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eived 15 September 1998)Program s
hemas should 
apture not only stru
tured program design prin
iples, butalso domain knowledge, both of whi
h are of 
ru
ial importan
e for hierar
hi
al programsynthesis. However, most resear
hers represent s
hemas as purely synta
ti
 
onstru
ts,whi
h 
an provide only a program template, but not the domain knowledge. In thispaper, we take a semanti
 approa
h and show that a s
hema S 
onsists of a synta
ti
part, viz. a template T , and a semanti
 part. Template T is formalised as an open (�rst-order) logi
 program in the 
ontext of the problem domain, 
hara
terised as a �rst-orderaxiomatisation, 
alled a spe
i�
ation framework F , whi
h is the semanti
 part. F endowsthe s
hema S with a formal semanti
s, and enables us to de�ne and reason about its
orre
tness. Naturally, 
orre
t s
hemas 
an be used to guide the synthesis of 
orre
tprograms.

1. Introdu
tionIt 
an be argued that any systemati
 approa
h to software development must usesome kind of s
hema-based strategies. In (semi-)automated software development, pro-gram s
hemas be
ome indispensable, sin
e they 
apture not only stru
tured programdesign prin
iples, but also domain knowledge, both of whi
h are of 
ru
ial importan
efor hierar
hi
al program synthesis. This is amply borne out by user-guided program devel-opment systems that have been su

essfully deployed in pra
ti
e, e.g., kids (Smith, 1990;Smith, 1993; Smith, 1994), DesignWare (Smith, 1996), PlanWare (Blaine et al.,1998).Informally, a program s
hema is an abstra
tion (in a given problem domain) of a 
lassof a
tual programs, in the sense that it represents their data-
ow and 
ontrol-
ow, but0747{7171/90/000000 + 00 $03.00/0 
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2 P. Flener, K.-K. Lau, M. Ornaghi and J. Ri
hardsondoes not 
ontain (all) their a
tual 
omputations or (all) their a
tual data stru
tures. Ata synta
ti
 level, a s
hema is an open program, or a template, whi
h 
an be instantiatedto any 
on
rete program of whi
h it is an abstra
tion. Thus, most resear
hers, with thenotable ex
eption of Smith (Smith, 1985; Smith, 1990), represent s
hemas as synta
ti
(logi
) expressions, sometimes augmented by extra-logi
al features, from whi
h a
tualprograms are obtained by some form of textual substitutions. However, in su
h a purelysynta
ti
 approa
h, whi
h provides only a pattern of pla
e-holders, the knowledge thatis 
aptured by a s
hema is not formalised, su
h as the semanti
s of the template, thesemanti
s of the programs it abstra
ts, or the intera
tions between these pla
e-holders.So a template by itself has no guiding power for program synthesis, and the additionalknowledge somehow has to be hardwired into the system or person using the template.Therefore, we take a semanti
 approa
h and show that a s
hema S 
onsists of a syn-ta
ti
 part, viz. a template T , and a semanti
 part. Template T is formalised as anopen (�rst-order) logi
 program in the 
ontext of the problem domain, 
hara
terised asa �rst-order axiomatisation, 
alled a spe
i�
ation framework F (Lau and Ornaghi, 1994;Lau and Ornaghi, 1997a), whi
h is the semanti
 part. F endows the s
hema S with aformal semanti
s, and enables us to de�ne and reason about its 
orre
tness. In parti
-ular, we de�ne a spe
ial kind of 
orre
tness for open programs su
h as templates, thatwe 
all steadfastness. A steadfast (open) program is always 
orre
t (with respe
t to itsspe
i�
ation) as long as its parameters are 
orre
tly 
omputed (with respe
t to theirspe
i�
ations). This means that a steadfast (open) program, though only partially de-�ned, is always a priori 
orre
t when (re-)used in program 
omposition, in the sense thatits de�ned part is a priori 
orre
t (with respe
t to its spe
i�
ation). A steadfast programis thus also a priori 
orre
tly reusable, and su
h programs make ideal units in a libraryfrom whi
h 
orre
t programs 
an be 
omposed.Thus we de�ne a 
orre
t s
hema to be a spe
i�
ation framework 
ontaining a steadfastopen program. Moreover, we show how to use 
orre
t s
hemas to guide the synthesis ofsteadfast open logi
 programs. The bene�t of su
h guidan
e is a redu
ed sear
h spa
e,be
ause the synthesiser, at any given moment, only tries to 
onstru
t a program that �tsa 
hosen s
hema.On a wider issue, program s
hemas have been shown to be useful in a variety of ap-pli
ations, su
h as proving properties of programs (Manna, 1974), tea
hing program-ming to novi
es (Gegg-Harrison, 1991), guiding manual synthesis (Barker-Plummer,1992; Dershowitz, 1983; Deville, 1990; Deville and Burnay, 1989), indu
tive synthe-sis (Flener and Deville, 1993; Flener, 1995; Flener, 1997; Hamfelt and Fis
her Nils-son, 1997; Kodrato� and Jouannaud, 1984; Sterling and Kirs
henbaum, 1993; Summers,1977), and dedu
tive (semi-)automati
 synthesis (Blaine et al., 1998; Flener et al., 1997;Flener et al., 1998a; Flener et al., 1998b; Flener and Ri
hardson, 1999; Johansson, 1994;Marakakis and Gallagher, 1994; Smith, 1990; Smith, 1993; Smith, 1994; Smith, 1996)of programs, debugging programs (Gegg-Harrison, 1994), transforming/optimising pro-grams (B�uy�uky�ld�z and Flener, 1998; Fu
hs and Fromherz, 1992; Huet and Lang, 1978;Ri
hardson and Fu
hs, 1998; Vas
on
elos and Fu
hs, 1996), and so on. Further rep-resentation issues have been explored independently of appli
ations in (Chasseur andDeville, 1998; Gegg-Harrison, 1995; Gegg-Harrison, 1997), and surveys have been madein (Flener and Y�lmaz, 1999; Smith, 1984).Whilst we have presented some of the ideas elsewhere, most of the te
hni
al details(and examples) in this paper are new. This paper thus gives a 
omplete (though 
ompa
t)a

ount of our approa
h to formalising (
orre
t) s
hemas.



