuncts into one subset,
namely {D,,Dg, D7}
Let procCompbe the chosen instantiation BfocComp It is implemented by re-ex-
pression, and subsequent simplification, of the msg:

procComgHL, TP,TS,P,B = P=[HL| TP] OS=TSOTP=[HL| _]

This result is inserted into the corresponding disjunctd Af(firstPlateau) and
LAg(firstPlateau)thus looks as depicted in Figure 8.

7. Synthesis of theDiscriminatg, (Step 7)

TheDiscriminatg(HX,TX,Y) procedure performs, in th sub-case of the non-min-
imal case, some tests so as to ensure that the parameters effectively belong to that sub-
case. We first formally present the objective and methods of Step 7 (Section 7.1), and
then illustrate them on tHestPlateau3 relation (Section 7.2). Other examples can be
found in (Flener and Deville, 1993).
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rxYy) -
minimal(X) Osolve(X,Y)
O Eh ar X=Xj DY=yJ
O0i<k<y  NONMinimal(X) Odecompose(X, HX TX)
O discriminate K(HX TX)Y)
OsolveNonMin | (( HX TX)Y)
O Ek 0% X:Xj DYzyJ
B Hx=hx; O TX=tx
O Oe_w<k<c NONMinimal(X) O decompose(X, HX TX)
O discriminate K(HX TX)Y)
Or(TX,TY)
OprocComp (HX TY,Y)
O Ek ar X:Xj DYzyJ
1 HX=hx, OTX=tx |
O TYOty'
Figure 9. LA(r)

7.1. FORMALIZATION: OBJECTIVE AND METHODS

GivenLAg(r) as shown in Figure 7, the aim at Step 7 is to transkd¥g(r) into LA,(r)
that fits the schema of Figure 9. (Note that Step 7 is totally independent of the choice of
Step 6 to merge therocesg andComposg predicates.) This objective is achieved by
two consecutive tasks:

* synthesis of specialized instantiations of Bscriminatg;

* generalization of these specialized instantiations oDikeriminate.
These tasks are performed by a Proofs-as-Programs Method and a Generalization Meth-
od, respectively. We now discuss these methods in turn.

7.1.1. THE PROOFS-AS-PROGRAMS METHOD

The Proofs-as-Programs Method extracts specialized instantiations Distirami-
natg, from the proofs that the logic algoritiifLAg(r)) is complete wrt the properties.
Indeed, the properties contain explicit information that has not yet been synthesized into
any disjuncts.

Intuitively, the Proofs-as-Programs Method takes a propgkyY) ] Body, and un-
folds itsr(X,Y) atom using a disjunct éf(LAg(r)), to which adiscriminatg(HX,TX,Y)
atom has been added. By resolution within the left-hand side, this eventually simplifies
to discriminatg(HX,TX,Y) O Bodyo, whereo is an answer substitution. Eadls-
criminate, is defined by all the program clauses obtained by doing this for all properties
and all disjuncts.

More formally, when considering propet, let‘Z be a theory composed of:

* the generalized logic algorith(LAg(r));

« the specificatiore?(r) \ {P;};

* logic algorithms for all primitive predicates.
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The Proofs-as-Programs Method attempts to prove that each prBpity logical
consequence of its theoy These proofs are done by an extension to SLD resolution
(we use the terminology and notation of Lloyd, 1987). The extension is a subset of
Kanamori and Seki's extended execution mechanism (1986), in the sense that goals are
hereimplicative goalgstatements of the formXY G*(X,Y) — G™(X), where conclu-
sionG" and hypothesi&™ are conjunctions of atoms). In the sequel, “goal” stands for
“implicative goal”.

A definite program version & has to be generated: this is straightforward due to the
chosen formalisms for logic algorithms, examples, and properties.

Theinitial goal is propertyP;, rewritten as an implicative goal.

DEFINITION 7.1. The rule ofdefinite clause inferenddenotedCl) is a natural exten-
sion of SLD resolution to implicative goals. Given a geathe selected atom is chosen
within G*, and the mgu may only bind existential variable&bf

SLD resolution is parameterized on a computation rule and a search rule. These are,
for the purpose of the Proofs-as-Programs Method, instantiated as follows:

» the computation rulesatisfies the following condition: never select an atom with
predicater if there still are atoms with primitive predicates. Indeed, while theoreti-
cally not required, the delaying of the selection of recursive atoms generally results
in less search;

* thesearch ruleis as follows:

— an atom with a primitive predicate is resolved according to its semantics;

—the atom with predicatein (the conclusion of) the root of the proof tree is resolved
using the program clauses generated ff¢Ag(r));

—an atom with predicatein (the conclusion of) a non-root node of the proof tree is
resolved using the clauses generated fiph{ I (LAg(r))}.

