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Program schemas should capture not only structured program design principles, but
also domain knowledge, both of which are of crucial importance for hierarchical program
synthesis. However, most researchers represent schemas as purely syntactic constructs,
which can provide only a program template, but not the domain knowledge. In this
paper, we take a semantic approach and show that a schema S consists of a syntactic
part, viz. a template T, and a semantic part. Template T" is formalised as an open (first-
order) logic program in the context of the problem domain, characterised as a first-order
axiomatisation, called a specification framework F, which is the semantic part. F endows
the schema S with a formal semantics, and enables us to define and reason about its
correctness. Naturally, correct schemas can be used to guide the synthesis of correct
programs.

1. Introduction

It can be argued that any systematic approach to software development must use
some kind of schema-based strategies. In (semi-)automated software development, pro-
gram schemas become indispensable, since they capture not only structured program
design principles, but also domain knowledge, both of which are of crucial importance
for hierarchical program synthesis. This is amply borne out by user-guided program devel-
opment systems that have been successfully deployed in practice, e.g., KIDS (Smith, 1990;
Smith, 1993; Smith, 1994), DESIGNWARE (Smith, 1996), PLANWARE (Blaine et al.,
1998).

Informally, a program schema is an abstraction (in a given problem domain) of a class
of actual programs, in the sense that it represents their data-flow and control-flow, but
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does not contain (all) their actual computations or (all) their actual data structures. At
a syntactic level, a schema is an open program, or a template, which can be instantiated
to any concrete program of which it is an abstraction. Thus, most researchers, with the
notable exception of Smith (Smith, 1985; Smith, 1990), represent schemas as syntactic
(logic) expressions, sometimes augmented by extra-logical features, from which actual
programs are obtained by some form of textual substitutions. However, in such a purely
syntactic approach, which provides only a pattern of place-holders, the knowledge that
is captured by a schema is not formalised, such as the semantics of the template, the
semantics of the programs it abstracts, or the interactions between these place-holders.
So a template by itself has no guiding power for program synthesis, and the additional
knowledge somehow has to be hardwired into the system or person using the template.

Therefore, we take a semantic approach and show that a schema S consists of a syn-
tactic part, viz. a template T, and a semantic part. Template T is formalised as an
open (first-order) logic program in the context of the problem domain, characterised as
a first-order axiomatisation, called a specification framework F (Lau and Ornaghi, 1994;
Lau and Ornaghi, 1997a), which is the semantic part.  endows the schema S with a
formal semantics, and enables us to define and reason about its correctness. In partic-
ular, we define a special kind of correctness for open programs such as templates, that
we call steadfastness. A steadfast (open) program is always correct (with respect to its
specification) as long as its parameters are correctly computed (with respect to their
specifications). This means that a steadfast (open) program, though only partially de-
fined, is always a priori correct when (re-)used in program composition, in the sense that
its defined part is a priori correct (with respect to its specification). A steadfast program
is thus also a priori correctly reusable, and such programs make ideal units in a library
from which correct programs can be composed.

Thus we define a correct schema to be a specification framework containing a steadfast
open program. Moreover, we show how to use correct schemas to guide the synthesis of
steadfast open logic programs. The benefit of such guidance is a reduced search space,
because the synthesiser, at any given moment, only tries to construct a program that fits
a chosen schema.

On a wider issue, program schemas have been shown to be useful in a variety of ap-
plications, such as proving properties of programs (Manna, 1974), teaching program-
ming to novices (Gegg-Harrison, 1991), guiding manual synthesis (Barker-Plummer,
1992; Dershowitz, 1983; Deville, 1990; Deville and Burnay, 1989), inductive synthe-
sis (Flener and Deville, 1993; Flener, 1995; Flener, 1997; Hamfelt and Fischer Nils-
son, 1997; Kodratoff and Jouannaud, 1984; Sterling and Kirschenbaum, 1993; Summers,
1977), and deductive (semi-)automatic synthesis (Blaine et al., 1998; Flener et al., 1997;
Flener et al., 1998a; Flener et al., 1998b; Flener and Richardson, 1999; Johansson, 1994;
Marakakis and Gallagher, 1994; Smith, 1990; Smith, 1993; Smith, 1994; Smith, 1996)
of programs, debugging programs (Gegg-Harrison, 1994), transforming/optimising pro-
grams (Biyiikyildiz and Flener, 1998; Fuchs and Fromherz, 1992; Huet and Lang, 1978;
Richardson and Fuchs, 1998; Vasconcelos and Fuchs, 1996), and so on. Further rep-
resentation issues have been explored independently of applications in (Chasseur and
Deville, 1998; Gegg-Harrison, 1995; Gegg-Harrison, 1997), and surveys have been made
in (Flener and Yilmaz, 1999; Smith, 1984).

Whilst we have presented some of the ideas elsewhere, most of the technical details
(and examples) in this paper are new. This paper thus gives a complete (though compact)
account of our approach to formalising (correct) schemas.
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The paper is organised as follows. In Section 2, we give the general picture and highlight
the novelty of our approach, by informally defining the syntax, semantics, and correctness
of schemas, and outlining how correct schemas can be used in program synthesis. In
Section 3, we formalise specification frameworks, as well as their reuse through framework
morphisms and framework composition. We do not define a precise system of operations
for working with frameworks (such as composing them, and so on), but we just give
the kind of semantics that such a system should have in order to apply the theory of
steadfastness, and we show some examples. In Section 4, we consider specifications and
introduce steadfast programs, i.e., correct programs in frameworks. Such programs can
be correctly reused by composing frameworks and thus provide a second level of reuse. In
Section 5, we introduce the notion of correct schemas and sketch a proof theory associated
with our model-theoretic formalisation, so that we can prove schema correctness and use
schemas for program synthesis. Finally, in Section 6, we conclude, discuss related work,
and outline future work.

2. Overview

In this section, we give an overview of our approach to defining the syntax and seman-
tics of schemas. We outline a notion of correctness for schemas, and briefly explain how
correct schemas can be used in a program synthesis process. The material here will be
informal, and largely based on examples. The aim is to give a general but more or less
complete picture, and to highlight the novelty, of our approach, at an intuitive level.

2.1. DEFINING SCHEMAS

Our approach to defining schemas is based on a three-tier formalism (with model-
theoretic semantics), illustrated in Figure 1.

Framework:- F : A < II

Specification:- S, Specification:- S,

Specification of r Specification of

Program:- P, :r <7

Program to compute r

Figure 1. A three-tier formalism for schemas.

In this formalism, at the bottom level, we have programs, for computing (specified)
relations. Programs are pure (standard or constraint) logic programs. The relations com-
puted by logic programs are called (program) predicates. Some predicates may occur
only in the body of the clauses of a program. We call such predicates open predicates,
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and programs that contain such predicates open programs. In Figure 1, the program P,
computes a specified relation r in terms of open predicates 7.

In the middle, we have specifications for defining or specifying new relations (and
functions). All program predicates are introduced by specifications. In Figure 1, S, and
S, are the respective specifications of r and 7.

At the top, we have a specification framework, or just framework for short, that em-
bodies an axiomatisation of (all the relevant knowledge of) the problem domain. The
framework provides an unambiguous semantic underpinning for specifications and pro-
grams, as well as the correctness relationship between them. A framework may also be
open or parametric. In Figure 1, the framework F has a signature that contains a set A
of defined symbols (axiomatised in F) and a set II of parameters.

We define a schema to consist of a framework, an open program, called a template,
and a set of specifications for the predicates of the templa‘ce.Jr In the schema in Figure 1,
the program P, is the template.

We need to define a schema as a triple because all three ingredients are necessary
for defining the semantics of a schema properly, in order that we can use a schema
for the purpose for which it is intended, viz. synthesising programs that have the same
computation pattern as the template. Such a semantic characterisation also provides
guidelines for the synthesis process. Furthermore, it enables us to define, and reason
about, the correctness of schemas and of their reuse.

ExXAMPLE 2.1. Consider the simple template
r(z,y) « d(z, h,a),rec(a,b), c(h, b,y) (Tac)

for computing r. On its own, we would say this template is meaningless. Nevertheless,
our intention is to use it as a generic representation of the typical steps of a divide-
and-conquer algorithm: decomposition d, a (possibly empty) sequence rec of recursive
calls, and composition ¢. For example, as we will show later in Example 2.2, T4. can be
specialised into the following more familiar form of divide-and-conquer:

r(z,y) <« prim(z),solve(x,y)
r(z,y) <« —prim(z), dec(z, h,x1,22),r(z1,yl),r(22,y2), comp(h,yl,y2,y)

where prim(x) means that the input x is primitive, i.e. a base case; dec(z,h,z1,x2)
means that « can be decomposed into h, x1 and z2; comp(h, y1,y2,y) means that h and
the ‘sub-solutions’ y1 and y2 can be composed into the ‘solution’ y.
However, by itself T4. does not represent any pattern of computation at all. To give
it the above intended meaning, we need specifications for the predicates r,d, rec and c.
Specifications define new specified symbols in terms of other specifying symbols. For
example, we could specify r, as follows:

r : [l,0];
St Li(z) = (r(z,y) & Or(z,y)).

Here, the specified symbol is r, with declaration r : [l O],:t while the sort symbols | and

T In this section, for simplicity but without loss of generality, we assume that a schema has only one
template.

 This means that the arity of r is 1xO.
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O, and the relation symbols I, and O, are the specifying symbols. I, and O, are called
respectively the input condition and output condition of r.

S, is an example of a form of specification called a conditional specification (Lau and
Ornaghi, 1997a). Its meaning is the following: for every input x that satisfies the input
condition I,.(x), the specified relation r(z,y) is to be true if and only if the output
condition O, (z,y) is true. (We will discuss conditional specifications in Section 4.1.2.)

The meaning of S¢ is not completely defined, since nothing is stated about the speci-
fying symbols. Our intention is to use this to indicate that the template can be used for
deriving programs for a generic, conditionally specified relation. This can be done at the
framework level. Since our specifying symbols are generic, we define them as framework
parameters, i.e., we assume the following fragment of a framework:

Framework DC(l,0, I,.,0,);

DECLARATIONS:
I, I
o, : [,0].

The sort symbols | and O, as well as the input and output conditions I,. and O,., are open
symbols, i.e. they are parameters of the framework DC.