An Abstra
t Formalisation of Corre
t S
hemas 3The paper is organised as follows. In Se
tion 2, we give the general pi
ture and highlightthe novelty of our approa
h, by informally de�ning the syntax, semanti
s, and 
orre
tnessof s
hemas, and outlining how 
orre
t s
hemas 
an be used in program synthesis. InSe
tion 3, we formalise spe
i�
ation frameworks, as well as their reuse through frameworkmorphisms and framework 
omposition. We do not de�ne a pre
ise system of operationsfor working with frameworks (su
h as 
omposing them, and so on), but we just givethe kind of semanti
s that su
h a system should have in order to apply the theory ofsteadfastness, and we show some examples. In Se
tion 4, we 
onsider spe
i�
ations andintrodu
e steadfast programs, i.e., 
orre
t programs in frameworks. Su
h programs 
anbe 
orre
tly reused by 
omposing frameworks and thus provide a se
ond level of reuse. InSe
tion 5, we introdu
e the notion of 
orre
t s
hemas and sket
h a proof theory asso
iatedwith our model-theoreti
 formalisation, so that we 
an prove s
hema 
orre
tness and uses
hemas for program synthesis. Finally, in Se
tion 6, we 
on
lude, dis
uss related work,and outline future work. 2. OverviewIn this se
tion, we give an overview of our approa
h to de�ning the syntax and seman-ti
s of s
hemas. We outline a notion of 
orre
tness for s
hemas, and brie
y explain how
orre
t s
hemas 
an be used in a program synthesis pro
ess. The material here will beinformal, and largely based on examples. The aim is to give a general but more or less
omplete pi
ture, and to highlight the novelty, of our approa
h, at an intuitive level.2.1. defining s
hemasOur approa
h to de�ning s
hemas is based on a three-tier formalism (with model-theoreti
 semanti
s), illustrated in Figure 1.
Spe
i�
ation of r

Program to 
ompute r

Framework:- F : �( �
Spe
i�
ation of �Spe
i�
ation:- Sr Spe
i�
ation:- S�

Program:- Pr : r ( �Figure 1. A three-tier formalism for s
hemas.In this formalism, at the bottom level, we have programs , for 
omputing (spe
i�ed)relations. Programs are pure (standard or 
onstraint) logi
 programs. The relations 
om-puted by logi
 programs are 
alled (program) predi
ates. Some predi
ates may o

uronly in the body of the 
lauses of a program. We 
all su
h predi
ates open predi
ates,
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hardsonand programs that 
ontain su
h predi
ates open programs. In Figure 1, the program Pr
omputes a spe
i�ed relation r in terms of open predi
ates �.In the middle, we have spe
i�
ations for de�ning or spe
ifying new relations (andfun
tions). All program predi
ates are introdu
ed by spe
i�
ations. In Figure 1, Sr andS� are the respe
tive spe
i�
ations of r and �.At the top, we have a spe
i�
ation framework , or just framework for short, that em-bodies an axiomatisation of (all the relevant knowledge of) the problem domain. Theframework provides an unambiguous semanti
 underpinning for spe
i�
ations and pro-grams, as well as the 
orre
tness relationship between them. A framework may also beopen or parametri
. In Figure 1, the framework F has a signature that 
ontains a set �of de�ned symbols (axiomatised in F) and a set � of parameters.We de�ne a s
hema to 
onsist of a framework, an open program, 
alled a template,and a set of spe
i�
ations for the predi
ates of the template.y In the s
hema in Figure 1,the program Pr is the template.We need to de�ne a s
hema as a triple be
ause all three ingredients are ne
essaryfor de�ning the semanti
s of a s
hema properly, in order that we 
an use a s
hemafor the purpose for whi
h it is intended, viz. synthesising programs that have the same
omputation pattern as the template. Su
h a semanti
 
hara
terisation also providesguidelines for the synthesis pro
ess. Furthermore, it enables us to de�ne, and reasonabout, the 
orre
tness of s
hemas and of their reuse.Example 2.1. Consider the simple templater(x; y) d(x; h; a); re
(a; b); 
(h; b; y) (Td
)for 
omputing r. On its own, we would say this template is meaningless. Nevertheless,our intention is to use it as a generi
 representation of the typi
al steps of a divide-and-
onquer algorithm: de
omposition d, a (possibly empty) sequen
e re
 of re
ursive
alls, and 
omposition 
. For example, as we will show later in Example 2.2, Td
 
an bespe
ialised into the following more familiar form of divide-and-
onquer:r(x; y)  prim(x); solve(x; y)r(x; y)  :prim(x); de
(x; h; x1; x2); r(x1; y1); r(x2; y2); 
omp(h; y1; y2; y)where prim(x) means that the input x is primitive, i.e. a base 
ase; de
(x; h; x1; x2)means that x 
an be de
omposed into h, x1 and x2; 
omp(h; y1; y2; y) means that h andthe `sub-solutions' y1 and y2 
an be 
omposed into the `solution' y.However, by itself Td
 does not represent any pattern of 
omputation at all. To giveit the above intended meaning, we need spe
i�
ations for the predi
ates r; d; re
 and 
.Spe
i�
ations de�ne new spe
i�ed symbols in terms of other spe
ifying symbols. Forexample, we 
ould spe
ify r, as follows:r : [I;O℄;S
r : Ir(x)! (r(x; y) $ Or(x; y)):Here, the spe
i�ed symbol is r, with de
laration r : [I;O℄,z while the sort symbols I andy In this se
tion, for simpli
ity but without loss of generality, we assume that a s
hema has only onetemplate.z This means that the arity of r is I�O.



