
J. Symbolic Computation (1993)15, 775–805

0747–7171/93/5–6775 + 31 $08.00/0 © 1993 Academic Press Limited

Logic Program Synthesis from Incomplete Specifications

PIERRE FLENERAND YVES DEVILLE

Unité d’Informatique, Université Catholique de Louvain
Place Sainte Barbe 2, B – 1348 Louvain-la-Neuve, Belgium

1. Introduction

Program synthesis research aims at maximally automating the passage from specifica-
tions to programs (see the survey by Biermann, 1992). We define possible formalisms
for the starting points (specifications: see Section 1.1) and results (programs: see
Section 1.2) of synthesis, and state existing approaches and related work, before pinning
down the objectives (Section 1.3) of this paper. Some familiarity with logic program-
ming is assumed.

1.1. SPECIFICATIONS

There are many specification formalisms (natural language, first-order logic, pre/post
conditions, algebraic specifications, examples, …). In this paper, we focus on specifica-
tions (of logic programs) that are written in first-order logic.

Specifications by examples (an extreme case of logic statements), e.g.:
firstPlateau([a,a,a,b,b,c,c,c,c], [a,a,a], [b,b,c,c,c,c])

lead to synthesis based on inductive inference. Biermann’s systems (1979, 1984), and
THESYS (Summers, 1977) synthesizeLISP functions from positive examples, using
matching techniques. Shapiro’sMIS (1982) and its derivatives (e.g. (Drabentet
al., 1988), (Tinkham, 1990)) synthesize Prolog procedures from positive and negative

We develop a framework for stepwise synthesis of logic programs from incom-
plete specifications. After the definition of logic formalisms for specifications and
programs, logic program correctness and comparison criteria are proposed. Then
we define criteria for upward and downward progression, in order to state strate-
gies for incremental and non-incremental stepwise synthesis. It is shown how these
strategies can be applied in practice. Finally, we instantiate the framework on a
particular synthesis mechanism that we have developed. Our synthesis system,
called SYNAPSE, is non-incremental, both deductive and inductive, and guided
by a divide-and-conquer schema.We describe the objectives and methods of the
crucial steps, and illustrate them on a sample problem.

776 P. Flener and Y. Deville

examples, using machine learning techniques. Such specifications have the advantages
of naturalness (examples are easy to elaborate, and to understand) and conciseness (ex-
amples can implicitly describe manipulations of parameters). Their disadvantages are
limited expressive power and ambiguity (examples can’t completely specify a problem).

Axiomatizations of a problem in (some subset of) first-order logic, e.g.:

firstPlateau(List,Plateau,Suffix)⇔
append(Plateau,Suffix,List)∧ allEqual(Plateau)∧ break(Plateau,Suffix)

lead to synthesis based on deductive inference. The systems of, e.g., (Bundyet
al., 1990), (Fribourg, 1990), (Wiggins, 1992) perform proofs-as-programs synthesis:
programs are extracted from constructive proofs of the satisfiability of specifications.
The systems of, e.g., (Clark, 1981), (Hansson, 1980), (Hogger, 1981), (Lau and
Prestwich, 1990), perform transformational synthesis: programs are derived from spec-
ifications by applications of transformation rules. Such specifications have the advantag-
es of expressiveness (axioms benefit from the full expressive power of logic) and non-
ambiguity (axioms can completely specify a problem). Their disadvantages are artifici-
ality (axioms can be difficult to elaborate, and to understand) and length (axioms require
a complex formalization process).

It turns out that examples and axioms have complementary strengths and weaknesses.
The idea is then to combine both approaches, taking advantage of the pros, while trying
to alleviate the cons of each existing approach. This may be achieved by relaxing axioms
into properties, a potentially incomplete source of information.

Let ℜ be the relation one has in mind when elaborating a specification of a procedure
for a predicate r/n. We callℜ the intended relation, in contrast to the relation actually
specified, called thespecified relation, which is what logically follows from the specifi-
cation. This distinction is very important in general, but crucial with incomplete speci-
fications, where one deliberately admits a gap between the two. We assume the specifier
knowsℜ, even if s/he has no formal definition of it.

DEFINITION 1.1. A specification by examples and properties of a procedure for a pred-
icate r/n consists of:

• a setE(r) of examples of r/n, partitioned into:
– a setE+(r) of positive examples of r/n (i.e. ground atoms whosen-tuples are sup-

posed to belong toℜ);
– a setE –(r) of negative examples of r/n (i.e. ground atoms whosen-tuples are sup-

posed not to belong toℜ);
• a setP(r) of properties (first-order logic statements) of r/n. ♦

EXAMPLE 1.1. Non-formally speaking, let the sum(L,S) relation hold iff integer S is the
sum of the elements of the integer list L. LetSum denote this intended relation. A sample
specification by positive examples and properties is:

E(sum) = E +(sum) = { sum([],0)
sum([1],1)
sum([3,2],5)
sum([2,6,4],12) }

Logic Program Synthesis from Incomplete Specifications 777

P(sum) = { sum([X],X)
sum([X,Y],S) ⇐ add(X,Y,S) }

where add(I,J,S) holds iff integer S is the sum of the integers I and J. ♦
The only syntactic choice so far is the deliberate decision that properties are any first-

order logic statements that are not examples.

Very few systems, e.g. (Drabentet al., 1988) (De Raedt and Bruynooghe, 1992), start
from both examples and properties. Although our considerations also hold for the ex-
treme cases where one of these sets is empty, or where properties are axioms in the above
sense, this paper achieves its full relevance only if both sets are non-empty, and if prop-
erties are an incomplete source of information.

1.2. LOGIC ALGORITHMS

Since we aim at the synthesis of logic programs with negation, synthesized programs
are completed programs. We express programs in a logic formalism close to the one of
Deville (1990), called logic algorithms. For syntactic convenience, we here restrict the-
oretical considerations to binary relations.

DEFINITION 1.2. A logic algorithm of a predicate r, denotedLA(r), is a formula of the
form: r(X,Y) ⇔ Def[X,Y], whereDef (called thebody) is a formula that only involves
the logicaland (∧) andor (∨) connectives. The left-hand atom is called thehead of
LA(r). The variables X andY are called theuniversal variables of LA(r), and all other
variables are called theexistential variables of LA(r). 1

EXAMPLE 1.2. A sample logic algorithm for sum/2 is:

LA2(sum): sum(L,S) ⇔ L=[] ∧ S=0
∨ L=[HL|TL] ∧ sum(TL,TS)

∧ add(HL,TS,S) ♦
Executable Prolog programs can easily be derived from such logic algorithms

(Deville, 1990).

EXAMPLE 1.3. The logic program derived fromLA2(sum) is the following:

sum(L,S) ← L=[],S=0

sum(L,S) ← L=[HL|TL],sum(TL,TS),add(HL,TS,S)

or, with the unifications moved into the heads:

sum([],0) ←
sum([HL|TL],S) ← sum(TL,TS),add(HL,TS,S) ♦

1. (Predicate) variable names start with an uppercase; functors and predicates start with a
lowercase.F[X,Y] denotes a formula F whose free variables are X and Y; F[a,b] denotes
F[X,Y] where the free occurrences of X and Y have been replaced by the terms a and b,
respectively. The variables X and Y are assumed to be universally quantified over LA(r); oth-
er free variables in Def are assumed to be existentially quantified over Def.

778 P. Flener and Y. Deville

1.3. OBJECTIVES OF THIS PAPER

The objectives of this paper are (i) the elaboration of a generic framework for logic
algorithm synthesis from specifications by examples and properties, and (ii) the descrip-
tion, within this framework, of a particular synthesis mechanism that has been devel-
oped and is being implemented. This paper is then organized as follows. In Section 2,
we define correctness criteria for specifications and logic algorithms. In Section 3, we
propose comparison criteria for logic algorithms. This provides an adequate framework
for the formulation, in Section 4, of stepwise synthesis strategies. In Section 5, we in-
stantiate this framework and discuss the design choices used for our synthesis mecha-
nism. In Section 6 to Section 8, we present the objectives and methods of the major steps
of our synthesis mechanism, and illustrate them on a sample problem. Finally, in
Section 9, we draw some conclusions on the results presented here. This paper extends
results presented by Flener and Deville (1992, 1993). A full development of this paper
can be found in (Flener, 1993).

2. Correctness of Logic Algorithms

It is important to measure a logic algorithm against its intended relation. Since we are
concerned with the declarative semantics of logic algorithms, we define model-theoretic
criteria, rather than proof-theoretic ones.

Let LA(r) be r(X,Y)⇔ Def[X,Y], andℜ be the intended relation. We here assume that
Def contains only primitive predicates and possibly r. This amounts to assuming that all
the predicates involved in the design ofLA(r) have been—or will be—correctly imple-
mented, and can thus be seen as primitives for the design ofLA(r). This restriction can
be overcome by simultaneously considering LA(r) and its non-primitive predicates
(Deville, 1990).

The idea behind correctness is to state that the intended relationℜ is equivalent to the
relation defined byLA(r):

ℜ = LA+(r) with LA+(r) = {<a,b>| LA(r) |== r(a,b)}
—ℜ = LA–(r) with LA–(r) = {<a,b>| LA(r) |== ¬r(a,b)}

where
—ℜ is the complement ofℜ, and where the considered interpretations are

Herbrand interpretations in which the primitive predicates are interpreted according to
their specifications. Correctness thus states an equivalence, in the models of LA(r), be-
tween the intended relationℜ and the interpretation of predicate r. The second criterion,
which in general is not a consequence of the first one, is necessary to handle logic algo-
rithms with negation (Deville, 1990).

When a logic algorithm is designed by structural induction (see (Deville, 1990) for a
precise methodology for this) on some parameter, then predicate r can be interpreted in
any Herbrand model of LA(r):

THEOREM 2.1. If LA(r) is designed by structural induction, then the interpretation of r
is the same in all the Herbrand models of LA(r).