Now since the specifying symbols I, and O, in S| are parameters, S| begins to turn
T4 into a computation pattern, one for computing a generic (conditionally specified)
relation r. S; is also a guide for program synthesis, in the following sense. When we use
this schema to synthesise a (correct) divide-and-conquer program from a specification S,
S must be a conditional specification, so that we can instantiate the parameter I,. by the
input condition of S, and O, by the output condition of S.

We can further define the computation pattern that T,4. and S; together represent,
by specifying d. For example, we could specify d (with input condition I, and output

condition Oy) as follows:

d : I, List(l), List(1)];
Ss! : I.(z) = (d(z, h,a) = Og(z, h,a));
I.(z) = 3h,a.d(z, h,a);

by first expanding the above framework fragment DC to:

Framework DC(l,0,I,.,0,,04);
IMPORT: LZST(I);

DECLARATIONS:
I, l];
O, : [,O]
Oq : I, List(l), List(1)];

in which £ZST(I) is imported to give meaning to the sort List(l).
The specification S‘;l of d is an example of a selector specification (Lau and Ornaghi,
1997a). Its meaning is: for every input z that satisfies the input condition I,.(z), the

T Note that h and a are lists of elements of sort I.
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specified relation d(z, h, a) is to be true for at least one output (h, a), such that the output
condition O4(z, h,a) holds. (We will discuss selector specifications in Section 4.1.4.)

To ensure that this specification is satisfied, we need to add the following constraint!
to the framework DC:

I.(z) = 3h,a. O4(x, h,a).

The input condition for d coincides with that of r because, to compute r(z,y), we first
decompose (by d) the input z into two lists h,a : [List(l)] of input values. The idea is
that h (possibly) contains values to be used in a non-recursive manner, while r will be
recursively applied to the elements of a. So we need to impose that all the elements
of a satisfy the input condition I,.. To ensure termination, we also require them to be
‘smaller than’ x with respect to a well-founded ordering relation <. Therefore we add

the following constraints to the framework DC:F

I, () A O4(z, hya) = (Vy. mem(y,a) = I(y) Ny < z);
Well Founded(<);

where mem is the usual list membership relation, together with the declaration <: [, 1].

In general, constraints are just axioms, but they play a specific role: we use them to
restrict the possible interpretations of the parameters of the framework, in such a way
that the template is correct with respect to the specifications. More importantly, they
constrain framework composition and specialisation, so as to prevent unsound operations
(see Section 3.3).

Now to continue defining the computation pattern represented by the template T4,
together with the specifications S¢ and S¥, we shall give S¢,.. To do so, we shall make

rec-

use of a relation M (z,y), which is introduced by the following explicit definition:
M(a,b) « l(a) = 1(b) AVz,y,i. elemi(a,i,z) A elemi(b,i,y) = O,(x,y);

where the (overloaded) defining symbols I, elemi(a,i,x) and elemi(b,i,y) are defined

in the composite abstract data type (ADT) LZST (I) + EIST(O).§ The function [ de-
fines list length, and elemi(a, i, ) means that element x occurs at position 4 in the list
a. Informally, M is similar to the map function of functional languages. For example,
M ([z1, z2],b) holds if and only if b = [y1,y2], and O,.(z1,y1) and O, (z2,y2) hold.

Now we can specify rec as follows:

rec : [List(l), List(0)];

Sree : (Vz.mem(z,a) — I.(x)) = (rec(a,b) < M(a,b)).

This specification says that it is correct to recursively apply r, to compute M (a,b). For
example, if a = [z1,22], we can correctly compute b = [y1,y2] by the recursive calls
r(z1,y1) and r(zs2,ys2).

Finally, we specify composition c¢ as follows:

¢ : [List(l), List(0), OJ;
S%¢ I (x) A Og(z,h,a) A M(a,b) = (c(h,b,y) > O,(z,y)).

T We mean it in the ordinary sense, not that of constraint programming.

i WellFounded (<) is of course not first-order. It is the only kind of non-first-order axiom that we will
use, and as we will show in Section 5.1, we do not have to prove such axioms anyway.

§ We will discuss composition of ADTs in Section 3.3.



An Abstract Formalisation of Correct Schemas 7

The specification S7° of ¢ is a generalised conditional specification. It says that c(h,b,y)
takes the lists h (computed by d(zx,h,a)) and b (computed by rec(a,b)) as inputs and
composes them into a final result y that satisfies the desired output condition O, (z,y).
(We will discuss generalised conditional specifications in Section 4.1.3.)

So, now we have a complete semantic characterisation of a divide-and-conquer schema,
in which the template is T4.. The complete schema, made up of the framework DC, the
specifications we have discussed above, and the template Ty, is:

Schema DC(I,0, I, 0,, 04, <);
IMPORT: LIST (1), LIST (0);

DECLARATIONS:

I, I

O, : [1,0];

Oq = [l, List(l), List()];
< LI

M [List(l), List(O)];
AXIOMS:

Al : M(a,b) & l(a) = l(b)
Vz,y,i. elemi(a,i,z) A elemi(b,i,y) — O,.(z,y);
CONSTRAINTS:
Cl : I.(z) = 3h,a.O04(z,h,a);
C2 : I.(x)ANOg4(z,h,a) = Vy. mem(y,a) = L.(y) Ny < x);
C3 : WellFounded(=<);
C4 : I.(x) ANOg(z,h,a) A Op(x,y) = Ib. M(a,b);
SPECIFICATIONS:
ro: 1,0}
St Lp(w) = (r(z,y) © On(z,y));
d : |[l, List(l), List(1)];
St I.(x) = (d(z,h,a) = Oq(x,h,a));
I.(z) —» 3h,a.d(z, h,a);
rec : [List(l), List(O)];
Sree = (Vz.mem(z,a) = I.(z)) = (rec(a,b) <> M(a,b));
¢ : [List(l), List(0), OJ;
S3¢ + L(x) AOg(z, h,a) AN M(a,b) = (c(h,b,y) <> Or(z,9));
TEMPLATE:
r(z,y) <« d(z,h,a),rec(a,b),c(h,b,y).

Constraints C1, C2 and C3 have been explained. C4 has been introduced to guarantee
the correctness of the template. Correctness analysis can be performed by the proof
methods introduced in (Flener et al., 1998a; Lau et al., 1999), and indeed in this case
it reveals that C4 is required (we omit the details here). The intuitive meaning of C4 is
the following: let = be an input that satisfies the input condition and has been correctly
decomposed into h and a (i.e., I.(z) AOq4(z, h,a) holds); then whenever an output y that
satisfies the output condition O, (z,y) exists, the recursive map M (a, b) must hold for at
least one b, needed to compute y by the final composition ¢(h, b, y).
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This schema is a very generic one for divide-and-conquer. It can be specialised into
divide-and-conquer schemas with arbitrary numbers of base cases, step cases and recur-
sive calls. We will illustrate this with two examples.

A specialisation of DC is obtained by making some open symbols of the framework
less generic, for instance Oy4. For each specialisation, we need to supply a decomposition
program for d, a recursion map for rec, and a composition program for ¢. These pro-
grams must be correct with respect to their specialised specifications in DC, so that they
correctly compose with the template Tg4.. Of course for each specialisation of DC, the
new specifications will also provide a guide for the synthesis of programs that have the
same computation pattern as the template.

ExaMPLE 2.2. Now we show a schema, which is an instance of DC, with one base case
and one step case.
Suppose we specialise the specification of decomposition d as follows:

Od(z,h,a) < (Oprim(@)ANh=[x]Na=][])V
(mOprim () Na = [x1,22] A Ogec(z, hyx1, T2));

where Oprim (z) and O gec(@, h, T1, x2) are the output conditions of prim(z) and dec(z, h,
x1,x2). Informally, prim(z) means that x is primitive, i.e. a base case; dec(z, h,z1,x2)
means that x can be decomposed into h, x; and .

A program for d(z, h,a) correct with respect to this specification is:

d(x,[z],[]) <« prim(z)
d(z, h,[z1,22]) <« -—prim(x),dec(z,h,z],z2)

where prim is correct with respect to the conditional specification:
I.(x) = (prim(x) <> Oprim (2));
and dec with respect to the selector specification:

I (x) AN =Oprim(xz) — (dec(z,h,x1,22) = Ogec(, h,x1,22));
I (x) AN =Oprim(x) — Fz1,22,h. dec(x, h,x1,22).

If we compose this correct program for d with Ty., we get:

r(z,y) <« prim(z),rec([],b),c([z],b,y)
r(z,y) <« —prim(z),dec(z, h,zl,22),rec([x1, 22],b),c(h,b,y).

Using the specification for rec this becomes:

r(z,y) <« prim(z),c([z],[],y)
r(z,y) <« —prim(z), dec(z, h,x1,22),r(z1,y1),r(x2,y2),c(h, [y1,y2],y).

It is easy to see that by using suitable specifications for solve and comp, we can transform
this program into the more familiar one for divide-and-conquer with one base case and
one step case:

r(z,y) <« prim(z), solve(x,y)
r(z,y) <« -prim(x),dec(z, h,z1,22),7(x1,y1),r(x2,y2), comp(h,yl,y2,y)

Note that in the step case, there are two recursive calls to r.

We can also get an instance of DC with one base case and two step cases.
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ExaMPLE 2.3. By specialising the template over the data type of natural numbers,Jr we
can obtain the template:

r(0,y,%) < cl(y,2)
r(s(z),y,z) <« sum(v,v,s(x)),r(v,y,w),c2(0,y,w,z)
r(s(x),y,z) <« sum(v,v,z),r(v,y,w),c2(s(0),y,w,z).

The derivation of this template is given later, in Example 5.5.

As illustrated by Examples 2.2 and 2.3, the template T 4. is very generic. In its instances,
the number of recursive calls (to r) is arbitrary, a being a list and rec being a map of the
relation r. Equally, the number of base and step cases is arbitrary. This overcomes the
rigidity normally associated with schemas that are purely syntactic structures, where the
numbers of recursive calls, as well as base and step cases, are pre-determined.

Finally, it is worth reiterating that all three ingredients of a schema, viz. framework,
specifications and template, are indispensable for defining the schema, as the above ex-
amples have illustrated.

2.2. CORRECTNESS OF SCHEMAS AND THEIR REUSE

In our three-tier formalism for schemas, correctness is the adhesive that glues frame-
work, specifications and template together. It is defined model-theoretically, using the
notion of steadfastness (Lau et al., 1999). Steadfastness is a correctness property of open
programs (e.g. templates) in classes of interpretations (those of the specifications, in the
context of the framework) that can be both composed and inherited. It is thus suitable
for defining the correctness of schema templates, and hence the correctness of schemas.