An Abstra
t Formalisation of Corre
t S
hemas 5O, and the relation symbols Ir and Or are the spe
ifying symbols. Ir and Or are 
alledrespe
tively the input 
ondition and output 
ondition of r.S
r is an example of a form of spe
i�
ation 
alled a 
onditional spe
i�
ation (Lau andOrnaghi, 1997a). Its meaning is the following: for every input x that satis�es the input
ondition Ir(x), the spe
i�ed relation r(x; y) is to be true if and only if the output
ondition Or(x; y) is true. (We will dis
uss 
onditional spe
i�
ations in Se
tion 4.1.2.)The meaning of S
r is not 
ompletely de�ned, sin
e nothing is stated about the spe
i-fying symbols. Our intention is to use this to indi
ate that the template 
an be used forderiving programs for a generi
, 
onditionally spe
i�ed relation. This 
an be done at theframework level. Sin
e our spe
ifying symbols are generi
, we de�ne them as frameworkparameters, i.e., we assume the following fragment of a framework:Framework DC(I;O; Ir ; Or);de
larations:Ir : [I℄;Or : [I;O℄:The sort symbols I and O, as well as the input and output 
onditions Ir and Or, are opensymbols, i.e. they are parameters of the framework DC.Now sin
e the spe
ifying symbols Ir and Or in S
r are parameters, S
r begins to turnTd
 into a 
omputation pattern, one for 
omputing a generi
 (
onditionally spe
i�ed)relation r. S
r is also a guide for program synthesis, in the following sense. When we usethis s
hema to synthesise a (
orre
t) divide-and-
onquer program from a spe
i�
ation S,S must be a 
onditional spe
i�
ation, so that we 
an instantiate the parameter Ir by theinput 
ondition of S, and Or by the output 
ondition of S.We 
an further de�ne the 
omputation pattern that Td
 and S
r together represent,by spe
ifying d. For example, we 
ould spe
ify d (with input 
ondition Ir and output
ondition Od) as follows:yd : [I;List(I);List(I)℄;Ssld : Ir(x)! (d(x; h; a)! Od(x; h; a));Ir(x)! 9h; a : d(x; h; a);by �rst expanding the above framework fragment DC to:Framework DC(I;O; Ir; Or; Od);import: LIST (I);de
larations:Ir : [I℄;Or : [I;O℄;Od : [I;List(I);List(I)℄;in whi
h LIST (I) is imported to give meaning to the sort List(I).The spe
i�
ation Ssld of d is an example of a sele
tor spe
i�
ation (Lau and Ornaghi,1997a). Its meaning is: for every input x that satis�es the input 
ondition Ir(x), they Note that h and a are lists of elements of sort I.



6 P. Flener, K.-K. Lau, M. Ornaghi and J. Ri
hardsonspe
i�ed relation d(x; h; a) is to be true for at least one output (h; a), su
h that the output
ondition Od(x; h; a) holds. (We will dis
uss sele
tor spe
i�
ations in Se
tion 4.1.4.)To ensure that this spe
i�
ation is satis�ed, we need to add the following 
onstraintyto the framework DC: Ir(x)! 9h; a : Od(x; h; a):The input 
ondition for d 
oin
ides with that of r be
ause, to 
ompute r(x; y), we �rstde
ompose (by d) the input x into two lists h; a : [List(I)℄ of input values. The idea isthat h (possibly) 
ontains values to be used in a non-re
ursive manner, while r will bere
ursively applied to the elements of a. So we need to impose that all the elementsof a satisfy the input 
ondition Ir. To ensure termination, we also require them to be`smaller than' x with respe
t to a well-founded ordering relation �. Therefore we addthe following 
onstraints to the framework DC:zIr(x) ^ Od(x; h; a)! (8y : mem(y; a)! Ir(y) ^ y � x);WellFounded(�);where mem is the usual list membership relation, together with the de
laration �: [I; I℄.In general, 
onstraints are just axioms, but they play a spe
i�
 role: we use them torestri
t the possible interpretations of the parameters of the framework, in su
h a waythat the template is 
orre
t with respe
t to the spe
i�
ations. More importantly, they
onstrain framework 
omposition and spe
ialisation, so as to prevent unsound operations(see Se
tion 3.3).Now to 
ontinue de�ning the 
omputation pattern represented by the template Td
together with the spe
i�
ations S
r and Ssld , we shall give S
re
. To do so, we shall makeuse of a relation M (x; y), whi
h is introdu
ed by the following expli
it de�nition:M(a; b)$ l(a) = l(b) ^ 8x; y; i : elemi(a; i; x) ^ elemi(b; i; y)! Or(x; y);where the (overloaded) de�ning symbols l, elemi (a; i; x) and elemi(b; i; y) are de�nedin the 
omposite abstra
t data type (ADT) LIST (I) + LIST (O).x The fun
tion l de-�nes list length, and elemi(a; i; x) means that element x o

urs at position i in the lista. Informally, M is similar to the map fun
tion of fun
tional languages. For example,M([x1; x2℄; b) holds if and only if b = [y1; y2℄, and Or(x1; y1) and Or(x2; y2) hold.Now we 
an spe
ify re
 as follows:re
 : [List(I);List(O)℄;S
re
 : (8x : mem(x; a)! Ir(x))! (re
(a; b)$M(a; b)):This spe
i�
ation says that it is 
orre
t to re
ursively apply r, to 
ompute M(a; b). Forexample, if a = [x1; x2℄, we 
an 
orre
tly 
ompute b = [y1; y2℄ by the re
ursive 
allsr(x1; y1) and r(x2; y2).Finally, we spe
ify 
omposition 
 as follows:
 : [List(I);List(O);O℄;Sg

 : Ir(x) ^ Od(x; h; a) ^M(a; b)! (
(h; b; y)$ Or(x; y)):y We mean it in the ordinary sense, not that of 
onstraint programming.z WellFounded(�) is of 
ourse not �rst-order. It is the only kind of non-�rst-order axiom that we willuse, and as we will show in Se
tion 5.1, we do not have to prove su
h axioms anyway.x We will dis
uss 
omposition of ADTs in Se
tion 3.3.



An Abstra
t Formalisation of Corre
t S
hemas 7The spe
i�
ation Sg

 of 
 is a generalised 
onditional spe
i�
ation. It says that 
(h; b; y)takes the lists h (
omputed by d(x; h; a)) and b (
omputed by re
(a; b)) as inputs and
omposes them into a �nal result y that satis�es the desired output 
ondition Or(x; y).(We will dis
uss generalised 
onditional spe
i�
ations in Se
tion 4.1.3.)So, now we have a 
omplete semanti
 
hara
terisation of a divide-and-
onquer s
hemain whi
h the template is Td
. The 
omplete s
hema, made up of the framework DC, thespe
i�
ations we have dis
ussed above, and the template Td
, is:S
hema DC(I;O; Ir ; Or; Od;�);import: LIST (I);LIST (O);de
larations:Ir : [I℄;Or : [I;O℄;Od : [I;List(I);List(I)℄;� : [I; I℄;M : [List(I);List(O)℄;axioms:A1 : M(a; b)$ l(a) = l(b) ^8x; y; i : elemi (a; i; x) ^ elemi (b; i; y)! Or(x; y);
onstraints:C1 : Ir(x)! 9h; a : Od(x; h; a);C2 : Ir(x) ^ Od(x; h; a)! (8y : mem(y; a)! Ir(y) ^ y � x);C3 : WellFounded(�);C4 : Ir(x) ^ Od(x; h; a) ^ Or(x; y)! 9b : M(a; b);spe
ifi
ations:r : [I;O℄;S
r : Ir(x) ! (r(x; y)$ Or(x; y));d : [I;List(I);List(I)℄;Ssld : Ir(x) ! (d(x; h; a)! Od(x; h; a));Ir(x) ! 9h; a : d(x; h; a);re
 : [List(I);List(O)℄;S
re
 : (8x : mem(x; a)! Ir(x))! (re
(a; b)$M(a; b));
 : [List(I);List(O);O℄;Sg