Logic Program Synthesis from Incomplete Specifications 779

PROOF.Base case. In a design by structural induction ofDef, there exist disjuncts in Def
that are without recursion. Since all predicates other than r have a fixed interpretation in
all the Herbrand models, so will the instance ofr, satisfying the non-recursive
disjuncts. Induction. Since LA(r) is designed by structural induction, in any recursive
disjunct the recursive atoms involve parameters that are smaller, according to some
well-founded relation, than those in the head. More precisely, for every ground instance
of the logic algorithm such that the non-recursive literals in the disjunct aretrue, the re-
cursive literals have smaller parameters than the head of the considered ground instance
of the logic algorithm. Hence, by the induction hypothesis, the recursive instance ofr
also has a fixed interpretation in all the Herbrand models. Since the other non-recursive
literals have a fixed interpretation, so willr for the non-recursive disjuncts.❏

In the sequel, we only consider recursive logic algorithms where some well-founded
relation can be defined between the recursive literals and the head. We thus have to en-
force that a synthesis mechanism doesn’t synthesize non-terminating recursion (for
ground queries).

In this framework, the setLA–(r) is thus the complement ofLA+(r). Total correctness
reduces toℜ = LA+(r). Partial correctness is achieved whenℜ ⊇ LA+(r) (i.e. when the
atoms “computed” byLA(r) are correct), and completeness is achieved when
ℜ ⊆ LA+(r) (i.e. when all the correct atoms are “computed” byLA(r)).

For convenience, correctness definitions will be formalized wrt a single Herbrand in-
terpretation ℑ, called theintended interpretation, such that the next two conditions hold:

• r(a,b) is true in ℑ iff ℜ(a,b) holds,
• ℑ is a model of all primitive predicates.

Note thatℑ capturesℜ since the interpretation ofr in ℑ is ℜ. Soℜ does not have to be
explicitly considered in the correctness criteria.

EXAMPLE 2.1. Here are three other logic algorithms forsum/2:
LA1(sum): sum(L,S) ⇔ L=[] ∧ S=0
LA3(sum): sum(L,S) ⇔ L=[] ∧ S=0

∨ length(L,N) ∧ N>0 ∧ sub(S,TS,HL)
LA4(sum): sum(L,S) ⇔ L=[] ∧ S=0

∨ L=[HL|TL]
where length(L,N) holds iff integer N is the number of elements of list L, and sub(I,J,D)
holds iff add(J,D,I) holds. ♦

Three layers of correctness criteria are now defined.

2.1. LOGIC ALGORITHM vs. INTENDED RELATION

Total correctness can now be re-expressed as follows:

DEFINITION 2.1. LA(r) is totally correct wrt ℜ iff r(X,Y)⇔ Def[X,Y] is true in ℑ.
One can show that Definition 2.1 is equivalent to the criterionℜ = LA+(r). For partial

correctness and completeness, slightly stronger criteria are used:

DEFINITION 2.2. LA(r) is partially correct wrt ℜ iff r(X,Y)⇐ Def[X,Y] is true in ℑ.

DEFINITION 2.3. LA(r) is complete wrt ℜ iff r(X,Y)⇒ Def[X,Y] is true in ℑ.

780 P. Flener and Y. Deville

One can show that Definition 2.2 (respectively Definition 2.3) implies the criterion
ℜ ⊇ LA+(r) (respectivelyℜ ⊆ LA+(r)), but not the converse. This prevents logic algo-
rithms that are “badly” partially correct (respectively “badly” complete), that is logic al-
gorithms that cannot be easily “extended” to totally correct algorithms.
EXAMPLE 2.2. LA2(sum) is totally correct wrtSum. LA1(sum) is only partially correct
wrt Sum. LA3(sum) and LA4(sum) are only complete wrtSum.

2.2. LOGIC ALGORITHM vs. SPECIFIED RELATION

Next come criteria for measuring a logic algorithm against its specification by exam-
ples and properties. Given a set of examplesE(r) = E+(r) ∪ E –(r), a logic algorithm
LA(r) is complete wrtE(r) iff the examples are covered by the relation defined byLA(r)
(E+(r) ⊆ LA+(r) and E –(r) ⊆ LA–(r)). And LA(r) is partially correct wrtE(r) iff the
positive examples cover the defined relation (E+(r) ⊇ LA+(r); note that it is meaningless
to include here the partial correctness of the negative examples).

Similar criteria can be expressed for a set of propertiesP(r). In the above criteria, the
setsE+(r) andE –(r) then have to be replaced by the following two sets:

P+(r) = {<a,b>| P(r) |== r(a,b)}
P –(r) = {<a,b>| P(r) |== ¬r(a,b)}

The following formalization of all these criteria is defined in terms of the intended in-
terpretationℑ. Although slightly different from the above criteria, the following defini-
tions are more adapted to a framework of logic algorithm synthesis (see (Flener, 1993)
and (Deville and Flener, 1993) for a precise account on this subject):
DEFINITION 2.4. LA(r) is complete wrt E(r) iff the following conditions hold:

• r(a,b) ∈ E+(r) ⇒ Def[a,b] is true in ℑ;
• r(a,b) ∈ E –(r) ⇒ Def[a,b] is false in ℑ.

DEFINITION 2.5. LA(r) is partially correct wrt E(r) iff the following condition holds:
• r(a,b) ∈ E+(r) ⇐ Def[a,b] is true in ℑ.

DEFINITION 2.6. LA(r) is complete wrt P(r) iff the following conditions hold:
• P(r) |== r(a,b) ⇒ Def[a,b] is true in ℑ;
• P(r) |== ¬r(a,b) ⇒ Def[a,b] is false in ℑ.

DEFINITION 2.7. LA(r) is partially correct wrt P(r) iff the following condition holds:
• P(r) |== r(a,b) ⇐ Def[a,b] is true in ℑ.

DEFINITION 2.8. LA(r) is totally correct wrt E(r) (respectivelyP(r)) iff LA(r) is com-
plete and partially correct wrtE(r) (respectivelyP(r)).
EXAMPLE 2.3. LA2(sum), LA3(sum), and LA4(sum) are complete wrtEP(sum).

2.3. SPECIFIED RELATION vs. INTENDED RELATION

Finally, there is consistency of a specification by examples and properties wrt the in-
tended relation. For instance, consistency of the examplesE(r) wrt the intended
relationℜ means that the positive examples are inℜ, and that the negative examples are
in its complement

—ℜ.

Logic Program Synthesis from Incomplete Specifications 781

DEFINITION 2.9. E(r) is consistent with ℜ iff the following conditions hold:
• r(a,b) ∈ E+(r) ⇒ r(a,b) is true in ℑ (i.e. E+(r) ⊆ ℜ);
• r(a,b) ∈ E –(r) ⇒ r(a,b) is false in ℑ (i.e. E –(r) ⊆—ℜ).

DEFINITION 2.10. P(r) is consistent with ℜ iff the following condition holds:
• p ∈ P(r) ⇒ p is true in ℑ (i.e. P+(r) ⊆ ℜ andP –(r) ⊆—ℜ).

EXAMPLE 2.4. E(sum) andP(sum) are consistent withSum.
The specified relation of a consistent specification is a subset of the intended relation.

Moreover, ifLA(r) is partially or totally correct wrtE(r) (respectivelyP(r)), andE(r)
(respectivelyP(r)) is consistent withℜ, thenLA(r) is partially correct wrtℜ.

If there is no formal definition of the intended relationℜ, some correctness criteria
cannot be applied in a formal way. But they can be used to state features and heuristics
of a synthesis mechanism.

3. Comparison of Logic Algorithms

Let Lr be the set of all possible logic algorithms of r, where the bodies only involve
some fixed set of primitive predicates as well as the binary r predicate, and where X
andY are the distinct variables used in the heads.

It is important to compare logic algorithms for the same intended relation. Indeed, this
is useful in stepwise synthesis to establish strategies of progression towards a correct al-
gorithm. Let:

• LA1(r): r(X,Y)⇔ Def1[X,Y]
• LA2(r): r(X,Y)⇔ Def2[X,Y]

be two logic algorithms in Lr . We define a criterion for comparing logic algorithms in
terms of generality (Section 3.1). Since verifying this criterion is only semi-decidable,
we then introduce a sound approximation thereof (Section 3.2).

3.1. SEMANTIC GENERALIZATION

Intuitively, LA1(r) is less general than LA2(r) iff Def1 is “less often” true thanDef2.
More formally:
DEFINITION 3.1. LA1(r) is less general than LA2(r) (denoted LA1(r) ≤ LA2(r))
iff ∀X∀Y Def1 ⇒ Def2 is true in ℑ.

The fact of beingmore general (≥) is defined dually. Two logic algorithms, each more
general than the other, areequivalent (≅). We use< for ≤ and≅/ .
EXAMPLE 3.1. We haveLA1(sum)< LA2(sum)< LA3(sum)< LA4(sum).

The set Lr modulo≅ (denotedL r
≅) is partially ordered under≤. It includes as least el-

ement⊥r (defined asr(X,Y)⇔ false, and calledbottom) and as greatest elementTr (de-
fined asr(X,Y)⇔ true, and calledtop). In order to have an upper bound to any ascend-
ing sequence of logic algorithms, let’s extendLr to Mr by allowing an infinite number
of literals in the body of a logic algorithm. Let U be the considered Herbrand universe.
It is clear that (Mr

≅,≤) is isomorphic to (P(U2), ⊆), where P(S) denotes the set of subsets
of set S. Hence (Mr

≅, ≤) is a complete lattice, whose lub operator is the logicalor (∨),

782 P. Flener and Y. Deville

and whose glb operator is the logicaland (∧) connective over the bodies of logic algo-
rithms.

Comparing logic algorithms in terms of generality can be a difficult task, and is only
semi-decidable anyway. We thus define a particular case of this generality relation, but
in terms of purely syntactic criteria.

3.2. SYNTACTIC GENERALIZATION

We represent formulas by multisets, so as to exclude ordering problems. A similar de-
velopment, though for second-order expressions, but without negation, has been made
by Tinkham (1990).
DEFINITION 3.2. Let F be a conjunction of literals (respectively a disjunction of con-
junctions of literals). Thenµ(F) is ∅ if F is the predicatetrue (respectivelyfalse), and
the multiset of the literals of F (respectively the multiset of the conjunctions of literals
of F), otherwise.