Having a notion of correctness for schemas allows us to reuse schemas at the three
levels of frameworks, specifications and templates, and to reason about the correctness
of such reuse.

As Example 2.1 suggests, frameworks are our first level of reuse. We can reuse frame-
works by (a) specialising them, by adding new axioms and/or new symbols; and (b)
composing them, according to their constraints. When the framework of a schema is
specialised into a new one, the axioms, theorems and correct template of the schema are
inherited, and hence reused. The same happens when we compose the frameworks of two
schemas: the composed schema inherits from the component schemas.

Thus, after we have specialised a schema or composed it with another one, we get
a schema with a new framework, containing new axioms and/or symbols. Using this
new, richer framework, we can synthesise programs for some specifications of predicates
that are open in the inherited template. In the synthesis process, we can reuse both the
specifications and the template. To see this, let p be a predicate, with specification S,,
of a template T'. There are two cases:

(a) In the richer framework, we already have a correct program P for S,. In this case,
we can correctly compose T and P, i.e., we have correct reuse at the template level
(and this synthesis sub-task stops successfully).

(b) If (a) does not hold, then we can try to transform S, into a new specification that
is more suited to the new richer knowledge, i.e., we have reuse at the specification

T Constructed from 0 and the successor function s.
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level if we succeed in finding such a transformation. The specification specialisations
used in Examples 2.2 and 2.3 are the kinds of specification transformations that
will be explained in Section 5. Once we have a satisfactory specification we continue
the synthesis process iteratively.

Reuse at the framework level is based on operations on frameworks. At this level, our
approach is similar to that of algebraic ADTs, and correctness is not meaningful, since
building a framework is a modelling process, whereby an abstract model of a problem
domain or the abstract data types involved in a computation pattern are set up, typically
using predefined building blocks. In contrast, correctness of reuse is a key requirement at
the specification and template levels. We believe that correct reuse at these levels, made
possible by our notion of correct schemas, is new, and important, and yields a powerful
mechanism for deriving correct programs.

2.3. USING CORRECT SCHEMAS FOR PROGRAM SYNTHESIS

Correct schemas can be used to synthesise correct programs for a given problem do-
main. We view the program synthesis task as problem solving (where the problem domain
is formalised as a framework) and the program synthesis process as a problem reduction
process whereby the synthesis task is successively sub-divided until the sub-tasks can be
solved (the sub-solutions are then composed into a solution for the top-level synthesis
task).

The program synthesis task is specified in the problem domain by a specification S,
of a relation r to be computed. The synthesis process starts by choosing a schema S’
that contains a template T, for computing some relation r’, specified by S,/, such that
by renaming or specialisingJr the schema S’ into S we can ‘match’ S, and S,» (and the
template T, becomes a template T;. for 7). The synthesis process then consists of iterative
attempts to synthesise programs for the predicates in the body of the template T} from
their specifications in S. As programs are synthesised, and as sub-tasks are generated,
the template will be updated, so at any moment in time, there is a ‘current’ template
that has evolved from the original template T,.. We shall denote the ‘current’ template
simply by T, and the corresponding ‘current’ schema S(T').

In each iteration of the synthesis process, for a predicate p in the body of the template
T, if we can find an existing program ) which is correct with respect to a specification
Sy, such that S, can be transformed into the specification S, of p (through the operations
explained in Section 5), then @ is also correct with respect to S,, and we can (re)use the
program @ for p, and the sub-task is solved.

Otherwise, we look for a predefined schema S” with a template T" for computing
a predicate g with a specification S,. If S, can be transformed into the specification
Sp, then we import the schema S” into the ‘current’ schema S(T'), and add to S(T') the
specifications of any predicates in the body of the template T"'. These new open predicates
correspond to the sub-problems generated by the sub-solution that S represents.

ExaAMPLE 2.4. We can import into the basic schema DC the following schema for com-
puting the map relation, after (possible) renamings and constraint checking:

T We will deal with such framework morphisms in Section 3.2.
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Schema MAP(1,0,1I, : [I], O, : [I,0]);
iMpORT: LIST (1), LZST (0);
AXIOMS:

Al : M(a,b) & l(a) =1(b) A

Vx,y,i. elemi(a,i,z) A elemi(b,i,y) = O,(z,y);
SPECIFICATIONS:
r o [,O];
Sy ¢ L(x) = (r(z,y) < Or(=,y));
map : [List(l), List(0)];

Smap = (Yo.mem(z,a) — I,(x)) — (map(a,b) <+ M(a,b));
TEMPLATE:
map([],[]) -

map([z]al, [y|b]) <« r(x,y), map(a,b).

In this case things are simple, since we immediately recognise that it is sufficient to
rename map by Tec, to get a correct open program for rec. The general case will be
discussed in Section 5, where we will also show that correctness is preserved by schema
composition. This simple example shows how schemas can be reused, together with their
templates, by being imported into other schemas.

If no schema can be found, or if we prefer to choose a more specific pattern, then we
can try to specialise the current template, in the way we specialise the basic schema DC
(in Example 2.1) in Examples 2.2 and 2.3 (and later in Example 5.5).

The iterative synthesis process stops successfully if and when we have synthesised
programs for all the predicates in the body of the template T;., as well as such predicates
in all templates imported during the sub-tasks. In the absence of success, we have to
backtrack.

Finally, it is worth noting that we can apply the same process to transform a schema
into a family of more specialised schemas. In this case we halt the process whenever we
have reached a satisfactory specialisation. In Examples 2.2 and 2.3 (and 5.5), we have
stopped the specialisation process after just one step. It may also happen that, during
some synthesis process, some new interesting specialisation gets constructed. In this case
it can be saved as a new predefined schema for future use.

3. Specification Frameworks

As we have shown in the previous section, a specification framework is the context
where the specification language and the meaning of the specifying symbols are provided,
together with the general laws for reasoning about specifications and program correctness.
In this section, we formalise specification frameworks, as well as their reuse through
framework morphisms and framework composition.

3.1. A FORMALISATION OF SPECIFICATION FRAMEWORKS

In our approach, the specifying symbols are symbols of a many-sorted first-order sig-
nature ¥, formalised as a pair ¥ = (S, D) that contains a set S of sort symbols and a set
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D of function and relation declarations. A function declaration has the form f :a — s,
where f is the declared function symbol, a its aurityJr and s its sort; and a relation decla-
ration has the form r : a, where r is the declared relation symbol and a its arity. Function
declarations with empty arity introduce constants. Arbitrary overloading is allowed, so
that the union of two signatures can be defined as the signature containing the unions
of the sorts and of the declarations, and (since we will work with first-order logic with
identity) overloaded identity = : [s, s] (for every sort s) will be always understood.

ExaMPLE 3.1. A signature for the domain of planar figures and their areas can be built
by importing the signature of reals (which we omit here for conciseness):

Signature FIGURES,
IMPORT: REALS;
SORTS: Fligs;

DECLS: area : [Figs] — Reals;
U : [Figs, Figs] — Figs;
separated : [Figs, Figs].
Here, overloaded identities = : [Reals, Reals] and = : [F'igs, Figs] are understood.

The meaning of specifying symbols is given by a chosen class 7 of X-interpretations. As
usual, a X-interpretation maps every sort symbol s into a set s', each constant declaration
c:[] — sinto an element (c: [] — s)' € s', each function declaration f : @ — s into

a function (f :a — s)! 1 a' = s ,T and each relation declaration r : @ into a relation

(r:a)' C a'. We interpret declarations instead of symbols, because overloading is allowed.

ExaMPLE 3.2. We will consider the following interpretation fig of the signature FIG-
URES:

Fz'gs'(ig : regions of the plane delimited by closed lines,
_ or finite unions of such regions;
(area : [Figs] — Reals)®® . area of a figure;

(U : [Figs, Figs] — Figs)ﬁ_g : union of two figures;
(separated : [Figs, Figs])® : separated(z,y) holds if the (possible) common points
of figures x and y belong to their borders.

The interpretation of the imported reals is the usual one, and the (understood) overloaded
= is interpreted as the standard identity.

From the signature X, we generate the (first-order) specification language Lx. X-
formulas are built and interpreted (in a Y-interpretation) in the standard way. Some
care is needed though, due to arbitrary overloading. If an overloaded function symbol
has two declarations f : @ — s; and f : a — s; with the same arity and different sorts,
then to avoid confusion, we will use f,, to refer to the first declaration, and fs, to refer
to the second one. In this way, we can associate one declaration with each occurrence of

T An arity a is a list [s1,..., sn] of sort symbols.

tIfa=[s1,...,5n], then al is shx.ooxs.
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a function or relation symbol in a formula, and interpret it according to that declaration,
in an unambiguous way.

Finally, in a specification framework, the laws for reasoning about specifications and
program correctness are given by a Y-aziomatisation Az, i.e., a set of Y-sentences, such
that the chosen interpretations Z are models of Az, or 7 |= Az. In general Z will be a
subset of all the models of Az. We call Z the intended interpretations of the framework.

ExampLE 3.3. We will consider the following axioms Az(FIGURES) for FIGURES:

idempotence : Vo Figs.zUz =z

commutativity : Vr,y: Figs.c Uy =yUu;

associativity 2 Va,y,z: Figs. (ztUy)Uz=2U(yUz);

additivity : Va,y : Figs. separated(x,y) — area(z Uy) = area(x) + area(y).

The intended interpretation is fig, which indeed is a model of the axioms, but there are
other models that are completely unrelated to fig. For example, if we interpret Figs as any
domain containing sets of reals and closed under union, U as set union, separated(x,y)
as empty intersection, and area as the sum of the elements of a set, then we get another
model of the axioms. In other words, we have a loose aziomatisation of the intended
interpretations.

Now we can define specification frameworks formally as follows: T

DEFINITION 3.1. (SPECIFICATION FRAMEWORKS) A specification framework F = (X,
Z, Az) is composed of a signature ¥, a set Z of intended ¥-interpretations, and a set Az
of axioms, such that Z |= Az. F is closed if 7 contains just one interpretation; it is open
if 7 contains many interpretations.

An example of a closed framework (with a loose axiomatisation) is FZG = (FIGURES,
fig, Az(FIGURES)), where the signature FIGURES, the intended interpretation fig, and
the axioms Az(FIGURES) are those in Examples 3.1, 3.2 and 3.3.

A particular kind of closed specification frameworks are closed ADT-frameworks,
for axiomatising Abstract Data Types. The intended interpretation of a closed ADT-
framework is a reachable isoinitial model (Bertoni et al., 1983), or more precisely a
(unique) isoinitial term-model.