Note that the search rule is context-dependent. For the resolution of the root, we use
I"(LAg(r)) rather than the examples or properties, because that wouldn’t make sense: we
are trying to prové (LAg(r)) complete wrtP(r), but not to prove the specification inter-
nally consistent. For the resolution of atoms with predicatea non-root node, we use
the examples and other properties rather fi{&dg(r)) because the latter is in general
not correct wrtP(r).

This can be easily extended to handle negated primitive predicates since they are re-
solved according to their semantics.

DEFINITION 7.2. The rule ofnegation-as-failure inferenc@enoted\Fl) is a natural
extension of the NAF rule (Clark, 1978) to implicative goals. Given a@dhle select-
ed atomA is chosen withirnG~, and a conjunction aof resolvent goals is generated,
namelyGa;, whereAo; has been replaced by the conjunctpa;, with H; — B; being
one of thed definite clauses whose helddunifies withA under mguo;. All new vari-
ables introduced in the resolvent goals are free variables.

DEFINITION 7.3. Given a goalG, the rule ofsimplification(denotedSin) selects two
atomsA andB, in G" andG™ respectively, that unify with an mguthat only binds ex-
istential variables of*. The resolvent goal is obtained fr@dw by deletingA andB.
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This subset of extended execution is sound wrt the Clark completion semantics
(Kanamori and Seki, 1986, page 487).

DEFINITION 7.4. A derivation via the DCI, NFI, and Sim rulsscceeddf it ends in a
goal whose conclusion is empty.

We partially definaliscriminatg by the program clause:

discriminatg(HX,TX,y)o ~ Hyp

where:

* kis the number of the clause frarLAg(r)) that is used in the first DCI step

* yis the value of paramet&in the head of property;;

» g is the computed answer substitution;

» Hypis the hypothesis of the last goal of the derivation.

DEFINITION 7.5. A derivation via the DCI, NFI, and Sim rulésls iff it doesn’t suc-
ceed.

Failure is detectable only in specific settings. For instance, no infinite derivation can
occur if all primitive predicates have finite proofs for all directionalities.

After the computation of all successful derivations for all properties, the revealed pro-
cedures of the discriminants are translated into logic algorithms. Since the latter are non-
recursive by construction, they are then inserted into the corresponding disjuncts of
LAg(r), so as to yield Ax(r).

THEOREM 7.1.T (LA(r)) is complete wrt P(r).

PROOF. Let %" be defined likeZ;, usingLAL(r) rather tha.Ag(r). Let’s prove that each
propertyP; is a logical consequence of its thedfy Without loss of generality, we can
assume that the previous derivationgof— P; are prefixes of the new derivations of
7" = P; (namely by a relaxation of the recommendation above for the computation
rule): each new derivation thus eventually yields a goal whose conclusion only involves
the discriminant atoms. By construction, these atoms are identical to the atoms in the hy-
pothesis: by repeated application of the Sim rule, that goal can be simplified into the
empty goal, i.e. the new derivation succeeds as well. By soundness of extended execu-
tion (Kanamori and Seki, 1986), the property B) is thus a logical consequence of
I"(LA4(r)), or, in other words, by Definition 2.6(LA(r)) is complete wriP(r). 0

Note that this is unlike classical program extraction from proofs, since the program is
here extracted from the unique final results of several proofs, rather than on-the-fly (or
a posteriori) from multiple steps of a single proof.

Also note that the Proofs-as-Programs Method is deterministic and idempotent. As-
suming that all primitives used ifP(r) are deterministic, its space complexity
is O(pc(m+p)), wherec is the number of discriminants,is the number of examples,
is the number of properties, and the number of tails of the induction parameter. In-
deed, there ane proofs to be made, and each proof-tree has@jeén+p)) because it
has only two choice-points, namely the resolution of the root, where thergpassi-
bilities, and the resolution of the recursive atoms, where theraigvel possibilities,
all other proof steps being deterministic. This assumes that there is a fixed maximum
number of atoms for the definitions of the used primitives. Indeed, if that number is a
function ofc, m, p,ort, then this complexity analysis doesn't hold.
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7.1.2. THE GENERALIZATION METHOD

Since properties only embody incomplete information, the obtained discriminants are
too specific. The Generalization Method applies generalization heuristics to the discrim-
inants, and substitutes the results for the original ones. If the modification indeed
amounts to a generalization, then Theorem 7.1 still holds.

Here are two valuable generalization heuristics:

HEURISTIC 1. If parameterY is not an auxiliary parameter (a parameter that doesn’t
change through recursion), then it is irrelevant for discrimination, and can be deleted
from the discriminants by projection.

HEURISTIC 2. The parametersX andY (the latter only if it is an auxiliary parameter)
should range across their entire domains: if necessary, some of their values should be
generalized.