Let’s first define syntactic generalization over conjunctions of literals, and then over
logic algorithms:
DEFINITION 3.3. A conjunctionC1 is syntactically less generalthan a conjunctionC2
(denoted C1 « C2) with a substitutionθ iff µ(C2θ) ⊆ µ(C1).
EXAMPLE 3.2. p(a,X)∧ q(Y) « p(V,W), namely with the substitution {V/a, W/X}.
DEFINITION 3.4. LA1(r) is syntactically less general than LA2(r) (denoted
LA1(r) « LA2(r)) iff there is a total functionφ from µ(Def1) to µ(Def2), such that, for ev-
ery disjunct D in µ(Def1), there is a substitutionθ that only binds existential variables
of LA2(r), such thatD « φ(D) with substitutionθ.
EXAMPLE 3.3. We haveLA1(sum) « LA2(sum) « LA4(sum). However,LA2(sum) and
LA3(sum) are incomparable under «, as they involve different predicates.

The fact of beingsyntactically more general (») is defined dually. Two logic algo-
rithms, each syntactically more general than the other, aresyntactically equivalent (≈).
Note that syntactical equivalence is more general than alphabetic variance, because of
the irrelevance of the ordering of disjuncts within logic algorithms, and of literals within
disjuncts.

The set Lr
≈ is partially ordered under «. The following proposition is a direct conse-

quence of the definitions:
PROPOSITION 3.1.The relations«, », and ≈ are sub-relations of≤, ≥, and ≅,
respectively.

We now define an atomic refinement operator, after making two preliminary observa-
tions. A most general literal in a disjunct D of LA(r) is of the form p(Z1,…,Zn) or
¬p(Z1,…,Zn), where p is an n-ary predicate and Z1,…,Zn are existential variables occur-
ring exactly once in D. And amost general term in a disjunct D of LA(r) is of the form
f(Z1,…,Zn), where f is an n-ary functor and Z1,…,Zn are existential variables occurring
exactly once inD.
DEFINITION 3.5. Let γ be a refinement operator such thatLA2(r) ∈ γ(LA1(r)) iff exactly
one of the following holds:

Logic Program Synthesis from Incomplete Specifications 783

• LA2(r) is derived fromLA1(r) by adding a disjunct toLA1(r);
2

• LA2(r) is derived fromLA1(r) by replacing a disjunctD1 by D2, such that:
– D2 is D1 without a most-general literal inD1;

3

– D2 is D1 where one or more occurrences of a variable V are replaced by a new ex-
istential variable W;

– D2 isD1 where one or more occurrences of a most general term inD1 are replaced
by a new existential variable W.

The ability to add a disjunct of course often overrides the need to modify a disjunct,
as it suffices to add the modified disjunct in the first place, for instance when creating a
logic algorithm from⊥r . However, this is not always possible, for instance when mod-
ifying an existing logic algorithm into another one.
EXAMPLE 3.4. LA2(sum)∈ γ(LA1(sum)), andLA4(sum)∈ γ(γ(γ(LA2(sum)))).

Let us now relate the refinement operator γ to the generality relation «:
THEOREM 3.2. The following three assertions hold:

(1) γ is a syntactic generalization operator: ∀LA’(r) ∈ γ(LA(r)) LA(r) « LA’(r);
(2) γ can generate any syntactic generalization:

LA1(r) « LA2(r) ⇔ ∃n ∃LA2’(r) ∈ γ n(LA1(r)) LA2’(r) ≈ LA2(r);
(3) γ can generate all logic algorithms ofLr from ⊥r: γ*(⊥r) = Lr .

PROOF.Analogous to the proof in (Tinkham, 1990).❑
An inverse operatorσ of γ can also be defined, such thatσ is a syntactic specialization

operator that can generate all logic algorithms ofLr from Tr .

4. Stepwise Synthesis Strategies

It is useful to decompose a synthesis process into a series of steps, each designing an
intermediate logic algorithm. Indeed, this (i) allows different techniques to be deployed
at each step (thus enforcing a neat separation of concerns), and (ii) yields monitoring
points where correctness and comparison criteria can be applied (hence measuring the
effectiveness and progression of synthesis).

Stepwise synthesis can beincremental (when examples and properties are presented
one-by-one, each presentation yielding a run through all synthesis steps), ornon-incre-
mental (when examples and properties are presented all-at-once, yielding a single run
through all synthesis steps).

An interesting approach to stepwise synthesis is to progress towards the desired algo-
rithm while preserving correctness criteria.

Let’s give a criterion for upward (partial-correctness preserving) progression:
DEFINITION 4.1. (See Figure 1a.) If the following two conditions hold:

• LA2(r) ≥ LA1(r),
• LA2(r) is partially correct wrt ℜ,

2. By convention, adding a disjunct D to ⊥r amounts to replacing false by D.
3. By convention, deleting the unique literal of a singleton disjunct D amounts to replacing D

by true if there is no true disjunct yet in LA1(r), and to discarding D, otherwise.

784 P. Flener and Y. Deville

thenLA2(r) is abetter partially correct approximation of ℜ thanLA1(r). ♦
Dually, the criterion for downward (completeness preserving) progression is:

DEFINITION 4.2. (See Figure 1b.) If the following two conditions hold:

• LA2(r) ≤ LA1(r),

• LA2(r) is complete wrt ℜ,

thenLA2(r) is abetter complete approximation of ℜ thanLA1(r). ♦

EXAMPLE 4.1. LA3(sum) is a better complete approximation ofSum than LA4(sum).

We now briefly sketch an incremental synthesis strategy (Section 4.1), and then devel-
op a non-incremental synthesis strategy (Section 4.2).

4.1. AN INCREMENTAL SYNTHESIS STRATEGY

In the case of incremental synthesis, let’s view the steps of one synthesis increment as
a macro-step performing a transformationΘ. Synthesis is then the design of a series of
logic algorithmsLA0(r), LA1(r), …, LAi(r), …, from a series of specificationsS1(r), …,
Si(r), …, withSi(r) ⊆ Si+1(r) (whereSi(r) is a set of examples and properties), such that
the following two conditions hold:

• LA0(r) = ⊥r ,

• LAi(r) = Θ(LAi-1(r),Si(r)), for i>0.

This coversiterative synthesis, where only the last presented example or property is ac-
tually used byΘ. If Θ is monotonic and continuous (wrt the≤ order on logic algorithms),
thenΘω(⊥r) is its least fixpoint. So ifΘ preserves partial correctness wrtℜ, then the fix-
point is also partially correct wrtℜ. Note that completeness wrtℜ is not necessarily
achieved, and that the resulting logic algorithm can involve infinitely many literals. This
is related toidentification-in-the-limit, as first presented in Gold’s seminal paper on in-
ductive inference (1967). This incremental strategy is monotonic and consistent. Other
approaches are, e.g., non-monotonic synthesis (Jantke, 1991) and inconsistent synthesis
(Lange and Wiehagen, 1991).

LA1(r)

LA2(r)
ℜ

Figure 1. (a) Upward and (b) downward progression

LA2(r)

LA1(r)

ℜ

U2

Logic Program Synthesis from Incomplete Specifications 785

4.2. A NON-INCREMENTAL SYNTHESIS STRATEGY

A first idea of a non-incremental stepwise synthesis strategy (with a fixed, finite num-
ber f of steps) is to achieve upward progression:

At Step 1, “create”LA1(r) such that:
• LA1(r) is partially correct wrt ℜ.
At Step i (2 ≤ i ≤ f), transformLAi-1(r) into LAi (r) such that:
• LAi (r) is a better partially correct approximation of ℜ thanLAi–1(r).

But this strategy doesn’t take care of the completeness aspect. Moreover, since synthesis
is here example-based, constants extracted or derived from the examples might appear
in intermediate logic algorithms instead of variables, and thus destroy all hopes for com-
pleteness. We define a generalization operator that allows the transformation of the se-
ries of intermediate logic algorithms into a series of intermediate logic algorithms that
reflects downward progression.

We assume that, givenE(r), the literals of a synthesized logic algorithm are partitioned
into two classes by the synthesis mechanism: thesynthesized literals, and thetrailing
atoms. The latter are of the formV=t orV∈t, where V is a variable occurring in the syn-
thesized literals, and t is a term or a set of terms textually extracted or derived from the
examples inE(r).
DEFINITION 4.3. Let Γ be a total function inLr , such thatΓ(LA(r)) is LA(r) whose trail-
ing atoms have been deleted.
EXAMPLE 4.2. Let LA5(sum) be:

sum(L,S) ⇔
L=[] ∧ L=[] ∧ S=0

∨ L=[HL|TL] ∧ sum(TL,TS)
∧ HL=1 ∧ S=1 ∧ TL=[] ∧ TS=0

∨ HL=3 ∧ S=5 ∧ TL=[2] ∧ TS=2
∨ HL=2 ∧ S=12 ∧ TL=[6,4] ∧ TS=10

where the bold atoms are synthesized atoms, and the other atoms are trailing atoms in-
troduced fromE(sum), as in Example 1.1. Thus,Γ(LA5(sum)) is:

sum(L,S) ⇔
L=[]

∨ L=[HL|TL] ∧ sum(TL,TS) ♦
It is obvious thatΓ can be expressed as a sequence of applications ofγ : thusΓ is a gen-

eralization function: LA(r) « Γ(LA(r)), henceLA(r) ≤ Γ(LA(r)).
The strategy above can now be refined as follows:
At Step 1, “create”LA1(r) such that:
• LA1(r) is partially correct wrt ℜ,
• Γ(LA1(r)) is complete wrt ℜ.
At Step i (2 ≤ i ≤ f), transformLAi–1(r) into LAi (r) such that:
• LAi (r) is a better partially correct approximation of ℜ thanLAi–1(r),
• Γ(LAi (r)) is a better complete approximation of ℜ thanΓ(LAi–1(r)).
At Stepf, “obtain” LAf (r) such that:
• LAf (r) ≅ Γ(LAf (r)).

786 P. Flener and Y. Deville

Thus,LAf (r) is totally correct wrt ℜ. Hence, convergence of the synthesis process is
achieved.