 : Ir(x) ^ Od(x; h; a) ^M(a; b)! (
(h; b; y)$ Or(x; y));template:r(x; y)  d(x; h; a); re
(a; b); 
(h; b; y):Constraints C1, C2 and C3 have been explained. C4 has been introdu
ed to guaranteethe 
orre
tness of the template. Corre
tness analysis 
an be performed by the proofmethods introdu
ed in (Flener et al., 1998a; Lau et al., 1999), and indeed in this 
aseit reveals that C4 is required (we omit the details here). The intuitive meaning of C4 isthe following: let x be an input that satis�es the input 
ondition and has been 
orre
tlyde
omposed into h and a (i.e., Ir(x)^Od(x; h; a) holds); then whenever an output y thatsatis�es the output 
ondition Or(x; y) exists, the re
ursive map M(a; b) must hold for atleast one b, needed to 
ompute y by the �nal 
omposition 
(h; b; y).
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hardsonThis s
hema is a very generi
 one for divide-and-
onquer. It 
an be spe
ialised intodivide-and-
onquer s
hemas with arbitrary numbers of base 
ases, step 
ases and re
ur-sive 
alls. We will illustrate this with two examples.A spe
ialisation of DC is obtained by making some open symbols of the frameworkless generi
, for instan
e Od. For ea
h spe
ialisation, we need to supply a de
ompositionprogram for d, a re
ursion map for re
, and a 
omposition program for 
. These pro-grams must be 
orre
t with respe
t to their spe
ialised spe
i�
ations in DC, so that they
orre
tly 
ompose with the template Td
. Of 
ourse for ea
h spe
ialisation of DC, thenew spe
i�
ations will also provide a guide for the synthesis of programs that have thesame 
omputation pattern as the template.Example 2.2. Now we show a s
hema, whi
h is an instan
e of DC, with one base 
aseand one step 
ase.Suppose we spe
ialise the spe
i�
ation of de
omposition d as follows:Od(x; h; a) $ (Oprim (x) ^ h = [x℄ ^ a = [ ℄) _(:Oprim (x) ^ a = [x1; x2℄ ^ Ode
(x; h; x1; x2));where Oprim(x) and Ode
(x; h; x1; x2) are the output 
onditions of prim(x) and de
(x; h;x1; x2). Informally, prim(x) means that x is primitive, i.e. a base 
ase; de
(x; h; x1; x2)means that x 
an be de
omposed into h, x1 and x2.A program for d(x; h; a) 
orre
t with respe
t to this spe
i�
ation is:d(x; [x℄; [ ℄)  prim(x)d(x; h; [x1; x2℄)  :prim(x); de
(x; h; x1; x2)where prim is 
orre
t with respe
t to the 
onditional spe
i�
ation:Ir(x)! (prim(x)$ Oprim (x));and de
 with respe
t to the sele
tor spe
i�
ation:Ir(x) ^ :Oprim (x) ! (de
(x; h; x1; x2)! Ode
(x; h; x1; x2));Ir(x) ^ :Oprim (x) ! 9x1; x2; h : de
(x; h; x1; x2):If we 
ompose this 
orre
t program for d with Td
, we get:r(x; y)  prim(x); re
([ ℄; b); 
([x℄; b; y)r(x; y)  :prim(x); de
(x; h; x1; x2); re
([x1; x2℄; b); 
(h; b; y):Using the spe
i�
ation for re
 this be
omes:r(x; y)  prim(x); 
([x℄; [ ℄; y)r(x; y)  :prim(x); de
(x; h; x1; x2); r(x1; y1); r(x2; y2); 
(h; [y1; y2℄; y):It is easy to see that by using suitable spe
i�
ations for solve and 
omp, we 
an transformthis program into the more familiar one for divide-and-
onquer with one base 
ase andone step 
ase:r(x; y)  prim(x); solve(x; y)r(x; y)  :prim(x); de
(x; h; x1; x2); r(x1; y1); r(x2; y2); 
omp(h; y1; y2; y)Note that in the step 
ase, there are two re
ursive 
alls to r.We 
an also get an instan
e of DC with one base 
ase and two step 
ases.



An Abstra
t Formalisation of Corre
t S
hemas 9Example 2.3. By spe
ialising the template over the data type of natural numbers,y we
an obtain the template:r(0; y; z)  
1(y; z)r(s(x); y; z)  sum(v; v; s(x)); r(v; y; w); 
2(0; y; w; z)r(s(x); y; z)  sum(v; v; x); r(v; y; w); 
2(s(0); y; w; z):The derivation of this template is given later, in Example 5.5.As illustrated by Examples 2.2 and 2.3, the template Td
 is very generi
. In its instan
es,the number of re
ursive 
alls (to r) is arbitrary, a being a list and re
 being a map of therelation r. Equally, the number of base and step 
ases is arbitrary. This over
omes therigidity normally asso
iated with s
hemas that are purely synta
ti
 stru
tures, where thenumbers of re
ursive 
alls, as well as base and step 
ases, are pre-determined.Finally, it is worth reiterating that all three ingredients of a s
hema, viz. framework,spe
i�
ations and template, are indispensable for de�ning the s
hema, as the above ex-amples have illustrated.2.2. 
orre
tness of s
hemas and their reuseIn our three-tier formalism for s
hemas, 
orre
tness is the adhesive that glues frame-work, spe
i�
ations and template together. It is de�ned model-theoreti
ally, using thenotion of steadfastness (Lau et al., 1999). Steadfastness is a 
orre
tness property of openprograms (e.g. templates) in 
lasses of interpretations (those of the spe
i�
ations, in the
ontext of the framework) that 
an be both 
omposed and inherited. It is thus suitablefor de�ning the 
orre
tness of s
hema templates, and hen
e the 
orre
tness of s
hemas.Having a notion of 
orre
tness for s
hemas allows us to reuse s
hemas at the threelevels of frameworks, spe
i�
ations and templates, and to reason about the 
orre
tnessof su
h reuse.As Example 2.1 suggests, frameworks are our �rst level of reuse. We 
an reuse frame-works by (a) spe
ialising them, by adding new axioms and/or new symbols; and (b)
omposing them, a