EXAMPLE 3.4. The ADT-framework for natural numbers is NAT = (NAT, N, Az(NAT)),
where NAT is the following signature:

Signature NAT

SORTS: Nat;
DECLS: 0 : []— Nat;
s : [Nat] — Nat;

+,% : [Nat, Nat] — Nat;

T For conciseness, after this definition we shall refer to specification frameworks simply as frameworks.
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and the axioms Az(NAT) are:

sax : -—s(x) = 0;

s(x) = s(y) = v =y;
+ar : z+0=ux;

z+s(y) = sz +y);
xar : xx0=0;

zxs(y) = (v xy) + .

The standard structure of natural numbers is an isoinitial model reachable by 0 and s,
and we choose the isoinitial term-model of N AT generated by 0 and s to be the intended
interpretation N

Reachable isoinitial models are similar to the more popular initial models (Goguen
and Meseguer, 1987; Goguen et al., 1978), used in algebraic specifications (Sannella and
Tarlecki, 1997; Wirsing, 1990). A difference is that, while initial models behave as any
other model for positive ground quantifier-free formulas only, isoinitial models do so for
any ground quantifier-free formulas, including negation. We choose isoinitial models as
intended models, because negation is important for reasoning about specification and
correctness.

As for open frameworks, we focus our attention on those that are parametric:

DEFINITION 3.2. (PARAMETRIC FRAMEWORKS) A parametric framework is an open
framework F(IT) = (X,Z, Az), where (i) II is a set of symbols in X, called parameters; (ii)
7 is a class of Y-interpretations, such that, for every pair iy and iy of interpretations (in
7), if the interpretation of the parameters II is the same for both i; and i, then i; = i.

That is, the parameters can be interpreted in many ways, but any chosen interpretation
of the parameters completely determines the interpretation of all the other symbols. For
this reason, we call the latter defined symbols.

For example, consider the signature FIGURES in Example 3.1 enriched by a predicate
basic : [Figs], indicating some class of basic figures, for which we can compute the area.
Now, for every interpretation of the parameter basic, we interpret the sort Figs as the
subset of the figures that can be generated by finite unions of basic figures, and U, area
and separated as before. By varying the interpretation of basic, we get a parametric
framework FZG(basic) with a loose axiomatisation.

ADT-frameworks can also be parametric. For such frameworks, the intended interpre-
tations are j-reachable j-isoinitial models (Lau and Ornaghi, 1999), where j is a (pre-
)interpretation of the parameters II.

ExampLE 3.5. The ADT-framework for pairs is PAZTR(X,Y) = (PAIR, P, Az(PAIR)),
where PAIR is the following signature:

Signature PAIR;
SORTS: Pair(X,Y),X,Y;
DECLS: () : [X,Y]— Pair(X,Y).
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For clarity we use the notation (z,y) (instead of ( )(x,y)). The axioms Az(PAIR) are:T

pair : Vo:X,y:Y . (z,y)=(",y)sz=2"Ny=1y';
inductivepair : (Vx:X.Vy:Y.H({z,y))) = (Vp: Pair(X,Y). H(p)).

For every interpretation j of the parameters X and Y, the j-models of Az(PAIR) are the
models of Az(PAIR) that coincide with j over X and Y. The intended (j-isoinitial) j-model
corresponding to j is the interpretation P; where Pair(X,Y) is the cartesian product

X x Yj, and () is the usual pairing function. The class P of intended interpretations is
the class of Pj’s.

Finally, as we mentioned in Section 2.2, frameworks are our first level of reuse. The
key to their reuse are framework morphisms and framework composition.

3.2. FRAMEWORK MORPHISMS

Framework morphisms are based on signature morphisms, which we briefly recall here.

For two signatures ¥ and A, a signature morphism h : ¥ — A maps sorts of ¥
into sorts of A, and declarations of ¥ into declarations of A, while preserving arities
and (for function declarations) sorts. Morphism A induces a translation h : Ly, — LAt
and a reduct operation |h : A-interpretations — Y-interpretations. Translation h has a
straightforward recursive definition, while the reduct j|h of a A-interpretation j interprets
each X-sort s as h(s)) and each ¥-declaration d as h(d)). If j = i| h, then j is called an
h-ezxpansion of i. In general, there are many h-expansions.

Injective signature morphisms are called signature expansions, and bijective signature
morphisms are called signature renamings. If a signature expansion h : ¥ — A is such
that, for every sort symbol or declaration o of ¥, h(c) = o, then ¥ C A. In this case, h is
left implicit, the h-reduct of a A-interpretation j is called a ¥-reduct, and the h-expansion
of a Y-interpretation i is called a A-ezxpansion. The X-reduct of a A-interpretation j just
forgets the (interpretation of the) new symbols, and is indicated by j|X.

Finally, for every Y-sentence F' and A-interpretation i, the following satisfaction prop-
erty holds (Goguen and Burstall, 1992):

i |= h(F) iff i|h = F. (3.1)

Now we can define framework morphisms as follows:

DEFINITION 3.3. (FRAMEWORK MORPHISMS) Let F = (X,Z, Az) and G = (A, 7', Az')
be two frameworks. A signature morphism h : ¥ — A is a framework morphism from F
to G if and only if (i) for every j € ', the reduct j| h belongs to Z; (ii) for every axiom
A € Az, we have that Az’ - h(A).

By (i), the h-reduct is a map from the intended interpretations of G to those of F. By
(3.1), (i) entails that, for every X-sentence F, if 7 = F, then Z' = h(F). In particular,
' = h(A), for every A € Az, i.e., Az are inherited (under translation). By (ii), we may

T Note that H is first-order because it represents a schema of first-order formulae.
T We use an overloaded h.
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change axiomatisations, on condition that the inherited axioms are included or become
theorems.

We distinguish three important cases of frameworks morphisms: refinement, expansion
and specialisation.

3.2.1. FRAMEWORK REFINEMENT

In a refinement, h is injective and every interpretation i € Z has at least one h-
expansion.

EXAMPLE 3.6. The ADT-framework PAZR(X,Y) can be refined into the ADT-frame-
work TOPAIR(X,Y,< : [X,X],< : [V,Y]) of totally ordered pairs by adding to the
signature the declarations

[X, XT;

Y, Y]

[Pair(X,Y), Pair(X,Y)];

and to Az(PAIR) the total ordering axioms for <: [X, X] and < : [Y,Y], and:

Va,b: X .Ve,d: Y . (a,¢) < (b,d) & (ma=bAa<b)V(a=bAc<d).

INININ

3.2.2. FRAMEWORK EXPANSION

In an expansion, h is injective and |h bijective. By the bijectivity of |h, every inter-
pretation i € Z has one h-expansion j € 7', i.e., h-expansion becomes the inverse function
of | h. In general, the expansion of a framework is defined through the corresponding
h-expansion function.

Renaming is a special case of expansion, where h is a signature renaming, and Az’ =
h(Az), i.e., nothing is changed, but the symbols. We can easily see that:

T'=T|h . (3.2)

ExaMPLE 3.7. Consider the ADT-framework PATR(X,Y’). We have that PATR(A, B)
is obtained by the signature renaming p, where:

p(X) = A
p(Y') = B
p(Pair(X,Y)) = Pair(A,B)
p(()) = (-

For every {X,Y }-interpretation i, the interpretation P; is mapped (by | p=!) into the
interpretation P’ such that:

AP' — XI

B'P’ — YI

Pair(A,B)P' = X1 x Y1 = AP x BP'
()P = pairing

i.e., we have just changed the alphabet of the signature.
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Expansion by explicit definitions (Lau and Ornaghi, 1997a) of new relation and func-
tion declarations is an important ingredient in our approach.

An explicit X-definition of a relation r : a, where a contains only sorts from X, is a
(2 U {r : a})-sentence of the form:

Vo . r(z) + R(x) (3.3)

where z is a tuple of distinct variables with sorts a, and R(z) is a ¥-formula with free

variables .1

For every Y-interpretation i, there is one (X U {r : a})-expansion i’ of i, such that
i" E D,.o. We call i’ the D,.,-expansion of i.

An ezplicit X-definition of a function f : a — s, where a and s contain only sorts from
Y,isa (XU {f:a— s})-sentence of the form:

Vo . F(z, f(x)) (3.4)

where z is a tuple of distinct variables with sorts a, and F(z,y) is a X-formula with free
variables x and y.

Let i be a X-interpretation that satisfies the oblz’gation:;t
i=Ve.3ly. Fz,y). (3.5)

Then there is one (¥ U f : @ — s)-expansion i’ of i such that i’ E Dy.,—,s. We call i’ the
Dy.q—ss-expansion of i.

An explicit ¥-definition Dy of a function or relation declaration d can be used to
expand a framework F = (X,7, Az) into the framework G = (X U {d},Z', Az U {Dy}),
such that Z' is the set of Dg4-expansions of the interpretations of Z. Of course, if d is a
function declaration, we require that the corresponding obligation (3.5) is satisfied by
Z. G will be called the Dg-expansion of F, and such an expansion will be denoted by
Fxp(F,Dy).

ExXAMPLE 3.8. The following relations and functions can be explicitly defined in NAT:

D<.[Nat,Nat] D rx<lyertz=y;

D<:[Nat,Nat] rz <y lyNT =y

Dsqrt:[Nat]—)Nat : sqrt(m) * SQTt(.’L') SzAha < S(Sth(.’IJ)) * S(Sq’l"t(il?))
Similarly, in the parametric framework PAZR(X,Y"), we can explicitly define projections
as follows:

Dy, .Pair(x,y)»x : Vp:Pair(X,Y).Jv:Y.
Dr,:pair(x,y)»x ¢ Vp:Pair(X,Y). Ju: X.

3.2.3. FRAMEWORK SPECIALISATION

Finally, in the third kind of framework morphism, a specialisation, h is surjective and
| h injective. In this case we can also define an expansion operator, but it is a partial
function, i.e., some Y-interpretations may not have h-expansions. For this reason, we say
that we have a specialisation.

T Thus explicit definitions are non-recursive.
I We omit sorts whenever no confusion can arise.
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ExampLE 3.9. Consider the ADT-framework PAZR(X,Y ). We define PATR(A, A) as
the target of the framework specialisation based on the following signature morphism h:

h(X) = A

h(Y) = A
h(Pair(X,Y)) = Pair(A,A)
h({)) = (-

For every {X,Y }-interpretation i, if X i # Yi, then i has no expansion. Otherwise, the
interpretation P; is mapped into the interpretation P’ such that:

A'P' — XI — Yl

Pair(A, A)P = X1 x Y1 = AP x AP

()P" = pairing
i.e., we have a specialisation to the case where X and Y are (interpreted as) the same
domain.