We now state and prove a generic theorem showing how steps 2 to f–1 of the above
generic strategy can be refined in order to obtain a practical framework:
THEOREM 4.1. GENERIC SYNTHESIS THEOREM.
Let LA(r) be r(X,Y) ⇔ ∨1≤j ≤m Aj, and LA’(r) be r(X,Y) ⇔ ∨1≤j≤m Aj ∧ Bj , where Aj
and Bj are any formulas. The following two assertions hold:

(1) If LA(r) is partially correct wrt ℜ and Aj ⇒ Bj (1 ≤ j ≤ m)
then LA’(r) is a better partially correct approximation ofℜ than LA(r).

(2) If LA(r) is complete wrt ℜ and ℜ(X,Y) ∧ Aj ⇒ Bj (1 ≤ j ≤ m)
then LA’(r)) is a better complete approximation of ℜ than LA(r).

PROOF.Let’s prove these assertions one by one:
(1) Obviously, we have∨1≤j ≤m Aj ∧ Bj ⇒ ∨1≤j ≤m Aj. Moreover, the second hypothesis

implies ∨1≤j ≤m Aj ⇒ ∨1≤j ≤m Aj ∧ Bj. ThusLA’(r) ≅ LA(r), i.e., in particular
LA’(r) ≥ LA(r). Using the first hypothesis, we obtain thatLA’(r) is partially correct
wrt ℜ. Thus: LA’(r) is a better partially correct approximation of ℜ thanLA(r).

(2) By Definition 2.3, the first hypothesis readsr(X,Y) ⇒ ∨1≤j ≤m Aj. By the definition
of ℑ, the second hypothesis reads(1≤i≤m) r(X,Y) ∧ Ai ⇒ Bi, or,
equivalently r(X,Y) ⇒ ¬Ai ∨ Bi. Combined with the first hypothesis, we
get r(X,Y) ⇒ (∨1≤j ≤m Aj) ∧ (∧1≤i≤m ¬Ai ∨ Bi). The right-hand side can be
rearranged as∨1≤j ≤m Aj ∧ Bj ∧ Cj, where Cj is a formula involving¬Ai
andBi (1≤i≤m, i≠j). Hence r(X,Y) ⇒ ∨1≤j ≤m Aj ∧ Bj, i.e.LA’(r) is complete wrt
ℜ. By construction, we haveLA’(r) « LA(r), i.e., by Theorem 3.1,LA’(r)) ≤ LA(r).
ThusLA’(r) is a better complete approximation of ℜ thanLA(r). ❏

The second hypothesis of assertion (1) ensures that the introduced literals are redun-
dant with the already existing ones. In other words, as the proof shows, we then actually
haveLA’(r) ≅ LA(r). But strict progression is achieved by the generalizations. The sec-
ond hypothesis of assertion (2) ensures that the introduced literals are “redundant” with
the intended relationℜ.

In practice, assertion (1) is applied to the logic algorithmsLAi(r), whereas assertion (2)
is applied to the logic algorithmsΓ(LAi(r)), wherei>1. The first hypotheses of both as-
sertions need not be proved if they are established by Step 1 and then preserved by ap-
plication of Theorem 4.1 to all previous steps. Proving the second condition of
assertion (2) can’t be done in a formal way for lack of a formal definition of ℜ. However,
this can be used to guide a synthesis mechanism, for instance by means of interaction
with the specifier, hence increasing the confidence in the synthesis.

5. A Particular Synthesis Mechanism

We now instantiate the general framework above to the particular synthesis mecha-
nism we have developed. We first justify some design choices made for this mechanism
(Section 5.1), and then discuss algorithm schemata as a means to guide synthesis
(Section 5.2), before outlining the mechanism itself (Section 5.3).

Logic Program Synthesis from Incomplete Specifications 787

5.1. DESIGN CHOICES

Specification language. Specifications here consist of a non-empty set of positive
examples, and a possibly empty set of properties that are Horn clauses. Negative exam-
ples are not used. Although the mechanism could handle recursive clauses, properties
are limited to be non-recursive, so as to focus on synthesis from incomplete specifica-
tions. With recursive properties, a transformational or constructive approach would be
more appropriate than our approach.
EXAMPLE 5.1. Non-formally speaking, let the firstPlateau(L,P,S) relation hold iff listP
is the first plateau (maximal sequence of identical elements) at the beginning of non-
empty list L, and list S is the corresponding suffix of L. A sample specification by exam-
ples and properties of this relation is given in Figure 2. Note that properties P1 to P3 gen-
eralize examplesE1 to E3, respectively.
EXAMPLE 5.2. A sample version of LA(firstPlateau) is given in Figure 3.

Degree of automation. With incomplete specifications it is more realistic to strive for
an interactive synthesis mechanism, so as to explicitly disambiguate some situations,
rather than to have a default iteration over all possible decisions.

5.2. ALGORITHM SCHEMATA

Algorithms can be classified according to their design strategies, such as divide-and-
conquer, generate-and-test, global search, and so on. It is thus interesting to guide the
design process by an algorithm schema (a template algorithm with a fixed control flow)
that captures the essence of such a strategy. This has been done by Summers (1977),
Smith (1985, 1988), Tinkham (1990) in the context of automated program synthesis, and

E(firstPlateau) = { firstPlateau([a],[a],[]) (E 1)
firstPlateau([b,b],[b,b],[]) (E 2)
firstPlateau([c,d],[c],[d]) (E 3)
firstPlateau([e,f,g],[e],[f,g]) (E 4)
firstPlateau([h,i,i],[h],[i,i]) (E 5)
firstPlateau([j,j,k],[j,j],[k]) (E 6)
firstPlateau([m,m,m],[m,m,m],[]) } (E 7)

P(firstPlateau) = { firstPlateau([X],[X],[]) (P 1)
firstPlateau([X,Y],[X,Y],[]) ⇐ X =Y (P 2)
firstPlateau([X,Y],[X], [Y]) ⇐ X ≠Y } (P 3)

Figure 2. Sample versions ofE(firstPlateau) andP(firstPlateau)

firstPlateau(L,P,S) ⇔
L=[HL] ∧ P=L ∧ S=[]

∨ L=[HL 1,HL 2|TL] ∧ HL 1≠HL2 ∧ P=[HL 1] ∧ S=[HL 2|TL]
∨ L=[HL 1,HL 2|TL] ∧ HL 1=HL2

∧ firstPlateau([HL 2|TL],TP,TS)
∧ P=[HL 1|TP] ∧ S=TS

Figure 3. A sample version ofLA(firstPlateau)

788 P. Flener and Y. Deville

by Deville and Burnay (1989) in the context of assisted program construction. Other ap-
plications of schemata are programming tutors (Gegg-Harrison, 1989), and program
correctness or equivalence checking (see the survey by Manna, 1974).

Our synthesis mechanism is guided by a divide-and-conquer logic algorithm schema
(a particular form of design by structural induction).

Loosely speaking, adivide-and-conquer algorithm for a predicate r over parametersX
and Y works as follows. Let X be the induction parameter. If X is minimal, then Y is usu-
ally easily found by directly solving the problem. Otherwise, if X is non-minimal, de-
compose X into a vectorHX of heads of X and a vectorTX of tails of X, the latter being
of the same type as X, as well as smaller than X according to some well-founded relation.
The tailsTX recursively yield tailsTY of Y. TheHX are processed into a seriesHY of
heads of Y. Finally, Y is composed from its headsHY and tailsTY. It may happen that
sub-cases emerge with different processing and composition operators: discriminate be-
tween them according to the values ofHX, TX, and Y. It may also happen that the non-
minimal case is partitioned into a recursive and a non-recursive case, each of which is
partitioned into sub-cases. In the non-recursive case,Y is usually easily found by directly
solving the problem, taking advantage of the decomposition ofX into HX andTX.

Logic algorithm schemata can be expressed as second-order logic algorithms. For in-
stance, logic algorithms designed by a divide-and-conquer strategy, and having a single
minimal case and a single non-minimal case, fit the schema of Figure 4. In the sequel,
for simplicity of the presentation, all logic algorithms follow the layout of this schema.

5.3. THE SYNTHESIS MECHANISM

Instantiating some predicate variable(s) of the above divide-and-conquer schema, and
introducing trailing atom(s), is a synthesis step. A synthesis mechanism can then be ex-
pressed as the following sequence of steps:

• Step 1: Syntactic creation of a first approximation;
• Step 2: Synthesis of Minimal and NonMinimal;
• Step 3: Synthesis of Decompose;
• Step 4: Syntactic introduction of the recursive atoms;

R(X,Y) ⇔
Minimal(X) ∧ Solve(X,Y)

∨ ∨1≤k≤c NonMinimal(X) ∧ Decompose(X, HX, TX)
∧ Discriminate k(HX, TX,Y)
∧ (SolveNonMin k(HX, TX,Y)

|
R(TX,TY)

∧ Process k(HX, HY)
∧ Composek(HY, TY,Y))

whereR(TX,TY) denotes a conjunction of recursive atoms, and where “| ” denotes the
exclusive-or connective of the schema-language.

Figure 4. A divide-and-conquer logic algorithm schema

Logic Program Synthesis from Incomplete Specifications 789

• Step 5: Synthesis of Solve and theSolveNonMink;
• Step 6: Synthesis of the Processk and theComposek;
• Step 7: Synthesis of the Discriminatek;
• Step 8: Syntactic generalization.

A detailed description of all these steps, and the motivation for this particular order of
the steps, are beyond the scope of this paper, and can be found in (Flener, 1993). Here
we quickly overview the relatively straightforward Steps 1 to 5, and illustrate them on
thefirstPlateau/3 relation, before presenting the truly creative Steps 6 to 8 in greater de-
tail in Section 6 to Section 8, respectively. But first two more design choices:

Types of inference. With specifications by examples (which traditionally give rise to
inductive synthesis) and properties (which traditionally give rise to deductive synthesis),
it is natural to use both inductive and deductive inference in the synthesis mechanism,
whichever is best suited for each step.

Strategy criteria. Our synthesis mechanism is stepwise and non-incremental: exam-
ples are presented to it in an all-at-once fashion. It conforms to the strategy described in
Section 4.2.