ording to their 
onstraints. When the framework of a s
hema isspe
ialised into a new one, the axioms, theorems and 
orre
t template of the s
hema areinherited, and hen
e reused. The same happens when we 
ompose the frameworks of twos
hemas: the 
omposed s
hema inherits from the 
omponent s
hemas.Thus, after we have spe
ialised a s
hema or 
omposed it with another one, we geta s
hema with a new framework, 
ontaining new axioms and/or symbols. Using thisnew, ri
her framework, we 
an synthesise programs for some spe
i�
ations of predi
atesthat are open in the inherited template. In the synthesis pro
ess, we 
an reuse both thespe
i�
ations and the template. To see this, let p be a predi
ate, with spe
i�
ation Sp,of a template T . There are two 
ases:(a) In the ri
her framework, we already have a 
orre
t program P for Sp. In this 
ase,we 
an 
orre
tly 
ompose T and P , i.e., we have 
orre
t reuse at the template level(and this synthesis sub-task stops su

essfully).(b) If (a) does not hold, then we 
an try to transform Sp into a new spe
i�
ation thatis more suited to the new ri
her knowledge, i.e., we have reuse at the spe
i�
ationy Constru
ted from 0 and the su

essor fun
tion s.
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hardsonlevel if we su

eed in �nding su
h a transformation. The spe
i�
ation spe
ialisationsused in Examples 2.2 and 2.3 are the kinds of spe
i�
ation transformations thatwill be explained in Se
tion 5. On
e we have a satisfa
tory spe
i�
ation we 
ontinuethe synthesis pro
ess iteratively.Reuse at the framework level is based on operations on frameworks. At this level, ourapproa
h is similar to that of algebrai
 ADTs, and 
orre
tness is not meaningful, sin
ebuilding a framework is a modelling pro
ess, whereby an abstra
t model of a problemdomain or the abstra
t data types involved in a 
omputation pattern are set up, typi
allyusing prede�ned building blo
ks. In 
ontrast, 
orre
tness of reuse is a key requirement atthe spe
i�
ation and template levels. We believe that 
orre
t reuse at these levels, madepossible by our notion of 
orre
t s
hemas, is new, and important, and yields a powerfulme
hanism for deriving 
orre
t programs.2.3. using 
orre
t s
hemas for program synthesisCorre
t s
hemas 
an be used to synthesise 
orre
t programs for a given problem do-main. We view the program synthesis task as problem solving (where the problem domainis formalised as a framework) and the program synthesis pro
ess as a problem redu
tionpro
ess whereby the synthesis task is su

essively sub-divided until the sub-tasks 
an besolved (the sub-solutions are then 
omposed into a solution for the top-level synthesistask).The program synthesis task is spe
i�ed in the problem domain by a spe
i�
ation Srof a relation r to be 
omputed. The synthesis pro
ess starts by 
hoosing a s
hema S 0that 
ontains a template Tr0 for 
omputing some relation r0, spe
i�ed by Sr0 , su
h thatby renaming or spe
ialisingy the s
hema S 0 into S we 
an `mat
h' Sr and Sr0 (and thetemplate Tr0 be
omes a template Tr for r). The synthesis pro
ess then 
onsists of iterativeattempts to synthesise programs for the predi
ates in the body of the template Tr fromtheir spe
i�
ations in S. As programs are synthesised, and as sub-tasks are generated,the template will be updated, so at any moment in time, there is a `
urrent' templatethat has evolved from the original template Tr. We shall denote the `
urrent' templatesimply by T , and the 
orresponding `
urrent' s
hema S(T ).In ea
h iteration of the synthesis pro
ess, for a predi
ate p in the body of the templateT , if we 
an �nd an existing program Q whi
h is 
orre
t with respe
t to a spe
i�
ationSq , su
h that Sq 
an be transformed into the spe
i�
ation Sp of p (through the operationsexplained in Se
tion 5), then Q is also 
orre
t with respe
t to Sp, and we 
an (re)use theprogram Q for p, and the sub-task is solved.Otherwise, we look for a prede�ned s
hema S 00 with a template T 00 for 
omputinga predi
ate q with a spe
i�
ation Sq . If Sq 
an be transformed into the spe
i�
ationSp, then we import the s
hema S 00 into the `
urrent' s
hema S(T ), and add to S(T ) thespe
i�
ations of any predi
ates in the body of the template T 00. These new open predi
ates
orrespond to the sub-problems generated by the sub-solution that S 00 represents.Example 2.4. We 
an import into the basi
 s
hema DC the following s
hema for 
om-puting the map relation, after (possible) renamings and 
onstraint 
he
king:y We will deal with su
h framework morphisms in Se
tion 3.2.
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hemaMAP(I;O; Ir : [I℄; Or : [I;O℄);import: LIST (I);LIST (O);axioms:A1 : M(a; b)$ l(a) = l(b) ^8x; y; i : elemi(a; i; x) ^ elemi(b; i; y)! Or(x; y);spe
ifi
ations:r : [I;O℄;S
r : Ir(x) ! (r(x; y)$ Or(x; y));map : [List(I);List(O)℄;S
map : (8x : mem(x; a)! Ir(x))! (map(a; b)$M(a; b));template:map([ ℄; [ ℄)  map([xja℄; [yjb℄)  r(x; y);map(a; b):In this 
ase things are simple, sin
e we immediately re
ognise that it is suÆ
ient torename map by re
, to get a 
orre
t open program for re
. The general 
ase will bedis
ussed in Se
tion 5, where we will also show that 
orre
tness is preserved by s
hema
omposition. This simple example shows how s
hemas 
an be reused, together with theirtemplates, by being imported into other s
hemas.If no s
hema 
an be found, or if we prefer to 
hoose a more spe
i�
 pattern, then we
an try to spe
ialise the 
urrent template, in the way we spe
ialise the basi
 s
hema DC(in Example 2.1) in Examples 2.2 and 2.3 (and later in Example 5.5).The iterative synthesis pro
ess stops su