3.3. FRAMEWORK COMPOSITION

Framework composition is performed through two separate operations, namely union
and internalisation.

DEFINITION 3.4. (FRAMEWORK UNION) The union of two frameworks F = (X,Z, Az)
and G = (A, J, Az') is the framework F + G = (S UA,Z e J, Az U Az') where Z o T is
the set of (¥ U A)-interpretations i such that i|¥ € Z and i|A € J.

If the two signatures have common symbols, then 7 e 7 may be empty. In this case,
we say that the union is inconsistent. We can easily see that, if the union is consistent,
then Z ¢ J |= Az U Az', as required in a framework.

By union and renaming or specialisation, we can compose frameworks.

ExXAMPLE 3.10. If we have a closed framework ZN'T for integers, with the sort Int
of integers, we can introduce pairs of integers by the specialisation PAZR (Int, Int) of
PATR(X,Y) and by the union ZN'T + PATR (Int, Int).

It is important to give conditions for the consistency of union. To this end, we introduce
constraints.

DEFINITION 3.5. (CONSTRAINTS) Let F(II) = (¥,Z, Az) be a framework, and let I" be
a subsignature of ¥ containing II. A I'-constraint for 7 is any set Constrs of '-sentences,
such that Z | T are the models of Constrs. A T-constrained framework is a framework
F(II) = (2,7, Az U Constrs), containing, as a distinguished subset of the axioms, a
[-constraint Constrs for 7.

EXAMPLE 3.11. TOPAIR(X,Y,< : [X,X],<: [Y,Y]) can be given in the form of a
(X,Y, < [X,X], <: [Y,Y])-constrained framework, by putting the total ordering axioms
for <:[X,X] and <:[Y,Y] into the constraint.
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To monitor constraint satisfaction, we perform framework composition through inter-
nalisation and union.

Let F(II) = (X,Z, Az U Constrs) be a [-constrained framework, and G = (A, 7, Az')
be a (possibly closed) framework, such that the common symbols of the two frameworks

are only the sort symbols that occur in .7 Then we can perform internalisation of the
declarations of I by G, as follows:

(i) Let r : a be a relation declaration of I'. Its internalisation in G is an explicit A-
definition Vz . r(x) < R(z).

(ii) Let f : @ — s be an open function declaration of I'. Its internalisation in G is an
explicit A-definition Vz . F(x, f(x)), where J = Vo . 3ly. F(x,y).

DEFINITION 3.6. (INTERNALISATION) Let F(II) = (X,Z, AzU Constrs) and G = (A, J,
Az') be defined as before. If a set D of explicit definitions internalises all the function
and relation declarations of I', then it is called a I'-internalisation.

A T-internalisation D defines one D-expansion Fap(G, D) of G. We have the following
consistency definition and result:

DEFINITION 3.7. (CONSISTENT I-INTERNALISATIONS) Let F(II) = (X, Z, AzUConstrs)
and G = (A,j,Am') be defined as before. A I'-internalisation D is consistent with re-
spect to F(II) if and only if every interpretation of the D-expansion Frp(G, D) of G is a
model of Constrs.

THEOREM 3.1. (CONSISTENCY RESULT) Let F(II) = (X,Z, Az U Constrs) and G =
(A, T, Az'y be defined as before, and D be a A-internalisation. If D is consistent with
respect to F(II), then Fzp(G, D) + F(II) is an expansion of G, as well as one of F(II).

ProoF. Consider an interpretation j € 7. Since (by the consistency of D) j is a model of
Constrs, A contains II, and F(II) is parametric, there is one X-interpretation i € Z that
coincides with j over the symbols of A. Therefore, the union contains the interpretation
i @ j, which is the unique expansion (in the union) of i, as well as of j. O

The advantage of performing internalisation before doing union is that, after the in-
ternalisation steps, we can check constraint satisfaction in G, since we have an expansion
of the language of G containing all the symbols involved in the constraints.

EXAMPLE 3.12. We can compose TOPAZR(X,Y, <: [X, X],<:[V,Y]) and the frame-
work ZN'T, which formalises the standard integer type Int, by the following algorithm:

(1) Rename or specialise TOPATR(X,Y,<:[X,X],<:[Y,Y]), in such a way that the
only common symbols are the (possibly renamed) sort symbols of the constraint
signature X,Y, < : [X, X], < : [Y,Y]. Here, this is obtained by the specialisation
TOPAIR(Int,< : [Int,Int]). Note that Int is open, i.e., we have only renamed
(specialised) X and Y by Int. The translation of the constraint contains the total
ordering axioms for < : [Int, Int].

T If this condition does not hold, then we rename F(II) as appropriate.
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(2) Internalise < : [Int, Int] in ZN'T, in such a way that the (translated) constraint,
i.e. total ordering axioms for <, becomes a theorem. We can obtain this by the
internalisation Dy : Vz,y.z <y <z <y.

(3) Perform the union TOPAIR(Int,< : [Int, Int]) + Fzp(ZN'T,Dg).

Looking at this example, we can see that we can use composition based on inter-
nalisation and union, to implement parameter passing. The example corresponds to the
parameter passing where X and Y are replaced by Int, and < : [X, X] and < : [V,Y] by
< : [Int, Int]. The difference is that, to internalise properly, we have introduced an alias
< of <. By the eliminability of explicit definitions, we could uniformly replace it by <, if
we wished. On the other hand, internalisation can be used in a more flexible way, and, as
we will see, the choice of the internalising definitions will also impinge on the synthesis
process.

4. Specifications and Correctness

In this section, we consider specifications. They allow us to introduce steadfast pro-
grams, i.e., correct programs in frameworks. Such programs can be correctly reused by
composing frameworks, as illustrated in Section 2, and thus they provide us with a second
level of reuse.

4.1. SPECIFICATIONS

DEFINITION 4.1. (SPECIFICATIONS) Let F = (X,Z, Az) be a framework and ¢ be a set
of relation symbols not in X. A X-specification Ss of ¢ is a set of (¥ U §)-formulas.

A specification Sy is interpreted as an expansion operator, in the following way:

DEFINITION 4.2. (S5-EXPANSIONS OF INTERPRETATIONS) Let X be a signature, and S5
be a X-specification of §. A Ss-expansion of a class 7 of Y-interpretations is a class Z' of
(X Ud)-interpretations such that Z' |= S5, and, for every interpretation i € Z, there is one
(X U d)-expansion i’ € Z'. The set of Ss-expansions of Z will be denoted by Izp(Z, Ss).

If Izp(Z,Ss) is empty, then Ss is inconsistent with respect to the framework. If
Izp(Z, Ss) contains just one expansion, then Ss is strict with respect to the framework.
If Izp(Z, S5) contains more than one expansion, then Sj is non-strict.

Specification symbols have the sole purpose of specifying programs, which are to be
synthesised in a framework. To avoid confusion, we will call framework symbols the
symbols that are defined in a framework and can be used to write down specifications,
and specification symbols those that are used to specify programs. Thus, specification
symbols will be considered to be disjoint from the framework language, and will be
designated as s-symbols.

There are many kinds of specifications (see e.g. (Lau and Ornaghi, 1997a; Lau and
Ornaghi, 1997b)). Here we briefly discuss the more important ones: explicit definitions,
super-sub specifications, conditional specifications and selector specifications.

Ezplicit definitions have already been explained in Section 3.2 (see Example 3.8). In
many cases, they can be used as specifications as well.
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4.1.1. SUPER-SUB SPECIFICATIONS
In a framework F(II) = (X,Z, Az), a super-sub specification SZ° of a new relation
declaration r : a is a X-definition of the form
V. (Rsup(z) = () A (r(z) = Rsyper(T))
where Rgyp(2) and Rsyper (r) are X-formulas. It is consistent if the obligation
I EVx. Reyp(x) = Royper ()

holds. Its meaning is the following. Let i be a X-interpretation of Z. Let iz be the
Va . r(z) <> Rsyp(z)-expansion of i and isyper be the V. r(z) <> Rsyper(x)-expansion of
i. Clearly, every (X U {r : a})-expansion j of i such that

Tisub g T’J g ,r.isuper (41)

is a model of S;°.

Super-sub specifications are very useful, because they have a proof theory (see (Lau
and Ornaghi, 1997a)) and many cases can be reduced to them. For example, conditional
and generalised conditional specifications are a particular case of super-sub specifications.

4.1.2. CONDITIONAL SPECIFICATIONS

A conditional specification St of a new relation declaration r : a, in a framework
F(Il) = (,7, Az}, is a X-definition of the formT

V(I = (r(z) < R))

where I and R are Y-formulas and x is the union of the free variables of I and R. I is
called the input condition, whereas R is called the output condition of the specification.
S¢ is equivalent to the super-sub specification:

Y((IAR = r(x)) A (r(z) = -1V R)).

Therefore it is always consistent, but, in general, it is non-strict.

In Example 2.1, S¢ and S¢,, are examples of conditional specifications.

4.1.3. GENERALISED CONDITIONAL SPECIFICATIONS

A generalised conditional specification S9¢ of a new relation declaration r : a is of the
form

V(I — (r(z) + R))

where I and R are formulas in the language of F(II) and their free variables are x U y,
with y non-empty. SZ¢ is equivalent to the following super-sub specification:

V(((Jy. IAR) = r(x)) A(r(z) = Vy. I = R))).
Therefore, it is consistent if the following obligation holds:
Ik=EVe. (Jy.INR) = (Vy.I = R).
In Example 2.1, S9¢ is an example of a generalised conditional specification.

t V(F') is the universal closure of F'.
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4.1.4. SELECTOR SPECIFICATIONS

A selector specification Sﬁl of a new relation declaration r : a contains two formulas,
of the form
V(I(z) = (r(z,2) = R));
V(I (x) = 3z.r(x,2));

where z and z are tuples of sorted variables, and the free variables of R belong to  and
z.
Selector specifications are consistent under the obligation

TV - 3. R).

In general, selector specifications are non-strict. For every input z, there may be many
(but more than one) outputs y such that r(x,y) holds.

In Example 2.1, S5 is an example of a selector specification.

Now we can define program correctness with respect to specifications. We shall use a
model-theoretic definition of correctness, based on steadfastness.