Step 1 yields LA1(r) by mere syntactic transformation of the example setE(r) into a
logic algorithm. For instance, the definition part ofLA1(firstPlateau) is (L=[a] ∧ P=[a]
∧ S=[]) ∨ (L=[b,b] ∧ P=[b,b] ∧ S=[]) ∨ … Thus, LA1(r) is totally correct wrtE(r). Un-
der the hypothesis thatE(r) is consistent with ℜ, LA1(r) is even partially correct wrt ℜ.
Moreover, Γ(LA1(r)) is Tr , and hence complete wrt ℜ. Step 1 thus conforms to the strat-
egy of Section 4.2.

Steps 2 and 3 rely on databases of type-specific predicates. For instance, we here as-
sume that Step 2 selects L as induction parameter, and introduces one minimal form
(L=[_]), and one non-minimal form (L=[_,_| _]), and that Step 3 decomposes the non-
minimal form into its headHL and tailTL.

Step 4 syntactically introduces recursive atoms, as dictated by the selected decompo-
sition operator. It performs deductive inference from the specification for computing the
witnesses of the trailing atoms. For instance, in exampleE6, given the tail [j,k] of L,
propertyP3 allows the inference offirstPlateau([j,k],[j],[k]), i.e.TP=[j] ∧ TS=[k]. Note
that recursion is detected to be useless for some examples.

Step 5 uses particular cases of the methods of Steps 6 and 7 in order to solve the min-
imal case and the non-recursive, non-minimal case. Note that the latter can have differ-
ent sub-cases.

Figure 5 shows LA5(firstPlateau), where each disjunct has as annotation the set of ex-
amples it “covers”. The atoms in boldface represent Γ(LA5(firstPlateau)).

Step 6 (see Section 6) performs inductive inference, and is based on the most-specific-
generalization concept. Step 7 (see Section 7) performs deductive inference, and takes a
proofs-as-programs approach.

Steps 2, 3, 5, and 6 are non-deterministic: different logic algorithms can be synthe-
sized. Steps 2 to 7 fit the hypotheses of Theorem 4.1. It can be shown that,
for i ∈{2,…,7}, LAi(r) {«,≈/ ,≅} LAi–1(r), and thatΓ(LAi(r)) {«,≈/ ,<} Γ(LAi–1(r)).

790 P. Flener and Y. Deville

Step 8 (see Section 8) yields LA8(r) by application of theΓ operator to LA7(r). Indeed,
all the predicate variables of the divide-and-conquer schema have been instantiated, so
synthesis may stop there. But this transformation doesn’t entirely satisfy the require-
ments for Step f in the strategy of Section 4.2, because LA8(r) can only be guaranteed to
be complete, but not necessarily totally correct, wrt ℜ. Such potential over-generaliza-
tion is inherent to synthesis from incomplete specifications. We have
thatLA8(r) {»,≈/ ,>} LA7(r), and thatΓ(LA8(r)) = Γ(LA7(r)).

6. Synthesis of the Processk and Composek (Step 6)

The Processk(HX,HY) procedure transforms, in thekth sub-case of the recursive case,
the headsHX of the induction parameter X into headsHY of the other parameter Y. The
Composek(HY,TY,Y) procedure computes, in thekth sub-case of the recursive case, pa-
rameter Y from its headsHY (obtained by processingHX) and tailsTY (obtained by re-
cursion onTX). We formally present the objective and methods of Step 6 (Section 6.1),
and illustrate them on thefirstPlateau/3 relation (Section 6.2). Other examples can be
found in (Flener and Deville, 1993).

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E 1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E 3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]

∧ HL=e ∧ TL=[f,g] {E 4}
∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]

∧ HL=h ∧ TL=[i,i] {E 5}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ firstPlateau(TL,TP,TS)
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E 2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E 6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E 7}

Figure 5. Assumed version ofLA5(firstPlateau)

Logic Program Synthesis from Incomplete Specifications 791

6.1. FORMALIZATION: OBJECTIVE AND METHODS

GivenLA5(r) as shown in Figure 6, the aim at Step 6 is to transform LA5(r) into LA6(r)
that fits the schema of Figure 7. A total ofm disjuncts (m being the number of examples)
can be identified by expanding the bodies ofLA5(r) and LA6(r) into disjunctive normal
form. The trailing atoms of each disjunct are offset by additional tabulations.

r(X,Y) ⇔
minimal(X) ∧ solve(X,Y)

∧ ∨j ∈I X=xj ∧ Y=y j
∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X, HX, TX)

∧ solveNonMin k(HX, TX,Y)
∧ ∨j ∈K k

X=xj ∧ Y=y j
∧ HX=hxj ∧ TX=tx j

∨ nonMinimal(X) ∧ decompose(X, HX, TX)
∧ r(TX,TY)
∧ ∨j ∈L X=xj ∧ Y=y j

∧ HX=hxj ∧ TX=tx j
∧ TY∈ty j

whereI is the set of indices of the minimal examples,K is the set of indices of the
non-recursive examples, andL is the set of indices of the recursive examples, such
thatI, K, L form a partition of {1,…,m}. The K k form a partition ofK . Thetyj are
vectors of setstyjh of witnesses such thatr(txjh,tyjhi) holds for some elementtyjhi of
tyjh (j ∈L).

Figure 6. LA5(r)

r(X,Y) ⇔
minimal(X) ∧ solve(X,Y)

∧ ∨j ∈I X=xj ∧ Y=y j
∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X, HX, TX)

∧ solveNonMin k(HX, TX,Y)
∧ ∨j ∈K k

X=xj ∧ Y=y j
∧ HX=hxj ∧ TX=tx j

∨ ∨c–w<k≤c nonMinimal(X) ∧ decompose(X, HX, TX)
∧ r(TX,TY)
∧ procComp k(HX, TY,Y)
∧ ∨j ∈Lk

X=xj ∧ Y=y j
∧ HX=hxj ∧ TX=tx j
∧ TY∈ty’ j

where the elementsty’ jh of thety’ j are subsets of the sets of witnessestyjh generated
at Step 4 (Introduction of the recursive atoms). TheLk form a partition ofL.

Figure 7. LA6(r)

792 P. Flener and Y. Deville

We decide to merge eachProcessk(HX,HY) with its Composek(HY,TY,Y) into aProc-
Compk(HX,TY,Y), so that their instances are synthesized at the same time.

We have identified two methods to synthesize instances of theProcCompk:
• computation of most-specific-generalizations (msg): the MSG Method applies if

eachProcCompk is implemented as a conjunction of equality atoms;
• synthesis from an inferred specification by examples and properties: the Synthesis

Method applies if someProcCompk needs a full-fledged recursive algorithm, i.e. is
implemented as a disjunction of conjunctions of any literals.

We now discuss these methods in turn.

6.1.1. THE MSG METHOD

The MSG Method partitions the recursive disjuncts ofLA5(r) incrementally and non-
deterministically. The concept of most-specific-generalization (msg) was introduced si-
multaneously, but independently, by Plotkin (1970) and Reynolds (1970).

DEFINITION 6.1. Term s is less general than term t (denoted s ≤ t) iff there is a
substitutionσ such thats = tσ.

The relation≤/2 forms a complete lattice on the term set U (modulo variable renam-
ing) to which a least element has been added (Lassezet al., 1987). The glb operator com-
putes the greatest common instance of two terms (by a unification algorithm, yielding
their mgu); the lub operator computes the msg of two terms (by an anti-unification algo-
rithm). The msg of two terms thus always exists, and is unique up to variable renaming.

EXAMPLE 6.1. The msg of termsf(a,b,X,Y,X)andf(a,c,d,Z,d) is f(a,L,M,N,M).
Intuitively, the MSG Method collects into a subset the recursive disjuncts ofLA5(r) in

whichY is constructed in a uniform way, by unification only, fromHX andTY.
Note that, by the definition of examples, everyyj is ground, and that, by construction

(Step 3 only uses decomposition predicates that are deterministic given a ground value
of the induction parameter), all thehxj andtxj are ground. However, ifr is non-deter-
ministic given a ground value of the induction parameter, then there may be several val-
ues for theTY. Hence, Step 4 yields, in all generality, sets of terms astyj.

DEFINITION 6.2. A determinate disjunct has a unique, ground value in its trailing at-
oms for theTY. Otherwise, it is anindeterminate disjunct.

Here, we only present the situation where all the recursive disjuncts are determinate,
and indicate how to extend it to the indeterminate situation. We now define a criterion
for verifying whether several disjuncts constructY in the same way fromHX andTY.

DEFINITION 6.3. Themsg of a set of determinate disjuncts is the msg of the <hxj,tyj,yj>
value-tuples extracted from these disjuncts.

DEFINITION 6.4. A set of determinate disjunctsD is compatible iff the msg <hx,ty,y>
of D is such thatleaves(ty) ⊆ leaves(y), whereleaves(t) denotes the set of constants and
variables occurring in termt.

A compatible setD of disjuncts is of great interest, because each of its disjuncts con-
structsY from HX andTY in the same way as its msg does. If <hx,ty,y> is the msg ofD,

Logic Program Synthesis from Incomplete Specifications 793

then all the values ofY in the different disjuncts ofD can be computed by the same con-
junction:

HX=hx ∧ TY=ty ∧ Y=y.

But we are of course not interested in inferring instances of theProcCompk that cover
“too many”, if not all, examples beyond the given ones. Compatibility is thus meant to
restrict the covered examples. Nor are we interested in inferring instances of theProc-
Compk that cover “too little”, if not only one, example(s). The idea is thus to partition
the set of recursive disjuncts ofLA5(r) into a (i) minimal number of (ii) compatible sub-
sets.
ALGORITHM. Initially, there are no subsets. At any moment, the recursive disjuncts can
be classified according to whether or not they belong to some subset. Progression is
achieved by selecting a disjunct Dj that doesn’t belong to any subset. If there is some
subsetD such thatD ∪ { Dj} is compatible, thenD becomesD ∪ { Dj}. Otherwise a new
singleton subset {Dj} is created.

In the indeterminate situation, either the non-empty sets of values for theTY in some
disjunct are ground, and choice-points will appear in the algorithm for rendering that
disjunct determinate, or some variables appear in these sets of values for theTY, and
choice-points will appear in the search for grounding substitutions.