essfully if and when we have synthesisedprograms for all the predi
ates in the body of the template Tr, as well as su
h predi
atesin all templates imported during the sub-tasks. In the absen
e of su

ess, we have toba
ktra
k.Finally, it is worth noting that we 
an apply the same pro
ess to transform a s
hemainto a family of more spe
ialised s
hemas. In this 
ase we halt the pro
ess whenever wehave rea
hed a satisfa
tory spe
ialisation. In Examples 2.2 and 2.3 (and 5.5), we havestopped the spe
ialisation pro
ess after just one step. It may also happen that, duringsome synthesis pro
ess, some new interesting spe
ialisation gets 
onstru
ted. In this 
aseit 
an be saved as a new prede�ned s
hema for future use.3. Spe
i�
ation FrameworksAs we have shown in the previous se
tion, a spe
i�
ation framework is the 
ontextwhere the spe
i�
ation language and the meaning of the spe
ifying symbols are provided,together with the general laws for reasoning about spe
i�
ations and program 
orre
tness.In this se
tion, we formalise spe
i�
ation frameworks, as well as their reuse throughframework morphisms and framework 
omposition.3.1. a formalisation of spe
ifi
ation frameworksIn our approa
h, the spe
ifying symbols are symbols of a many-sorted �rst-order sig-nature �, formalised as a pair � = hS;Di that 
ontains a set S of sort symbols and a set
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hardsonD of fun
tion and relation de
larations. A fun
tion de
laration has the form f : a ! s,where f is the de
lared fun
tion symbol, a its arityy and s its sort; and a relation de
la-ration has the form r : a, where r is the de
lared relation symbol and a its arity. Fun
tionde
larations with empty arity introdu
e 
onstants. Arbitrary overloading is allowed, sothat the union of two signatures 
an be de�ned as the signature 
ontaining the unionsof the sorts and of the de
larations, and (sin
e we will work with �rst-order logi
 withidentity) overloaded identity = : [s; s℄ (for every sort s) will be always understood.Example 3.1. A signature for the domain of planar �gures and their areas 
an be builtby importing the signature of reals (whi
h we omit here for 
on
iseness):Signature FIGURES ;import: REALS ;sorts: Figs ;de
ls: area : [Figs ℄! Reals;[ : [Figs ;Figs ℄! Figs ;separated : [Figs ;Figs ℄:Here, overloaded identities = : [Reals ;Reals ℄ and = : [Figs ;Figs ℄ are understood.The meaning of spe
ifying symbols is given by a 
hosen 
lass I of �-interpretations. Asusual, a �-interpretation maps every sort symbol s into a set si, ea
h 
onstant de
laration
 : [ ℄ ! s into an element (
 : [ ℄ ! s)i 2 si, ea
h fun
tion de
laration f : a ! s intoa fun
tion (f : a ! s)i : ai ! si,y and ea
h relation de
laration r : a into a relation(r : a)i � ai. We interpret de
larations instead of symbols, be
ause overloading is allowed.Example 3.2. We will 
onsider the following interpretation �g of the signature FIG-URES :Figs�g : regions of the plane delimited by 
losed lines;or �nite unions of su
h regions;(area : [Figs ℄! Reals)�g : area of a �gure;([ : [Figs ;Figs ℄! Figs)�g : union of two �gures;(separated : [Figs ;Figs ℄)�g : separated(x; y) holds if the (possible) 
ommon pointsof �gures x and y belong to their borders:The interpretation of the imported reals is the usual one, and the (understood) overloaded= is interpreted as the standard identity.From the signature �, we generate the (�rst-order) spe
i�
ation language L�. �-formulas are built and interpreted (in a �-interpretation) in the standard way. Some
are is needed though, due to arbitrary overloading. If an overloaded fun
tion symbolhas two de
larations f : a ! s1 and f : a ! s2 with the same arity and di�erent sorts,then to avoid 
onfusion, we will use fs1 to refer to the �rst de
laration, and fs2 to referto the se
ond one. In this way, we 
an asso
iate one de
laration with ea
h o

urren
e ofy An arity a is a list [s1; : : : ; sn℄ of sort symbols.y If a = [s1; : : : ; sn℄, then ai is si1 � : : :� sin.
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tion or relation symbol in a formula, and interpret it a

ording to that de
laration,in an unambiguous way.Finally, in a spe
i�
ation framework, the laws for reasoning about spe
i�
ations andprogram 
orre
tness are given by a �-axiomatisation Ax , i.e., a set of �-senten
es, su
hthat the 
hosen interpretations I are models of Ax , or I j= Ax . In general I will be asubset of all the models of Ax . We 
all I the intended interpretations of the framework.Example 3.3. We will 
onsider the following axioms Ax (FIGURES ) for FIGURES :idempoten
e : 8x : Figs : x [ x = x;
ommutativity : 8x; y : Figs : x [ y = y [ x;asso
iativity : 8x; y; z : Figs : (x [ y) [ z = x [ (y [ z);additivity : 8x; y : Figs : separated(x; y)! area(x [ y) = area(x) + area(y):The intended interpretation is �g, whi
h indeed is a model of the axioms, but there areother models that are 
ompletely unrelated to �g. For example, if we interpret Figs as anydomain 
ontaining sets of reals and 
losed under union, [ as set union, separated(x; y)as empty interse
tion, and area as the sum of the elements of a set, then we get anothermodel of the axioms. In other words, we have a loose axiomatisation of the intendedinterpretations.Now we 
an de�ne spe
i�
ation frameworks formally as follows:yDefinition 3.1. (Spe
ifi
ation Frameworks) A spe
i�
ation framework F = h�;I; Axi is 
omposed of a signature �, a set I of intended �-interpretations, and a set Axof axioms, su
h that I j= Ax . F is 
losed if I 
ontains just one interpretation; it is openif I 
ontains many interpretations.An example of a 
losed framework (with a loose axiomatisation) is FIG = hFIGURES;�g; Ax (FIGURES )i, where the signature FIGURES, the intended interpretation �g, andthe axioms Ax (FIGURES ) are those in Examples 3.1, 3.2 and 3.3.A parti
ular kind of 
losed spe
i�
ation frameworks are 
losed ADT -frameworks,for axiomatising Abstra
t Data Types. The intended interpretation of a 
losed ADT-framework is a rea
hable isoinitial model (Bertoni et al., 1983), or more pre
isely a(unique) isoinitial term-model.Example 3.4. The ADT-framework for natural numbers isNAT = hNAT ;N ;Ax (NAT )i,where NAT is the following signature:Signature NAT ;sorts: Nat ;de
ls: 0 : [ ℄! Nat ;s : [Nat ℄! Nat ;+; � : [Nat ;Nat ℄! Nat ;y For 
on
iseness, after this de�nition we shall refer to spe
i�
ation frameworks simply as frameworks.