4.2. STEADFASTNESS AND REUSABLE CORRECT PROGRAMS

If a predicate appears in the head of a clause of a program P, then we say that it is
defined by P. If it is not defined by P, i.e. it appears only in the body of P’s clauses,
then we say that it is open (in P). The meaning of an open predicate in P is left open by
P, along with the meaning of the sort, constant and function symbols in P. In contrast,
the meaning of the defined predicates is determined by P in terms of that of the open
symbols. To express this dependence more precisely, we introduce the type of a program,
in the context of a framework F(II), as follows:

DEFINITION 4.3. (TYPE) A program P has type § < II, written P : 0 < II, if § are the
defined predicates of P, and II is a signature containing the open predicates = and the
sort and (constant and) function symbols of P.

Apart from the open predicates, i.e. the (program) parameters = of P (as well as the
sort and constant and function symbols of P), II may also contain symbols that do not

occur in P itself, that is, we consider P in the context of the framework ]—'(1’[).Jr For
simplicity, the symbols of IT will be called parameters, and a Il-interpretation j will be
called a pre-interpretation. For every pre-interpretation j, program P : § <= II has a class
of j-models, defined as follows:

DEFINITION 4.4. (J-MODELS) Let P : 6 < II be an open program, and j be a pre-
interpretation. A j-model of P is a model m of P such that m|II =j.

j-models have the complete partial ordering Cs defined as follows:

DEFINITION 4.5. Let P : § < II be an open program, and i; and iz be two j-models.
Then iy, Cs iz if and only if, for every defined predicate r € §, we have that r'* C r'2,

T For clarification, the reader may wish to refer to Figure 1 in Section 2.
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An open program P : § < II has, for every pre-interpretation j, a corresponding
intended j-model, written j P+, defined as follows:

DEFINITION 4.6. (MINIMUM J-MODELS) Let P : § < II be a program, and j be a II-

interpretation. The minimum j-model of P is the model jP+ such that jPJr Cs m, for
every j-model m of P.

Now, consider a program P : § < II, in the context of a class Z of (II U §)-interpre-
tations. Any interpretation i € Z contains a pre-interpretation i | II of the parameters
I, i.e., i|IT acts as parameter passing. Thus the minimum (i|II)-model of P represents
the interpretation of § defined by P with parameter passing i|II. If this interpretation
coincides with i, then we can say that P is correct with respect to i. If this happens for
every i € Z, then we can say that P is correct with respect to Z. Steadfastness is just
this kind of model-theoretic correctness in a class of interpretations.

DEFINITION 4.7. (STEADFAST Locic PROGRAMS) Let P : ¢ < II be an open program,
and Z be a class of (Il U d)-interpretations. Then:

(i) P is steadfast in a (IIUJ)-interpretation i if the minimum (i|II)-model of P coincides
with i, i.e. (i|I)P+ =
(ii) P is steadfast in T iff it is steadfast in every interpretation i € Z.

Now we show how correctness with respect to a specification in a framework can be

formalised in terms of steadfaustness.Jr
In a framework F(IT) = (2,7, Az), programs always satisfy the following requirements:

(i) The sort, constant and function symbols of P are symbols of the signature X.

(ii) The predicate symbols of a program P are s-symbols, i.e., they have been introduced
by specifications and do not belong to X. We will distinguish the specifications S
of the open predicates of P, and Sy of the defined ones. Thus, a specification of P in
F(IT) will be a pair (S5, S;), and the type of P in this context will be § < (X U ).
Thus the type of P is determined by its specification, and so we need not state it
explicitly.

If the specifications S5 and S, are strict, then the definition of correctness coincides
with that of steadfastness in the unique (Ss, Sy )-expansion of F(II). For non-strict spec-
ifications, correctness is defined as follows:

DEFINITION 4.8. (CORRECTNESS) Let F(II) = (¥,Z, Az) be a framework. Let P be
an open program with specification (Ss, Sz). Then P is correct in F(II) with respect to
(Ss, Sr) if and only if, for every Sr-expansion Z, of Z there is an Ss-expansion Z, 5 of
1, such that P is steadfast in Z 5.

Intuitively, the meaning of the definition is the following. P : § <= (X U) is a program
to be completed by programs () for computing the open predicates w. Since we are

T In (Lau and Ornaghi, 1997b; Lau et al., 1999), it is shown that this formalisation is very similar to
that in (Deville, 1990).
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in an open framework, we may have different ();’s, for different interpretations i € 7.
Each @; must be correct with respect to Si, therefore it ‘computes’ an Sr-expansion i.
Considering all the interpretations i € Z and the corresponding expansions computed by
the corresponding @), we get an Sr-expansion Z.. If P is steadfast in an Ss-expansion
Zs,n of I, then it correctly composes with every @;, i.e., it can be correctly reused in the
various interpretations of the framework. Correctness requires that this holds for every
Sr-expansion Z, to get correct composition with any correct ¢);. The following theorem
can be proven (Lau et al., 1999):

THEOREM 4.1. (COMPOSITIONALITY OF CORRECTNESS) Let F = (X,Z, Az) be a frame-
work. Let P be correct in F with respect to (Ss, , Sz, USs,), and Q in F correct with respect
to (Ss,,Sr,). Then PUQ is correct in F with respect to (Ss, U Ssy, Sy U Sry)-

Proor. (Outline.) Let i be an interpretation of Z, and j be a (Sx, U Sy, )-expansion of i.
Since @ is correct, there is a Ss,-expansion js, of j, such that () is steadfast in jg,. Since
P is correct, there is a S, -expansion j;, 5, of js5,, such that P is steadfast in js, 5,. @
remains steadfast in the expansion j;, 5, and, by Lemma 4.1 of (Lau et al., 1999), PUQ
is steadfast in j, 5,. Since the above reasoning holds for a generic (Sx, U Sr,)-expansion
j of a generic i € Z, we have proved the compositionality of correctness. [

This theorem is the basis of (correct) reusability at the level of specifications and (cor-
rect) programs. We can also prove the following theorem, which guarantees inheritance
of correct programs at the level of framework composition:

THEOREM 4.2. (INHERITANCE OF CORRECTNESS) Correctness is preserved by frame-
work morphisms and union.

Proor. (Outline.) We prove our theorem for framework morphisms. The case of union
follows as a corollary. Let F; = (X1,71, Azy) and Fo = (X9,Z, Aza) be two frameworks,
h : 31 — X5 be a framework morphism, and P be a program correct with respect to
(Sr:a7 Sﬂ') in -7:11-

We have to prove that h(P) is correct with respect to (h(Sy.q), h(Sx)) in Fs. Let j be
a h(Sy)-expansion of an i € Zy. Then j|h = Sy, i.e., it is a Sy-expansion of i|h. Since h
is a framework morphism, we get i|h € Z; and, by the correctness of P, there is a Sy.q-
expansion (j|h).q of j|h, such that P is steadfast in it. By interpreting h(r : a) as r : a in
(1 h)r.a, we get an expansion j,., of j, such that j,..,[h = (j| h)riq. Thus j,., is a h(Sy.q)-
expansion of j and a j-model of h(P). We can see that it is also the minimum j-model,
i.e., h(P) is steadfast in it. Since the above reasoning holds for a generic h(S;)-expansion
j of a generic i € 7y, we obtain the inheritance of correctness. [

Since the operations we have considered in Section 3 can be reduced to suitable combi-
nations of framework morphisms and to framework union, we can expand, refine, rename,
specialise and compose frameworks, while inheriting correct programs. This holds for any
system of framework operations that can be explained in terms of morphisms and unions.

T We consider just one single defined predicate r : a. The extension to the general case is
straightforward.
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Inheritance, together with correct reusability at the level of specifications and pro-
grams, is the basis of our use of correct schemas, as discussed in the next section.

5. Correct Schemas for Program Synthesis

Using the results of the previous two sections, we now introduce correct schemas, as
open frameworks containing a set of specifications together with (open) programs that are
correct with respect to these specifications. These programs are called the templates of
the schema, and correspond to syntactic structures often referred to as program schemas
in the literature (see Section 1 for references). Our (correct) schemas are therefore more
abstract than such program schemas, and yet they are also more suitable for synthesising
(correct) programs.

Since our characterisation of schemas is based on our model-theoretic formalisations of
frameworks and correctness, we shall sketch an associated proof theory (which is sound
with respect to our schema semantics) in order that we can prove schema correctness,
and more importantly, in order that we can use our schemas for program synthesis (which
must be based on formal proofs).

5.1. CORRECT SCHEMAS

DEFINITION 5.1. (CORRECT SCHEMAS) A schema S = (F(II), Spec, T') is composed of
an open constrained framework F(II), a set Spec of specifications, and a set T' of logic
programs P : § < 7w with specifications (Ss, S;) in Spec. The programs of T are called
the templates of the schema. A template P : 0 < 7 is correct in S if it is correct in F(II)
with respect to its specification (Ss, Sr). The schema & = (F(II), Spec,T') is correct if
all the templates of T are correct in S.

We have already shown examples of correct schemas in Section 2 (see Examples 2.1
and 2.2), and we will consider others later (see Example 5.5).

The semantics of correct schemas given by Definition 5.1 is useful, because it allows us
to devise suitable associated proof methods. Although these methods are not the main
concern of this paper, we need to outline the main underlying ideas in order that we
can deal with schema correctness and specialisation. Specialisation consists in deriving
new schemas from a correct schema, by suitable transformations that preserve schema
correctness. This generalises the idea of program transformation to schemas and is the
basis for schema reuse: once we have a schema that has been proved correct, we can
specialise it into a family of schemas, while preserving correctness. In the limiting case,
specialisation can yield a correct closed program, i.e., we can apply the same methods to
schema specialisation and program synthesis.

Furthermore, templates compose correctly, according to Theorem 4.1, and so we can
consider the definition of a single relation in a composite template as a single component,
whose correctness can be dealt with independently from the other components. Therefore,
in a schema, each template is a component with type P : (r : a) < 7, i.e., it contains
one defined predicate r : a. This view is not restrictive, unless we have mutual recursion,
which is not considered in Theorem 4.1. For lack of space, we will not deal with mutually
recursive templates. They have essentially the same proof theory, but they require a
deeper termination analysis.

Our correctness proofs are based on open completion and open termination (Lau et
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al., 1999). The open completion of a program P : (r : a) < 7 is the completed definition
(Lloyd, 1987) of r in P. The if-part of the completed definition will be called the positive
open completion of P, and denoted by Ocomp™ (P). The only-if-part will be called the
negative open completion of P, and denoted by Ocomp™ (P).