Let procCompk be instantiations of ProcCompk. The msg <hxk,tyk,yk> of a subset is
rewritten as follows:

procCompk(HX,TY,Y) ⇔ HX=hxk ∧ TY=tyk ∧ Y=yk

so that it can be inserted into the corresponding disjuncts ofLA5(r).
One can show that the MSG Method yields instances of theProcCompk that are as

general as possible (Flener, 1993). The MSG Method obviously is non-deterministic
(choice of unclassified disjunct, choice of ground values of theTY, respectively choice
of grounding substitutions). Its time complexity isΩ(em). This exponential complexity
is not a drawback, as the number of examplesm usually is quite small.

6.1.2. THE SYNTHESIS METHOD

The Synthesis Method assumes that there is exactly one subset (w=1), and that Proc-
Comp1(HX,TY,Y) is implemented as a disjunction of conjunctions of any literals, i.e.
needs to be synthesized from scratch, just like any other logic algorithm. Let procComp
be the chosen instantiation of ProcComp1. A specification by examples and properties
for procComp(HX,TY,Y) has to be inferred from LA5(r).

The inference of an example set is easy: extract the <hxj,tyj,yj> tuples from the recur-
sive disjuncts of LA5(r). If there are several possible values fortyj, then extract the value
that was successfully used by the MSG Method: compatibility with other disjuncts is in-
deed a strong argument that this is a “good” choice.

The inference of a property set is based on the observation that the properties ofr are
“inherited” byprocComp. For every property:

r(xj,yj) ⇐ Bj (Pj)

find variants of examples or body-less properties:

794 P. Flener and Y. Deville

r(txji ,tyji) (Ei or Pi)

such that:

nonMinimal(xj) ∧ decompose(xj,hxj,txj) (*)

where nonMinimal is theNonMinimal predicate selected at Step 2, anddecompose is the
Decompose predicate selected at Step 3. Then infer:

procComp(hxj,tyj,yj) ⇐ Bj (Pj’)

as a property of procComp.
This works, because when unfolding, inPj, ther(xj,yj) atom usingLA5(r) (where the

procComp has already been added), and then simplifying the conclusion usingEi or Pi,
(*), and the fact that, by Step 3,decompose is deterministic given a ground value of the
induction parameter, we effectively obtainPj’.

A logic algorithm LA(procComp) can now be synthesized from this inferred specifica-
tion by examples and properties. The synthesis of LA(r) proceeds using procComp, as-
suming this predicate to be a primitive.

6.2. ILLUSTRATION: THEfirstPlateau/3 RELATION

At Step 4 (see Figure 5), the actual values of the introduced parameters TP and TS are
uniquely determined, so the recursive disjuncts are all determinate. The phrase
“disjunctDj” now stands for the disjunct ofLA6(firstPlateau) that covers exampleEj.

• According to the MSG Method, there are initially no subsets. We first consider dis-
junct D2, and create a singleton subset {D2}.

• We pursue with D6. To see whether D6 is compatible with subset {D2}, we compute
the msg of their <HL,TP,TS,P,S> value-tuples:

Disjunct D6 is compatible with subset {D2}, because [A,A] andU are constructed in
terms of A, nil, andU.

• We pursue with D7. To see whether D7 is compatible with subset {D2,D6}, we com-
pute the msg of their <HL,TP,TS,P,S> value-tuples:

HL TP TS P S

b [b] [] [b,b] [] msg{ D2}

j [j] [k] [j,j] [k] D6

A [A] U [A,A] U msg{ D2,D6}

HL TP TS P S

A [A] U [A,A] U msg{ D2,D6}

m [m,m] [] [m,m,m] [] D7

A [A| T] U [A,A| T] U msg{ D2,D6,D7}

Logic Program Synthesis from Incomplete Specifications 795

Disjunct D7 is compatible with subset {D2,D6}, because [A,A| T] andU are con-
structed in terms of A, T, andU.

There are no other disjuncts. We have partitioned the recursive disjuncts into one subset,
namely {D2,D6,D7}.

Let procComp be the chosen instantiation of ProcComp. It is implemented by re-ex-
pression, and subsequent simplification, of the msg:

procComp(HL,TP,TS,P,S) ⇔ P=[HL| TP] ∧ S=TS∧ TP=[HL| _]

This result is inserted into the corresponding disjuncts of LA5(firstPlateau), and
LA6(firstPlateau) thus looks as depicted in Figure 8.

7. Synthesis of the Discriminatek (Step 7)

The Discriminatek(HX,TX,Y) procedure performs, in thekth sub-case of the non-min-
imal case, some tests so as to ensure that the parameters effectively belong to that sub-
case. We first formally present the objective and methods of Step 7 (Section 7.1), and
then illustrate them on thefirstPlateau/3 relation (Section 7.2). Other examples can be
found in (Flener and Deville, 1993).

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E 1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E 3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]

∧ HL=e ∧ TL=[f,g] {E 4}
∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]

∧ HL=h ∧ TL=[i,i] {E 5}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E 2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E 6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E 7}
Figure 8. LA6(firstPlateau)

796 P. Flener and Y. Deville

7.1. FORMALIZATION: OBJECTIVE AND METHODS

GivenLA6(r) as shown in Figure 7, the aim at Step 7 is to transform LA6(r) into LA7(r)
that fits the schema of Figure 9. (Note that Step 7 is totally independent of the choice of
Step 6 to merge theProcessk andComposek predicates.) This objective is achieved by
two consecutive tasks:

• synthesis of specialized instantiations of the Discriminatek;
• generalization of these specialized instantiations of the Discriminatek.

These tasks are performed by a Proofs-as-Programs Method and a Generalization Meth-
od, respectively. We now discuss these methods in turn.

7.1.1. THE PROOFS-AS-PROGRAMS METHOD

The Proofs-as-Programs Method extracts specialized instantiations of the Discrimi-
natek from the proofs that the logic algorithmΓ(LA6(r)) is complete wrt the properties.
Indeed, the properties contain explicit information that has not yet been synthesized into
any disjuncts.

Intuitively, the Proofs-as-Programs Method takes a propertyr(X,Y)⇐ Bodyi, and un-
folds itsr(X,Y) atom using a disjunct ofΓ(LA6(r)), to which adiscriminatek(HX,TX,Y)
atom has been added. By resolution within the left-hand side, this eventually simplifies
to discriminatek(HX,TX,Y) ⇐ Bodyi σ, whereσ is an answer substitution. Eachdis-
criminatek is defined by all the program clauses obtained by doing this for all properties
and all disjuncts.

More formally, when considering property Pi, let Ti be a theory composed of:
• the generalized logic algorithmΓ(LA6(r));
• the specificationEP(r) \ {Pi};
• logic algorithms for all primitive predicates.

r(X,Y) ⇔
minimal(X) ∧ solve(X,Y)

∧ ∨j ∈I X=xj ∧ Y=y j
∨ ∨1≤k≤v nonMinimal(X) ∧ decompose(X, HX, TX)

∧ discriminate k(HX, TX,Y)
∧ solveNonMin k(HX, TX,Y)
∧ ∨j ∈K k

X=xj ∧ Y=y j
∧ HX=hxj ∧ TX=tx j

∨ ∨c–w<k≤c nonMinimal(X) ∧ decompose(X, HX, TX)
∧ discriminate k(HX, TX,Y)
∧ r(TX,TY)
∧ procComp k(HX, TY,Y)
∧ ∨j ∈L k

X=xj ∧ Y=y j
∧ HX=hxj ∧ TX=tx j
∧ TY∈ty’ j

Figure 9. LA7(r)

Logic Program Synthesis from Incomplete Specifications 797

The Proofs-as-Programs Method attempts to prove that each property Pi is a logical
consequence of its theory Ti. These proofs are done by an extension to SLD resolution
(we use the terminology and notation of Lloyd, 1987). The extension is a subset of
Kanamori and Seki’s extended execution mechanism (1986), in the sense that goals are
hereimplicative goals (statements of the form∀X∃Y G+(X,Y) ← G−(X), where conclu-
sionG+ and hypothesisG− are conjunctions of atoms). In the sequel, “goal” stands for
“implicative goal”.

A definite program version ofTi has to be generated: this is straightforward due to the
chosen formalisms for logic algorithms, examples, and properties.

The initial goal is property Pi, rewritten as an implicative goal.

DEFINITION 7.1. The rule ofdefinite clause inference (denotedDCI) is a natural exten-
sion of SLD resolution to implicative goals. Given a goalG, the selected atom is chosen
within G+, and the mgu may only bind existential variables ofG+.

SLD resolution is parameterized on a computation rule and a search rule. These are,
for the purpose of the Proofs-as-Programs Method, instantiated as follows:

• the computation rule satisfies the following condition: never select an atom with
predicate r if there still are atoms with primitive predicates. Indeed, while theoreti-
cally not required, the delaying of the selection of recursive atoms generally results
in less search;

• thesearch rule is as follows:
– an atom with a primitive predicate is resolved according to its semantics;
– the atom with predicater in (the conclusion of) the root of the proof tree is resolved

using the program clauses generated from Γ(LA6(r));
– an atom with predicate r in (the conclusion of) a non-root node of the proof tree is

resolved using the clauses generated fromTi \ { Γ(LA6(r))}.
Note that the search rule is context-dependent. For the resolution of the root, we use

Γ(LA6(r)) rather than the examples or properties, because that wouldn’t make sense: we
are trying to proveΓ(LA6(r)) complete wrtP(r), but not to prove the specification inter-
nally consistent. For the resolution of atoms with predicate r in a non-root node, we use
the examples and other properties rather thanΓ(LA6(r)) because the latter is in general
not correct wrtP(r).

This can be easily extended to handle negated primitive predicates since they are re-
solved according to their semantics.

DEFINITION 7.2. The rule ofnegation-as-failure inference (denotedNFI) is a natural
extension of the NAF rule (Clark, 1978) to implicative goals. Given a goalG, the select-
ed atomA is chosen withinG–, and a conjunction ofd resolvent goals is generated,
namelyGσi, whereAσi has been replaced by the conjunctionBi σi, with Hi ← Bi being
one of thed definite clauses whose headHi unifies withA under mguσi. All new vari-
ables introduced in the resolvent goals are free variables.

DEFINITION 7.3. Given a goalG, the rule ofsimplification (denotedSim) selects two
atomsA andB, in G+ andG− respectively, that unify with an mguσ that only binds ex-
istential variables ofG+. The resolvent goal is obtained fromGσ by deletingA andB.