14 P. Flener, K.-K. Lau, M. Ornaghi and J. Ri
hardsonand the axioms Ax (NAT ) are:sax : :s(x) = 0;s(x) = s(y)! x = y;+ax : x+ 0 = x;x+ s(y) = s(x+ y);�ax : x � 0 = 0;x � s(y) = (x � y) + x:The standard stru
ture of natural numbers is an isoinitial model rea
hable by 0 and s,and we 
hoose the isoinitial term-model of NAT generated by 0 and s to be the intendedinterpretation N .Rea
hable isoinitial models are similar to the more popular initial models (Goguenand Meseguer, 1987; Goguen et al., 1978), used in algebrai
 spe
i�
ations (Sannella andTarle
ki, 1997; Wirsing, 1990). A di�eren
e is that, while initial models behave as anyother model for positive ground quanti�er-free formulas only, isoinitial models do so forany ground quanti�er-free formulas, in
luding negation. We 
hoose isoinitial models asintended models, be
ause negation is important for reasoning about spe
i�
ation and
orre
tness.As for open frameworks, we fo
us our attention on those that are parametri
:Definition 3.2. (Parametri
 Frameworks) A parametri
 framework is an openframework F(�) = h�; I;Axi, where (i) � is a set of symbols in �, 
alled parameters ; (ii)I is a 
lass of �-interpretations, su
h that, for every pair i1 and i2 of interpretations (inI), if the interpretation of the parameters � is the same for both i1 and i2, then i1 = i2.That is, the parameters 
an be interpreted in many ways, but any 
hosen interpretationof the parameters 
ompletely determines the interpretation of all the other symbols. Forthis reason, we 
all the latter de�ned symbols .For example, 
onsider the signature FIGURES in Example 3.1 enri
hed by a predi
atebasi
 : [Figs ℄, indi
ating some 
lass of basi
 �gures, for whi
h we 
an 
ompute the area.Now, for every interpretation of the parameter basi
, we interpret the sort Figs as thesubset of the �gures that 
an be generated by �nite unions of basi
 �gures, and [, areaand separated as before. By varying the interpretation of basi
, we get a parametri
framework FIG(basi
) with a loose axiomatisation.ADT-frameworks 
an also be parametri
. For su
h frameworks, the intended interpre-tations are j-rea
hable j-isoinitial models (Lau and Ornaghi, 1999), where j is a (pre-)interpretation of the parameters �.Example 3.5. The ADT-framework for pairs is PAIR(X;Y ) = hPAIR;P ;Ax (PAIR)i,where PAIR is the following signature:Signature PAIR;sorts: Pair (X;Y ); X; Y ;de
ls: h i : [X;Y ℄! Pair(X ;Y ):
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hemas 15For 
larity we use the notation hx; yi (instead of h i(x; y)). The axioms Ax (PAIR) are:ypair : 8x : X; y : Y : hx; yi = hx0; y0i ! x = x0 ^ y = y0;indu
tivepair : (8x : X : 8y : Y : H(hx; yi))! (8p : Pair (X;Y ) : H(p)):For every interpretation j of the parameters X and Y , the j-models of Ax (PAIR) are themodels of Ax (PAIR) that 
oin
ide with j overX and Y . The intended (j-isoinitial) j-model
orresponding to j is the interpretation Pj where Pair(X;Y ) is the 
artesian produ
tX j � Y j, and h i is the usual pairing fun
tion. The 
lass P of intended interpretations isthe 
lass of Pj's.Finally, as we mentioned in Se
tion 2.2, frameworks are our �rst level of reuse. Thekey to their reuse are framework morphisms and framework 
omposition.3.2. framework morphismsFramework morphisms are based on signature morphisms, whi
h we brie
y re
all here.For two signatures � and �, a signature morphism h : � ! � maps sorts of �into sorts of �, and de
larations of � into de
larations of �, while preserving aritiesand (for fun
tion de
larations) sorts. Morphism h indu
es a translation h : L� ! L�yand a redu
t operation jh : �-interpretations ! �-interpretations. Translation h has astraightforward re
ursive de�nition, while the redu
t j jh of a �-interpretation j interpretsea
h �-sort s as h(s)j and ea
h �-de
laration d as h(d)j. If j = i j h, then j is 
alled anh-expansion of i. In general, there are many h-expansions.Inje
tive signature morphisms are 
alled signature expansions , and bije
tive signaturemorphisms are 
alled signature renamings . If a signature expansion h : � ! � is su
hthat, for every sort symbol or de
laration � of �, h(�) = �, then � � �. In this 
ase, h isleft impli
it, the h-redu
t of a �-interpretation j is 
alled a �-redu
t, and the h-expansionof a �-interpretation i is 
alled a �-expansion. The �-redu
t of a �-interpretation j justforgets the (interpretation of the) new symbols, and is indi
ated by j j�.Finally, for every �-senten
e F and �-interpretation i, the following satisfa
tion prop-erty holds (Goguen and Burstall, 1992):i j= h(F ) i� i jh j= F: (3.1)Now we 
an de�ne framework morphisms as follows:Definition 3.3. (Framework Morphisms) Let F = h�; I;Ax i and G = h�; I 0;Ax 0ibe two frameworks. A signature morphism h : �! � is a framework morphism from Fto G if and only if (i) for every j 2 I 0, the redu
t j jh belongs to I; (ii) for every axiomA 2 Ax , we have that Ax 0 ` h(A).By (i), the h-redu
t is a map from the intended interpretations of G to those of F . By(3.1), (i) entails that, for every �-senten
e F , if I j= F , then I 0 j= h(F ). In parti
ular,I 0 j= h(A), for every A 2 Ax , i.e., Ax are inherited (under translation). By (ii), we mayy Note that H is �rst-order be
ause it represents a s
hema of �rst-order formulae.y We use an overloaded h.