Open termination is a property of P : (r : a) < 7 in a class J of pre-interpretations. It
has been defined in (Lau et al., 1999), using SLDg-derivations and SLD g-failed trees.
Intuitively, given a pre-interpretation j € J, an SLDg-derivation in j is a computation
of an idealised j-interpreter that knows j.

Our correctness proofs for schemas will be based on the following theorems (which are
corollaries of the results in (Lau et al., 1999)):

THEOREM 5.1. Let S = (F = (X,Z, Az), Spec, T) be a schema, and P : (r : a) < 7 be a
template with specification (S5°,S,), where S5° is the super-sub specification:

V. (Rsup(z) = r(z)) A (r(z) = Rsyper(T)).

If
(a) Az U S, U{Vz.r(2) < Reuper(z)} F Ocomp™ (P);
(b) Az U S U{Vz.r(z) ¢ Rsup(z)} F Ocomp™ (P);

and P existentially terminates’ in every Sr-expansion of T, then P is correct in S.

Proor. (Outline.) Since P existentially terminates (in every Sp-expansion of 7), it de-
cides 7 : a (see Theorem 5.7 of (Lau et al., 1999)). Then, by Theorem 6.4 of (Lau et
al., 1999), we get the correctness result. [

THEOREM 5.2. Let S = (F = (X,Z, Az), Spec,T) be a schema, and P : (r:a) < 7 be a
template with specification (S2!,S;), where S is the selector specification

(sely) V(I(z) = (r(z,2) = R(z,2)));
(selz) V(I(z) = Fz.r(z,2)).

If
(a) Az US, U{Vz,z.r(z,2) & (=I(z) V R(z,2))} F Ocomp™ (P)
(b) Az U Sy U Ocomp™ (P) FVx. I(z) = 3z. r(x, 2)

then P is correct in S.

Proor. (Outline.) Let j be a Sr-expansion of an interpretationi € Z, j, be the (Vz, z. r(z, z) ¢
—I(z) V R(z, z))-expansion of j, and j© be the minimum j-model of P. By (a), j* C, j,..
Since r(z,y) — (=I(z)V R(z,y) is logically equivalent to (sel,), we get that j* |= (sel;).

By (b), j¥ [ (sely). Since this holds for a generic S;-expansion j of a generic i € Z, we

have proved the theorem. O

Thus, in our correctness proofs, we are interested in existential termination in a class
of pre-interpretations. Here we give a sufficient condition for existential termination, that
works for a large class of interesting schemas.

T Inan interpretation, P existentially terminates if for every assignment a of x, either r(x) is successful,
or r(x) is finitely failed for a.
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In order to simplify the definition, we consider program clauses where the arguments
of predicates (except the equality predicate) are variables only. All clauses can be trans-
formed into this form, by using equality. For example, r(f(x),y) < r(z, g(v)), h(z,u(y))
can be written as r(a,y) < a = f(z),b = g(y),c = u(y),r(z,b), h(z, c).

DEFINITION 5.2. Let P : (r : a) < 7 be an open program with clauses already trans-
formed in the above manner. We say that P is decreasing in a pre-interpretation j with
respect to argument positions i1, ... ,%, in r if, for every recursive clause r(x) < B of r
in P, every assignment a of the variables of the clause such that j =4 B\ r, where B\ r
is the set of the equations and open predicates of B, and every recursive call r(y) in the
body B, {a(yi,),-.-,a(y,)) < {(a(zi,),...,a(z;, )), where < is well-founded in j. We say
that P is decreasing in a class J of pre-interpretations with respect to (the argument
positions) i1, ..., i, if it is decreasing with respect to i1, ...,4, in every j € J.

EXAMPLE 5.1. The program:

r(z,a,z) < a=0
r(,a,b) <« a=s(y),b=s(2),r(xy,2)

is decreasing with respect to (the argument position) 2 in every interpretation where the
relation explicitly defined by y < a <> a = s(y) is well founded. In these interpretations,
it is also decreasing with respect to 3.

The existence of the well-founded relation < allows us to state the following sufficient
condition:

THEOREM 5.3. If a program P : (r : a) < 7 is decreasing in a class J of pre-interpretations
with respect to at least one (non-empty) set of argument positions, then it existentially
terminates in J .

To get decreasing templates, we associate with each recursive template P : (r : a) < 7
arelation < such that P is decreasing with respect to some set of argument positions in all
the pre-interpretations where < is well-founded. If necessary, we force well-foundedness
by the constraint WellFounded(<). Such constraints will be the only non-first-order state-
ments that we will use in the constraints. However, we will not have to prove them. As
we will see, either WellFounded(<) is inherited, or < is internalised by a relation that
is known to be well-founded. In the former case no proof is needed, since the statement
belongs to the axioms. In the latter case, WellFounded(<) is guaranteed by the internal-
isation. Finally, when a well-founded relation is declared in a framework, we can assume
that the first-order instances of the corresponding induction and descending chain princi-
ples implicitly belong to the axioms. This allows, in particular, inductive reasoning over
the recursive structure of templates.

By introducing well-founded relations as required in frameworks, we have that existen-
tial termination is always guaranteed, either by the constraints, or by their internalisation.
Therefore, correctness proofs will be based on the provability of the open completion,
according to Theorems 5.1 and 5.2.

EXAMPLE 5.2. We can prove the correctness of the schema DC in Example 2.1. The
constraint WellFounded(<) is not strictly needed here, since the template is not recursive.
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However, WellFounded(<) will be necessary for the existential termination of recursive
specialisations. If we do not have this constraint here, we will have to introduce it when
we use recursive clauses.

The other constraints are needed to prove the completion. In this case, Ocomp™ (T 4.)
is (logically equivalent to):

Vz,y,h,a,b.r(z,y) < d(z, h,a) Arec(a,b) A c(h,b,y)
and Ocomp™ (Ty.) is:
Vz,y.r(z,y) = 3h,a,b. d(x,h,a) Arec(a,b) A c(h,b,y).

Ocomp™ (Ty.) is to be proved using the axioms, the constraints, the specifications of the
predicates in the body, and the definition:

Va,y.r(z,y) ¢ (- (z) V Or(z,y)).
This definition is to be replaced by:
Va,y.r(z,y) < (Ir(z) A Or(z,y))

to prove Ocomp™ (Tq.).

Finally, we consider specialisation methods that preserve correctness. To prove correct-
ness preservation, we use our results so far, together with unfolding or correct folding.
Of course, the idea is to give general transformation rules that have been proved correct
once and for all. Here, we cite just two of them.

EXAMPLE 5.3. The first transformation rule allows us to replace single calls by sequences
of calls, in the body of a template. The rule is:

Let g(t) be a call occurring in the body of a template P : (r : a) < 7, and let
I, — (g(z) ¢ Oq(z)). If the internalisation Oy(z) <> A(z) A B(zx) satisfies the
constraints for Oy, then the call ¢(t) can be replaced by calls to a(t) and b(t),
where a and b are two new predicates specified as follows:

I, = (a(z) & A(x));

I. NA(z) —  (b(z) < B(x)).

For the correctness of the transformation, we use Theorem 5.1 to prove that the (non-
recursive) clause r(z) < a(x),b(z) is correct with respect to its specifications. Then,
the result follows from correct composability of correct templates and from the fact that
unfolding preserves the minimum model semantics.

A similar result holds if 7 has a selector specification.

ExAMPLE 5.4. The second transformation rule allows us to replace variables with open
sorts by tuples, if suitable conditions are satisfied. The definition of the rule requires a
detailed recursive definition of a suitable translation, so we omit it here for lack of space
and just give an example that shows how the translation works and how it can be proved
correct, in a particular case.

Assume that we want to replace « by u and v in the predicate r(z, y) of the DC schema.
To this end, we rename | by Pair(U, V') and we consider the union of the renamed frame-
work with PATR(U,V). Then we introduce a new declaration 7' : [U,V,0] and the
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specification I,.({(u,v)) = (r'(u,v,y) <> Or({u,v),y)). We can easily prove that the tem-
plate r'(u,v,y) + = = (u,v),r(z,y) is correct. By template composition and unfolding,
we get r'(u,v,y) + = = (u,v),d(z, h,a),rec(a,b), c(h,b,y). By a similar transformation
on d(z,h,a), we get the template:

r'(u,0,y) < d'(u,v, h,a),rec(a,b), c(h, b, y).

Of course, the steps that have been performed here manually, should be performed au-
tomatically by the rule. When applied to a variable of sort s, the rule checks that s can
be consistently instantiated by Pair(U, V'), with U and V' new sorts. This is guaranteed

for any open sort s,Jr like | in the example.
5.2. USING CORRECT SCHEMAS FOR PROGRAM SYNTHESIS

In this section we briefly explain how schemas can be (re)used in program derivation.
As we mentioned earlier, we can use the same methods for specialising a schema to
a specific ADT and for deriving a program for solving a given task. In the first case,
the result is another, more specific correct schema, whilst in the latter it is a (closed)
program.

As we said in Section 2.3, we view the program synthesis process as problem solving
by successive problem reduction until the sub-tasks can be solved. Therefore, in program
synthesis, we start with a (problem) specification SP™° of r : a, in the context of a frame-
work G representing an ADT or a problem domain. Suppose S is a schema containing a
template P : (r : a) < 7 with specification (S, S;), and a framework F(II). We shall
assume that r : a is the same in S, and in SP"° and the sort symbols in the arity a
are the only common symbols of G and S. If this does not hold, then we have to first
perform a suitable renaming and (possible) specialisation of the schema. We also assume,
for conciseness, that S, is a conditional specification with input condition I,. and output
condition O,. A program derivation step then has the following form:

(i) We internalise I,., O, and the other open symbols of the schema, in the composed
framework F(IT) + G. The internalisation should allow us to prove that (S, Sz)
reduces to (SP™°, S;), that is, correctness (in F(II) + G) with respect to (S, Sy)
entails correctness with respect to (SP°%  S;). A sufficient condition is that S, <>
SProb can be proved, but there are other useful sufficient conditions (see (Flener et
al., 1997)).

(ii) We try to prove the constraints involving I, and O,. The result is that either we can
prove a constraint, or we (possibly) simplify some parts of it. In the first case, we
can delete the constraint, whilst in the latter, we inherit the simplified constraint.