798 P. Flener and Y. Deville

This subset of extended execution is sound wrt the Clark completion semantics
(Kanamori and Seki, 1986, page 487).
DEFINITION 7.4. A derivation via the DCI, NFI, and Sim rulessucceeds iff it ends in a
goal whose conclusion is empty.

We partially define discriminatek by the program clause:
discriminatek(HX,TX,y) σ ← Hyp

where:
• k is the number of the clause from Γ(LA6(r)) that is used in the first DCI step;
• y is the value of parameter Y in the head of propertyPi;
• σ is the computed answer substitution;
• Hyp is the hypothesis of the last goal of the derivation.

DEFINITION 7.5. A derivation via the DCI, NFI, and Sim rules fails iff it doesn’t suc-
ceed.

Failure is detectable only in specific settings. For instance, no infinite derivation can
occur if all primitive predicates have finite proofs for all directionalities.

After the computation of all successful derivations for all properties, the revealed pro-
cedures of the discriminants are translated into logic algorithms. Since the latter are non-
recursive by construction, they are then inserted into the corresponding disjuncts of
LA6(r), so as to yieldLA7(r).
THEOREM 7.1. Γ(LA7(r)) is complete wrt P(r).
PROOF.Let Ti ’ be defined likeTi, usingLA7(r) rather thanLA6(r). Let’s prove that each
property Pi is a logical consequence of its theory Ti ’. Without loss of generality, we can
assume that the previous derivations ofTi |— Pi are prefixes of the new derivations of
Ti ’ |— Pi (namely by a relaxation of the recommendation above for the computation
rule): each new derivation thus eventually yields a goal whose conclusion only involves
the discriminant atoms. By construction, these atoms are identical to the atoms in the hy-
pothesis: by repeated application of the Sim rule, that goal can be simplified into the
empty goal, i.e. the new derivation succeeds as well. By soundness of extended execu-
tion (Kanamori and Seki, 1986), the property setP(r) is thus a logical consequence of
Γ(LA7(r)), or, in other words, by Definition 2.6,Γ(LA7(r)) is complete wrtP(r). ❏

Note that this is unlike classical program extraction from proofs, since the program is
here extracted from the unique final results of several proofs, rather than on-the-fly (or
a posteriori) from multiple steps of a single proof.

Also note that the Proofs-as-Programs Method is deterministic and idempotent. As-
suming that all primitives used inP(r) are deterministic, its space complexity
is O(pc(m+p)t), wherec is the number of discriminants,m is the number of examples,p
is the number of properties, andt is the number of tails of the induction parameter. In-
deed, there arep proofs to be made, and each proof-tree has sizeO(c(m+p)t) because it
has only two choice-points, namely the resolution of the root, where there arec possi-
bilities, and the resolution of the recursive atoms, where there arem+p–1 possibilities,
all other proof steps being deterministic. This assumes that there is a fixed maximum
number of atoms for the definitions of the used primitives. Indeed, if that number is a
function ofc, m, p,or t, then this complexity analysis doesn’t hold.

Logic Program Synthesis from Incomplete Specifications 799

7.1.2. THE GENERALIZATION METHOD

Since properties only embody incomplete information, the obtained discriminants are
too specific. The Generalization Method applies generalization heuristics to the discrim-
inants, and substitutes the results for the original ones. If the modification indeed
amounts to a generalization, then Theorem 7.1 still holds.

Here are two valuable generalization heuristics:

HEURISTIC 1. If parameter Y is not an auxiliary parameter (a parameter that doesn’t
change through recursion), then it is irrelevant for discrimination, and can be deleted
from the discriminants by projection.

HEURISTIC 2. The parametersTX andY (the latter only if it is an auxiliary parameter)
should range across their entire domains: if necessary, some of their values should be
generalized.

The application of these heuristics should be interactive, with the specifier.

7.2. ILLUSTRATION: THEfirstPlateau/3 RELATION

The Proofs-as-Programs Method attempts to prove, by extended execution, that each
property Pi is a logical consequence of its theory Ti. Note thatΓ(LA6(firstPlateau)) has
three disjuncts, whose corresponding definite clauses are namedC1 to C3 in the sequel.
Only the non-minimal clausesC2 andC3 need discriminants. The latter thus readdis-
criminatek(HL,TL,P,S), for k = 2, 3. In a goal, the selected atom(s) for the next applica-
tion(s) of the DCI rule is (are) written in boldface. For syntactic convenience, we write
goals in quantifier-free form, prefixing existential variables by “?”. Derivations starting
from C1 are useless since no discriminant is needed for the minimal clause.

• We start with P1. The derivations starting fromC2 andC3 lead to failure.
• We pursue with P2. ClauseC2 leads to failure. Then, starting fromC3:

firstPlateau([X,Y],[X,Y],[]) ← X=Y

DCI: C3 ↓ {}

[X,Y]=[?_,?_|?_] & [X,Y]=[?HL|?TL] &
firstPlateau(?TL,?TP,?TS) &

[X,Y]=[?HL|?TP] & []=?TS & ?TP=[?HL|?_] ← X=Y

4 × DCI: LA(=) ↓ { HL/X, TL/[Y], TP[Y], TS/[]}

firstPlateau([Y],[Y],[]) & [Y]=[X|?_] ← X=Y

NFI: LA(=) ↓ { Y/X}

firstPlateau([X],[X],[]) & [X]=[X|?_] ←
DCI: LA(=) ↓ {}

firstPlateau([X],[X],[]) ←
DCI: P1 ↓ {}

❏

A specialized discriminant forC3 is:

discriminate3(X,[X],[X,X],[]).

800 P. Flener and Y. Deville

• We pursue with P3. ClauseC3 leads to failure. Then, starting fromC2:
firstPlateau([X,Y],[X],[Y]) ← X≠Y

DCI: C2 ↓ {}
[X,Y]=[?_,?_|?_] & [X,Y]=[?HL|?TL] &

[X]=[?HL] & [Y]=?TL & ?TL=[?_|?_] ← X≠Y

5 × DCI: LA(=) ↓ { HL/X, TL/[Y]}
← X≠Y

A specialized discriminant forC2 is:
discriminate2(X,[Y],[X],[Y]) ← X≠Y

There is no other property. There are no other derivations. The discriminants are rewrit-
ten as logic algorithms.

The Generalization Method applies Heuristic 1 to decide that the third and fourth pa-
rameters are irrelevant in both discriminants. It applies Heuristic 2 to generalize the sec-
ond parameter of both discriminants into non-empty lists. After some renaming and re-
writing, the discriminants read:

discriminate2(HL,TL) ⇔ TL=[H| _] ∧ HL≠H

discriminate3(HL,TL) ⇔ TL=[H| _] ∧ HL=H

They are inserted intoLA6(firstPlateau), and yield LA7(firstPlateau) (see Figure 10).

8. Syntactic Generalization (Step 8)

We first formally present the objective and method of Step 8, and then illustrate them
on thefirstPlateau/3 relation.

GivenLA7(r) as shown in Figure 9, the aim at Step 8 is to transform LA7(r) into LA8(r)
that fits the schema of Figure 11. All the predicate variables of the divide-and-conquer
schema have already been instantiated until Step 7, and we have used all the information
contained in the specification:

• examples are injected at Step 1, and are kept along all subsequent steps in the form
of trailing atoms, so that they be present when needed;

• examples and properties are used at Step 4 to infer the values of theTX;
• properties are used at Step 6 to infer specifications of sub-problems;
• properties are used at Step 7 to infer discriminants.

So one may consider synthesis finished. We postulate thatLA8(r) is Γ(LA7(r)).
For instance,LA8(firstPlateau) looks as depicted in Figure 12. It is totally correct wrt

its intended relation, and equivalent to the version in Figure 3.

9. Conclusions

We evaluate the results given here (Section 9.1), discuss the implementation of the
synthesis mechanism (Section 9.2), and outline future research (Section 9.3).

Logic Program Synthesis from Incomplete Specifications 801

9.1. EVALUATION

After defining logic formalisms for incomplete specifications and logic algorithms, we
defined logic algorithm correctness and comparison criteria. Then we proposed criteria
for upward and downward progression, in order to state strategies for incremental and
non-incremental stepwise synthesis. We showed how these strategies can be refined in

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_] ∧ L=[_]

∧ L=[a] ∧ P=[a] ∧ S=[] {E 1}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ TL=[H|_] ∧ HL ≠H
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]
∧ L=[c,d] ∧ P=[c] ∧ S=[d]

∧ HL=c ∧ TL=[d] {E 3}
∨ L=[e,f,g] ∧ P=[e] ∧ S=[f,g]

∧ HL=e ∧ TL=[f,g] {E 4}
∨ L=[h,i,i] ∧ P=[h] ∧ S=[i,i]

∧ HL=h ∧ TL=[i,i] {E 5}
∨ L=[_,_|_] ∧ L=[HL|TL]

∧ TL=[H|_] ∧ HL=H
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]
∧ L=[b,b] ∧ P=[b,b] ∧ S=[]

∧ HL=b ∧ TL=[b]
∧ TP=[b] ∧ TS=[] {E 2}

∨ L=[j,j,k] ∧ P=[j,j] ∧ S=[k]
∧ HL=j ∧ TL=[j,k]
∧ TP=[j] ∧ TS=[k] {E 6}

∨ L=[m,m,m] ∧ P=[m,m,m] ∧ S=[]
∧ HL=m ∧ TL=[m,m]
∧ TP=[m,m] ∧ TS=[] {E 7}
Figure 10. LA7(firstPlateau)

r(X,Y) ⇔
minimal(X) ∧ solve(X,Y)

∨ ∨1≤k≤c nonMinimal(X) ∧ decompose(X, HX, TX)
∧ discriminate k(HX, TX,Y)
∧ (solveNonMin k(HX, TX,Y)

|
r(TX,TY)

∧ procComp k(HX, TY,Y))
Figure 11. LA8(r)

802 P. Flener and Y. Deville

order to be practical. Finally, we presented a particular synthesis mechanism that is non-
incremental, both deductive and inductive, interactive, and schema-guided.