The application of these heuristics should be interactive, with the specifier.

7.2. ILLUSTRATION: THEfirstPlateau3 RELATION

The Proofs-as-Programs Method attempts to prove, by extended execution, that each
propertyP; is a logical consequence of its the@fyNote that™ (LAg(firstPlateau))has
three disjuncts, whose corresponding definite clauses are @Gneg; in the sequel.
Only the non-minimal claus&s, andCs need discriminants. The latter thus rekst
criminatg/(HL,TL,P,S) fork = 2, 3. In a goal, the selected atom(s) for the next applica-
tion(s) of the DCI rule is (are) written in boldface. For syntactic convenience, we write
goals in quantifier-free form, prefixing existential variables by “?”. Derivations starting
from C, are useless since no discriminant is needed for the minimal clause.

» We start withP;. The derivations starting fro@, andC; lead to failure.

* We pursue witlP,. ClauseC, leads to failure. Then, starting froBa:

firstPlateau([X,Y],[X,Y],[]) ~ X=Y
DCI: C3 ! {
X YI=[?_,?2_ 7] & [X,Y]=[?HL|?TL] &
firstPlateau(?TL,?TP,?TS) &
X, Y]=[?HL|?TP] & [=?TS & ?TP=[?HL|?_] - X=Y
4 x DCI: LA(=) ! {HL/X, TLLY], THY], TS[1}

firstPlateau([YL,IY].[]) & [Y]=[X|?_] - X=Y
NFI: LA(=) l {YP%
firstPlateau([X],[X],[]) & X1=[X]?_] -
DCI: LA(=) ! {3
firstPlateau([X],[X],[]) -
DCl: P, ! {3
O

A specialized discriminant faC; is:
discriminate(X,[X],[X, X],[1).
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» We pursue withP;. ClauseC; leads to failure. Then, starting fro@:
firstPlateau([X,Y],[X],[Y]) - XY
DCI: C, ! {
XY]=[?_,?2_ )7 ] & [X,Y]=[?HL|?TL] &
[X]=[?HL] & [Y]=?TL & 2TL=[?_|?] - X£Y
5x DCI: LA(=) ! {HL/X, TLLY]}
« XY
A specialized discriminant fdZ, is:
discriminate(X,[Y,[XL,[Y]) < X&Y
There is no other property. There are no other derivations. The discriminants are rewrit-
ten as logic algorithms.

The Generalization Method applies Heuristic 1 to decide that the third and fourth pa-
rameters are irrelevant in both discriminants. It applies Heuristic 2 to generalize the sec-
ond parameter of both discriminants into non-empty lists. After some renaming and re-
writing, the discriminants read:

discriminate(HL,TL) < TL=[H| _] OHL#H
discriminatg(HL,TL) < TL=[H| _] OHL=H
They are inserted intoAg(firstPlateau) and yieldLA,(firstPlateau)(see Figure 10).

8. Syntactic Generalization (Step 8)

We first formally present the objective and method of Step 8, and then illustrate them
on thefirstPlateau3 relation.

GivenLA4(r) as shown in Figure 9, the aim at Step 8 is to transkd¥(r) into LAg(r)
that fits the schema of Figure 11. All the predicate variables of the divide-and-conquer
schema have already been instantiated until Step 7, and we have used all the information
contained in the specification:

» examples are injected at Step 1, and are kept along all subsequent steps in the form

of trailing atoms, so that they be present when needed;

» examples and properties are used at Step 4 to infer the values & the

* properties are used at Step 6 to infer specifications of sub-problems;

* properties are used at Step 7 to infer discriminants.
So one may consider synthesis finished. We postulateAgéa) is ' (LA(r)).

For instancel Ag(firstPlateau)looks as depicted in Figure 12. It is totally correct wrt
its intended relation, and equivalent to the version in Figure 3.

9. Conclusions

We evaluate the results given here (Section 9.1), discuss the implementation of the
synthesis mechanism (Section 9.2), and outline future research (Section 9.3).
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firstPlateau(L,P,S) =
L=[] OP=L 0OS=[] 0OL=] 0OL=]
0 L=[a] OP=[a] 0S=]] {E 41}
O L=,_|] OL=[HL|TL]
OTL=[H|_] OHL #H
OP=[HL] 0OS=TL OTL=[_|_]

O L=[c,d] OP=[c] 0OS=[d]
0 HL=c OTL=[d] {E 3}
O L=[e,f,0] OP=[e] 0OS=][f,q]
0 HL=e OTL=[f,g] {E 4}
0 L=[h,i,i] OP=[h] 0OS=]i,]
0 HL=h OTL=[i,i] {E 5}