(iii) We (possibly) transform the template P : (r : a) < 0, to get a better specialised
template. The transformation may involve the internalisation of other open symbols,
as well as the analysis of appropriate constraints.

Program synthesis may halt with a specialised schema, or with a closed program, i.e.,
a set of templates where the predicates in the body of a template occur in the head of
some other clause. For the latter case, we require that each constraint has been proved.

T For an open sort, any interpretation is allowed, while constrained sorts are open sorts that can be
interpreted in a constrained way.
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The whole synthesis process is such that, if at each step the framework union F(II)+G
is consistent (i.e., it has a non-empty class of intended interpretations), then the final
framework is consistent, and the program contained in it is correct with respect to the
specifications.

Now we close this section with two examples. The first one shows a specialisation of
the DC schema (in Example 2.1) in the ADT of natural numbers, while the second one
uses this specialisation to synthesise a closed program.

EXAMPLE 5.5. We can get a specialisation of DC to natural numbers as follows. We
rename | by Nat, and then we build the union NAT + DC(Nat, 0, I,.,0,, 04, <). Since
we are using natural numbers, we replace the specification of the decomposition predicate
Ou(z, h,a) by:

O (z,h,a) : x=0Ah=[0]Aa=[])V
Fy,i,v.z=s(y)y Ah=[ilAa=[v]Ai<s(0)ANi+v+v=u2z).

For example, Ofi’mb(Q, [1],[4]) holds, because 1+4+4=9. The decomposition implicit in
the specification is to compute the integer half of x, and then to apply recursion to it.

Now we proceed to the internalisation phase. To reduce the specification containing
Oy to the one containing Osmb, it suffices to internalise O4 by:

Oulx, h,a) < O (z,h, a).
Also we internalise < by:
z<ye(z+z<yAn-y=0).

This relation is known to be well-founded, and the length of a chain starting from y is
logarithmic in y. Therefore, constraint C3: WellFounded (<) is satisfied.

We also have to prove constraints involving O4. We can easily see that C1 is satisfied,
for every interpretation of I,., i.e., with I, open. We can simplify C2 to:

I(s(x)) Ni <s(0)ANi+v+v=s(z) = I (v);
and C4 to:
I(s(x)) Ni <s(0)ANi+v+v=s(z)AOr(s(x),y) = Fw. Or(v,w);

and then inherit these simplified constraints.
Now we specialise our templates. We can synthesise in the framework for natural
numbers the following correct decomposition program:

d(0,[0,[]) «
d(s(y),[0],[v]) ¢« sum(v,v,s(y))
d(s(y), [s(0)], [v]) «  sum(v,v,y)

where the predicate sum is specified by:Jr
sum(z,y,2) < z=x+y.

So, 0 is the primitive case, and s(x) the non-primitive one. The latter is decomposed

T This is a conditional specification with no input condition.
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into a list of one simpler value, to which the recursor rec is to be applied. Using the
specification of rec, we can get:

r(0,y) ([ I, [1y)

r(s(r),y) «  sum(v,v,s(x)),r(v,w), c([0], [w], y)
r(s(@),y) «  sum(v,v,2),7(v,w),c([s(0)] )-

Now, if we introduce the specifications:
cl(y) < 0,(0,y);
L(z)AN-z=0Ni+v+v=2Ai<s(0)AO(v,w) = (2(i,w,y) < O,(z,y));
we can derive the correct program:
0], [Ly) & clw)
c([i], [wly) < e2(i,w,y)
and we get our final specialised template:
r(0,y) « cl(y)
r(s(z),y) < sum(v,v,s(z)),r(v,w),c2(0,w,y)
r(s(z),y) < sum(v,v,z),r(v,w),c2(s(0),w,y).

In this template, lists have disappeared, and we have obtained a schema for divide-and-
conquer for the structure of natural numbers.

Now, the reusability of the schema obtained in this example has the limitation that
the input variable x : Nat cannot be replaced by tuples, because the specialisation used
in Example 5.4 cannot be applied to the closed sort Nat. To get a more general schema,
we can specialise DC, by replacing | by a pair (Nat, ), and then apply the specialisation
used in Example 5.5. Thus we get the schema:

Schema DCNAT (1,0, I.,0,);
IMPORT: NAT;
DECLARATIONS:
I, : [Nat,l];
O, : [Nat,|,O];
CONSTRAINTS:
Cl : I.(s(x),y) Ni<s(0)Ai4+v+ov=s(z)— I (v,y);
C2 : I.(s(x),y) Ni<s(0)Ai+v+v=s(x)AO(s(x),y,z) = Jw. Op(v,y,w);
SPECIFICATIONS:

r : [Nat,l,O];
Sy Li(wy) = (r(z,y,2) © Or(2,y,2));
sum : [Nat, Nat, Nat];
SSum = sum(z,y,2) &z =2 +Y;
cl : [I,0O];

zl : C]-(y7z) A Or(oayaz);
2 : [Nat,l,0,0];
S% : L(zy)A-z=0Ni+v+v=aAi<s0)AO(v,y,w)—
(c2(i,y,w, z) <> O.(z,y,2));
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TEMPLATE:

r(0,y,2)  « cl(y,2)

r(s(x),y,2) < sum(v,0,s(x)),r(v,y,w),c2(0,y,w,2)
r(s(w),y,z) — sum(v,v,x),r(v,y,w),c?(s(O),y,w,z).

Finally, as an example of a synthesis of a closed program, we use this schema to
synthesise a program for the product of natural numbers.

ExaAMPLE 5.6. We start from the following problem specification:
prod(x,y,z) <> z =T x y.

To apply the schema DCNAT, we replace | and O by Nat, and we rename r by prod, I,
by Ipred, and Op by Oproq. Then we internalise Oprog by Oprod(T,y,2) <> 2 = x %y and
Iprod bY Iprod(x,y) <> true. In this way, the problem specification becomes equivalent to
that in the schema.

Now we have to check the constraints. They are satisfied, as we can easily see.

As a final step, we eliminate the explicit definition of Oy,,q in the specifications of c1
and c2. We get

cl(y,z) <> z=0%y;
t=0ANi+v+v=aAi<s(O)Aw=vxy = (20i,y,w,2) & z =T *xy);

that is, c1(y, z) +» z = 0 and ¢2(i, y,w, z) & (i = 0Az = w+w)V(i = s(0)Az = w+w+y).
From the specifications, we can get the final template:

prod(0,y,0) —
prod(s(z),y,2) «  sum(v,v,5(2)), prod(v,y,w), sum(w, w, 2)
prod(s(r),y,z) < sum(v,v,z), prod(v,y,w), sum(w,w,u), sum(y,u, z).

To get a final closed program, we need to synthesise a program for sum. We could
also transform the program, by specifying the predicate half (w,z) > w + w = z, and
synthesising a program for half.

6. Conclusion

In our work, we use specification frameworks (i.e. open first-order axiomatisations) to
formalise program schemas (containing templates) in order to ensure that the templates
(and the programs that are instances thereof) do indeed have the behaviour we intend
them to have. In this paper, we have shown an abstract formalisation of a correct pro-
gram schema as a specification framework containing specifications (of predicates), and
templates which are open logic programs (containing the specified predicates) that are
correct with respect to the specifications. We have also outlined how we can use such
correct schemas to synthesise correct logic programs. Our work is very strongly influ-
enced by Smith’s pioneering work (Smith, 1985; Smith, 1990; Smith, 1996) in applicative
programming since the mid 1980s.

In contrast to most approaches (with the exception of Smith’s) to schemas in the
literature, which regard schemas as purely syntactic constructs (which therefore do not
capture domain knowledge), our approach defines schemas as semantic entities with both
a model theory and a proof theory. The model theory allows us to define a suitable notion
of schema correctness, which in turn provides a formalisation of correct schema reuse.
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The proof theory enables us not only to prove schema correctness for any given schema
but, more importantly, also to use schemas to guide program synthesis (which must be
based on formal proofs).

Schema correctness is based on the consistency of frameworks and the correctness of
the templates with respect to the specifications of the predicates in the templates. This
correctness leads to correct schema reuse at all three levels of frameworks, specifications
and templates. Framework reuse occurs via framework operations such as specialisation
and composition. Specification reuse mainly takes the form of specification transforma-
tion. Template reuse can be effected by importing schemas into other schemas. It is the
correct reuse at these three levels that makes our semantic characterisation of schemas
unique. More importantly, it defines correct schema reuse (for program synthesis).

Specifications also play an important role in guiding program synthesis. Different forms
of specifications have different associated proof methods, and these methods provide
guidance on how to proceed at various stages during synthesis.

For frameworks, we have shown examples of closed and open parametric frameworks,
with loose axiomatisations (with many diverse models) and ADT-axiomatisations (with
unique isoinitial term-models). However, we have not explained the details of isoinitial
models, which are their intended models, because this is not the central issue of this
paper (although we have explained that we use these models in order to deal with nega-
tion). Indeed, correctness can be based on any class of intended interpretations. This is
important, since it allows the use of loose axiomatisations, which in our opinion cannot
be avoided if we want to deal with real programs.

Since we concentrate on the semantics of schemas, we do not define a precise system
of operations on frameworks, but we just give the kind of semantics needed to apply
the theory of correctness (based on steadfastness). Any such system for frameworks (i.e.
theories) that can be interpreted according to this semantics (in particular, by framework
morphisms) will work. In particular, we can apply the metatheory developed in the field
of algebraic ADTs (Marti-Oliet and Meseguer, 1996).

So far we have only the basis for a proof theory, and our future work will include the
development of a specialised proof theory for schema correctness and schema specialisa-
tion. This will in turn provide the foundations for implementing a system based on our
ideas.

Another important future objective is to identify templates and constraints for other
design methodologies than divide-and-conquer. Once again, Smith (Smith, 1990) has
shown the way, namely by capturing a vast class of search methodologies in a global-
search schema. This was adapted to constraint logic programming in (Flener et al.,
1998b).

Finally, a few words about the consistency of frameworks. We use consistency preserv-
ing operations and formal correctness proofs, starting from predefined and well under-
stood ADT frameworks and schemas. This guarantees consistency and formal correctness.
Of course, the correctness of formal specifications with respect to informal requirements
cannot be guaranteed. To partially remedy this, we allow frameworks with loose ax-
iomatisations of their intended interpretations. Although we cannot automatically check
mistakes and inconsistencies, we can have some partial checks, and this is surely a better
alternative than any completely informal approach of translating (informal) requirements
into (formal) specification by ADT frameworks and schemas.
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