The main originality of this research is the development of a general framework of
stepwise synthesis from incomplete specifications, and its particularization to a synthe-
sis mechanism that is being implemented.

We have restricted the presentation of the synthesis mechanism so as to keep it simple.
The actual system is based on a generalized divide-and-conquer schema that handlesn-
ary relations and optimizes the handling of auxiliary parameters.

It is important to understand that the MSG Method (as an inductive technique that is
based on examples) and the Proofs-as-Programs Method (as a deductive technique that
is based on properties) are not at all tied to Steps 6 and 7, respectively. They are actually
often interchangeably applicable, whatever the underlying schema.

Among all the related research cited so far, the works of Drabentet al. (1988) and De
Raedt and Bruynooghe (1992) come closest to ours in that they also start from examples
and something similar to our properties. The main differences are that their systems per-
form incremental synthesis, and that they use their properties only for “bug-detection”
purposes, but not in a constructive fashion.

9.2. THE SYNAPSE IMPLEMENTATION

A prototype of our synthesis mechanism is being implemented (in Quintus Prolog) as
the SYNAPSE system (SYNthesis of Algorithms from PropertieS and Examples).

The system is modular in that implementations of methods can easily be added, delet-
ed, or modified, and that it can be customized by extending the internal databases of
available primitives for specifications, and of type-specific predicates, for Steps 2 and 3.

Given a specificationEP(r), SYNAPSE prints out candidate versions of the logic algo-
rithm LA(r), and optionally the intermediate versionsLAi(r), as well as questions to the
specifier. Hints about what induction parameter or decomposition predicate to select are
accepted. A straightforward naming schema is used to name new variables, so that it is
easy to read synthesized logic algorithms.

Our experience with SYNAPSE shows that specifying relations by examples and prop-
erties is a viable approach. Moreover, in view of optimizing synthesis, we plan to devel-

firstPlateau(L,P,S) ⇔
L=[_] ∧ P=L ∧ S=[] ∧ L=[_] ∧ L=[_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[H|_] ∧ HL ≠H
∧ P=[HL] ∧ S=TL ∧ TL=[_|_]

∨ L=[_,_|_] ∧ L=[HL|TL]
∧ TL=[H|_] ∧ HL=H
∧ firstPlateau(TL,TP,TS)
∧ P=[HL|TP] ∧ S=TS ∧ TP=[HL|_]

Figure 12. LA8(firstPlateau)

Logic Program Synthesis from Incomplete Specifications 803

op a methodology of choosing “good” examples and properties, using our knowledge of
the actual synthesis mechanism.

SYNAPSE seems to be quite efficient, proving thus the adequacy of properties for dis-
ambiguating situations where examples alone lack in expressive power. Exponential
search is reduced as much as possible by interaction with the user.

9.3. FUTURE WORK

The schema of Figure 4 covers a wide range of divide-and-conquer algorithms. How-
ever, it only allows non-compound induction parameters that furthermore should only
lead to two cases, a minimal and a non-minimal one. Other possible extensions are mu-
tually recursive logic algorithms.

The divide-and-conquer schema is hard-wired into the synthesis mechanism: the sup-
port of alternative schemata is envisaged. An extension of the mechanism would be pa-
rameterized on schemata. Most of the methods used in the current mechanism are suit-
able whatever the underlying schema.

As is stands, the mechanism does not need negative examples. Handling these would
require a total overhaul of the mechanism, but is an interesting alley for further research
aiming at a more effective control of over-generalization.

Acknowledgments

The authors gratefully acknowledge many insightful discussions with Prof. Baudouin
Le Charlier (Université de Namur, Belgium). Many thanks also to the anonymous re-
viewers for their perceptive comments on an earlier version of this paper. Parts of the
results presented here were obtained while the authors were involved in theFolon re-
search project (supported by the Belgian National Incentive Program for Fundamental
Research in Artificial Intelligence), and while the first author was on leave at Duke Uni-
versity (NC, USA). The first author is supported by the Ministry of Scientific Research
and Cultural Affairs of the Grand-Duchy of Luxembourg.

References

Biermann, A.W. (1984). Dealing with search. In: Biermann, A.W., Guiho, G., Kodratoff, Y. (eds)
Automatic Program Construction Techniques. Macmillan, 1984, pp 375-392.

Biermann, A.W. (1992). Automatic Programming. In: Shapiro, S.C. (ed)Encyclopedia of
Artificial Intelligence. Second, extended edition. John Wiley & Sons, 1992, pp 59-83.

Biermann, A.W., Smith, D.R. (1979). A production rule mechanism for generating LISP code.
IEEE Trans. on Systems, Man, and Cybernetics (9)5:260-276, May 1979.

Bundy, A., Smaill, A., Wiggins, G. (1990). The synthesis of logic programs from inductive
proofs. In: Lloyd, J.W. (ed)Computational Logic. Springer-Verlag, 1990, pp 135-149.

Clark, K.L. (1978). Negation-as-failure. In: Gallaire, H., Minker, J. (eds)Logic and Databases,
Plenum Press, 1978, pp 293–322.

Clark, K.L. (1981).The synthesis and verification of logic programs. Research Report DOC
81/36, Imperial College, London (UK), 1981.

804 P. Flener and Y. Deville

De Raedt, L., Bruynooghe, M. (1992). Belief updating from integrity constraints and queries.
Artificial Intelligence 53(2–3):291–307, February 1992.

Deville, Y. (1990).Logic Programming: Systematic Program Development. International Series
in Logic Programming, Addison Wesley, 1990.

Deville, Y., Burnay, J. (1989). Generalization and program schemata. In: Lusk, E.L., Overbeek,
R.A. (eds)Proc. of NACLP’89, MIT Press, 1989, pp 409-425.

Deville, Y., Flener, P. (1993). Correctness criteria for logic program synthesis. Research Report,
Université Catholique de Louvain, Unité d’Informatique, 1993 (in preparation).

Drabent, W., Nadjm-Tehrani, S., Maluszynski, J. (1988). Algorithmic debugging with assertions.
In: Abramson, H., Rogers, M.H. (eds)Meta-Programming in Logic Programming: Proc. of
META’88, MIT Press, 1988, pp 501-521.

Flener, P. (1993).Algorithm Synthesis from Incomplete Specifications. PhD thesis, Université
Catholique de Louvain, Louvain-la-Neuve (Belgium), 1993.

Flener, P., Deville, Y. (1992). Towards stepwise, schema-guided synthesis of logic programs. In:
Clement, T., Lau, K.-K. (eds)Proc. of LOPSTR’91. Springer-Verlag, 1992, pp 46-64.

Flener, P., Deville, Y. (1993). Synthesis of composition and discrimination operators for divide-
and-conquer logic programs. In: Jacquet, J.-M. (ed)Constructing Logic Programs, John
Wiley & Sons, 1993.

Fribourg, L. (1990). Extracting logic programs from proofs that use extended Prolog execution
and induction. In: Warren, D.H.D., Szeredi, P. (eds)Proc. of ICLP’90, MIT Press, 1990, pp
685-699. Extension in: Jacquet, J.-M. (ed)Constructing Logic Programs, Wiley, 1993.

Gegg-Harrison, T.S. (1989).Basic Prolog schemata. Research Report CS–1989–20, Duke
University, Durham (NC, USA), 1989.

Gold, E.M. (1967). Language identification in the limit.Info. and Control 10(5):447-474, 1967.
Hansson, Å. (1980).A Formal Development of Programs. PhD thesis, University of Stockholm

(Sweden), 1980.
Hogger, C.J. (1981). Derivation of logic programs.J. of the ACM 28(2):372-392, April 1981.
Jantke, K.-P. (1991). Monotonic and non-monotonic inductive inference.New Generation

Computing 8(4):349–360, 1991.
Kanamori, T., Seki, H. (1986). Verification of Prolog programs using an extension of execution.

In: Shapiro, E. (ed)Proc. of ICLP’86, LNCS 225, Springer-Verlag, 1986, pp 475-489.
Lange, S., Wiehagen, R. (1991). Polynomial-time inference of arbitrary pattern languages.New

Generation Computing 8(4):361–370, 1991.
Lassez, J.-L., Maher, M.J., Marriott, K. (1987). Unification revisited. In Boscarol, M., Carlucci

Aiello, L., Levi, G. (eds)Proc. of the1986 Workshop on the Foundations of Logic and
Functional Programming, LNCS 306, Springer-Verlag, 1987, pp 67-113.

Lau, K.-K., Prestwich, S.D. (1990). Top-down synthesis of recursive logic procedures from first-
order logic specifications. In: Warren, D.H.D., Szeredi, P. (eds)Proc. of ICLP’90, MIT Press,
1990, pp 667-684.

Manna, Z. (1974).Mathematical Theory of Computation. McGraw-Hill, 1974.
Plotkin, G.D. (1970). A note on inductive generalization. In: Meltzer, B., Michie, D. (eds)

Machine Intelligence, Edinburgh University Press (UK), 5:153-163, 1970.
Reynolds, J.C. (1970). Transformational systems and the algebraic structure of atomic formulas.

In: Meltzer, B., Michie, D. (eds)Machine Intelligence, Edinburgh University Press (UK),
5:135-151, 1970.

Shapiro, E. (1982).Algorithmic Program Debugging. PhD thesis, Yale University, New Haven
(CT, USA), 1982. Also: MIT Press, ACM Distinguished Dissertation Series, 1983.

Logic Program Synthesis from Incomplete Specifications 805

Smith, D.R. (1985). Top-down synthesis of divide-and-conquer algorithms.Artificial
Intelligence 27(1):43-96, 1985.

Smith, D.R. (1988).The structure and design of global search algorithms. Technical Report
KES.U.87.12, Kestrel Institute, Palo Alto (CA, USA), 1988.

Summers, P.D. (1977). A methodology for LISP program construction from examples.J. of the
ACM 24(1):161-175, 1977.

Tinkham, N.L. (1990).Induction of Schemata for Program Synthesis. PhD thesis, Duke
University, Durham (NC, USA), 1990.

Wiggins, G. (1992). Synthesis and transformation of logic programs in the Whelk proof
development system. In: Apt, K. (ed),Proc. of JICSLP’92, MIT Press, 1992, pp 351–365.