O L=, ] OL=[HL|TL]
OTL=[H|_] OHL=H
OfirstPlateau(TL,TP,TS)
OP=[HL|TP] 0 S=TS 0O TP=[HL|_]
O L=[b,b] 0 P=[b,b] 0S=[]
O HL=b OTL=[b]
O TP=[b] OTS=]] {E 5}
O L=fijk] OP=[jj] 0S=[K]
O HL=j OTL=[j,K]
O TP=[j]] OTS=[K] {E 6}
O L=[m,mym] OP=[m,mm] [OS=[]
O HL=m OTL=[m,m]
O TP=[m,m] OTS=(] {E 7}
Figure 10. LA(firstPlateau)

rx,Y) -
minimal(X) O solve(X,Y)
O Oiekse  NONMinimal(X) O decompose(X, HX TX)
Odiscriminate K(HX TX)Y)
O( solveNonMin  ((HX TX)Y)

|
r(TX,TY)
O procComp  ( HX TY,Y) )
Figure 11. LAg(r)

9.1. EVALUATION

After defining logic formalisms for incomplete specifications and logic algorithms, we
defined logic algorithm correctness and comparison criteria. Then we proposed criteria
for upward and downward progression, in order to state strategies for incremental and
non-incremental stepwise synthesis. We showed how these strategies can be refined in
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firstPlateau(L,P,S) =
L=[] OP=L 0OS=[] 0OL=] 0OL=]

O L=, |] OL=[HL|TL]
OTL=[H|_] OHL #H
OP=[HL] 0OS=TL OTL=[_|_]

O L=, |] OL=[HL|TL]
OTL=[H|_] OHL=H
OfirstPlateau(TL,TP,TS)
OP=[HL|TP] 0 S=TS 0O TP=[HL|_]

Figure 12. LAg(firstPlateau)

order to be practical. Finally, we presented a particular synthesis mechanism that is non-
incremental, both deductive and inductive, interactive, and schema-guided.

The main originality of this research is the development of a general framework of
stepwise synthesis from incomplete specifications, and its particularization to a synthe-
sis mechanism that is being implemented.

We have restricted the presentation of the synthesis mechanism so as to keep it simple.
The actual system is based on a generalized divide-and-conquer schema thabhandles
ary relations and optimizes the handling of auxiliary parameters.

It is important to understand that the MSG Method (as an inductive technique that is
based on examples) and the Proofs-as-Programs Method (as a deductive technique that
is based on properties) are not at all tied to Steps 6 and 7, respectively. They are actually
often interchangeably applicable, whatever the underlying schema.

Among all the related research cited so far, the works of Drabaht(1988) and De
Raedt and Bruynooghe (1992) come closest to ours in that they also start from examples
and something similar to our properties. The main differences are that their systems per-
form incremental synthesis, and that they use their properties only for “bug-detection”
purposes, but not in a constructive fashion.

9.2. THE SYNAPSE IMPLEMENTATION

A prototype of our synthesis mechanism is being implemented (in Quintus Prolog) as
the SYNAPSE system §YNthesis of Algorithms from PropertieS and Exanples

The system is modular in that implementations of methods can easily be added, delet-
ed, or modified, and that it can be customized by extending the internal databases of
available primitives for specifications, and of type-specific predicates, for Steps 2 and 3.

Given a specificatio&P(r), SYNAPSE prints out candidate versions of the logic algo-
rithm LA(r), and optionally the intermediate versidams(r), as well as questions to the
specifier. Hints about what induction parameter or decomposition predicate to select are
accepted. A straightforward naming schema is used to name new variables, so that it is
easy to read synthesized logic algorithms.

Our experience with¥®NAPSE shows that specifying relations by examples and prop-
erties is a viable approach. Moreover, in view of optimizing synthesis, we plan to devel-
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op a methodology of choosing “good” examples and properties, using our knowledge of
the actual synthesis mechanism.

SYNAPSE seems to be quite efficient, proving thus the adequacy of properties for dis-
ambiguating situations where examples alone lack in expressive power. Exponential
search is reduced as much as possible by interaction with the user.

9.3. FUTURE WORK

The schema of Figure 4 covers a wide range of divide-and-conquer algorithms. How-
ever, it only allows non-compound induction parameters that furthermore should only
lead to two cases, a minimal and a non-minimal one. Other possible extensions are mu-
tually recursive logic algorithms.

The divide-and-conquer schema is hard-wired into the synthesis mechanism: the sup-
port of alternative schemata is envisaged. An extension of the mechanism would be pa-
rameterized on schemata. Most of the methods used in the current mechanism are suit-
able whatever the underlying schema.

As is stands, the mechanism does not need negative examples. Handling these would
require a total overhaul of the mechanism, but is an interesting alley for further research
aiming at a more effective control of over-generalization.
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