16 P. Flener, K.-K. Lau, M. Ornaghi and J. Ri
hardson
hange axiomatisations, on 
ondition that the inherited axioms are in
luded or be
ometheorems.We distinguish three important 
ases of frameworks morphisms: re�nement, expansionand spe
ialisation.3.2.1. framework refinementIn a re�nement , h is inje
tive and every interpretation i 2 I has at least one h-expansion.Example 3.6. The ADT-framework PAIR(X;Y ) 
an be re�ned into the ADT-frame-work T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) of totally ordered pairs by adding to thesignature the de
larations � : [X;X ℄;� : [Y; Y ℄;� : [Pair (X;Y );Pair (X;Y )℄;and to Ax (PAIR) the total ordering axioms for � : [X;X ℄ and � : [Y; Y ℄, and:8a; b : X : 8
; d : Y : ha; 
i � hb; di $ (:a = b ^ a � b) _ (a = b ^ 
 � d):3.2.2. framework expansionIn an expansion, h is inje
tive and jh bije
tive. By the bije
tivity of jh, every inter-pretation i 2 I has one h-expansion j 2 I 0, i.e., h-expansion be
omes the inverse fun
tionof j h. In general, the expansion of a framework is de�ned through the 
orrespondingh-expansion fun
tion.Renaming is a spe
ial 
ase of expansion, where h is a signature renaming, and Ax 0 =h(Ax ), i.e., nothing is 
hanged, but the symbols. We 
an easily see that:I 0 = I jh�1: (3.2)Example 3.7. Consider the ADT-framework PAIR(X;Y ). We have that PAIR(A;B)is obtained by the signature renaming �, where:�(X) = A�(Y ) = B�(Pair (X;Y )) = Pair (A;B)�(h i) = h i :For every fX;Y g-interpretation i, the interpretation Pi is mapped (by j ��1) into theinterpretation P 0 su
h that:AP0 = X iBP0 = Y iPair (A;B)P0 = X i � Y i = AP0 �BP0h iP0 = pairingi.e., we have just 
hanged the alphabet of the signature.
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hemas 17Expansion by expli
it de�nitions (Lau and Ornaghi, 1997a) of new relation and fun
-tion de
larations is an important ingredient in our approa
h.An expli
it �-de�nition of a relation r : a, where a 
ontains only sorts from �, is a(� [ fr : ag)-senten
e of the form: 8x : r(x) $ R(x) (3.3)where x is a tuple of distin
t variables with sorts a, and R(x) is a �-formula with freevariables x.yFor every �-interpretation i, there is one (� [ fr : ag)-expansion i0 of i, su
h thati0 j= Dr:a. We 
all i0 the Dr:a-expansion of i.An expli
it �-de�nition of a fun
tion f : a! s, where a and s 
ontain only sorts from�, is a (� [ ff : a! sg)-senten
e of the form:8x : F (x; f(x)) (3.4)where x is a tuple of distin
t variables with sorts a, and F (x; y) is a �-formula with freevariables x and y.Let i be a �-interpretation that satis�es the obligation:zi j= 8x : 9!y : F (x; y): (3.5)Then there is one (� [ f : a ! s)-expansion i0 of i su
h that i0 j= Df :a!s. We 
all i0 theDf :a!s-expansion of i.An expli
it �-de�nition Dd of a fun
tion or relation de
laration d 
an be used toexpand a framework F = h�; I;Axi into the framework G = h� [ fdg; I 0;Ax [ fDdgi,su
h that I 0 is the set of Dd-expansions of the interpretations of I. Of 
ourse, if d is afun
tion de
laration, we require that the 
orresponding obligation (3.5) is satis�ed byI. G will be 
alled the Dd-expansion of F , and su
h an expansion will be denoted byFxp(F ; Dd).Example 3.8. The following relations and fun
tions 
an be expli
itly de�ned in NAT :D�:[Nat;Nat ℄ : x � y $ 9z : x+ z = y;D<:[Nat;Nat ℄ : x < y $ x � y ^ :x = y;Dsqrt:[Nat ℄!Nat : sqrt(x) � sqrt(x) � x ^ x < s(sqrt(x)) � s(sqrt(x)):Similarly, in the parametri
 framework PAIR(X;Y ), we 
an expli
itly de�ne proje
tionsas follows: D�1:Pair(X;Y )!X : 8p : Pair (X;Y ) : 9v : Y : p = h�1(p); vi;D�2:Pair(X;Y )!X : 8p : Pair (X;Y ) : 9u : X : p = hu; �2(p)i:3.2.3. framework spe
ialisationFinally, in the third kind of framework morphism, a spe
ialisation, h is surje
tive andj h inje
tive. In this 
ase we 
an also de�ne an expansion operator, but it is a partialfun
tion, i.e., some �-interpretations may not have h-expansions. For this reason, we saythat we have a spe
ialisation.y Thus expli
it de�nitions are non-re
ursive.z We omit sorts whenever no 
onfusion 
an arise.
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hardsonExample 3.9. Consider the ADT-framework PAIR(X;Y ). We de�ne PAIR(A;A) asthe target of the framework spe
ialisation based on the following signature morphism h:h(X) = Ah(Y ) = Ah(Pair (X;Y )) = Pair (A;A)h(h i) = h i :For every fX;Y g-interpretation i, if X i 6= Y i, then i has no expansion. Otherwise, theinterpretation Pi is mapped into the interpretation P 0 su
h that:AP0 = X i = Y iPair (A;A)P0 = X i � Y i = AP0 �AP0h iP0 = pairingi.e., we have a spe
ialisation to the 
ase where X and Y are (interpreted as) the samedomain. 3.3. framework 
ompositionFramework 
omposition is performed through two separate operations, namely unionand internalisation.Definition 3.4. (Framework Union) The union of two frameworks F = h�; I;Ax iand G = h�;J ;Ax 0i is the framework F + G = h� [�; I � J ;Ax [Ax 0i where I � J isthe set of (� [�)-interpretations i su
h that i j� 2 I and i j� 2 J .If the two signatures have 
ommon symbols, then I � J may be empty. In this 
ase,we say that the union is in
onsistent. We 
an easily see that, if the union is 
onsistent,then I � J j= Ax [ Ax 0, as required in a framework.By union and renaming or spe
ialisation, we 
an 
ompose frameworks.Example 3.10. If we have a 
losed framework INT for integers, with the sort Intof integers, we 
an introdu
e pairs of integers by the spe
ialisation PAIR(Int ; Int) ofPAIR(X;Y ) and by the union INT + PAIR(Int ; Int).It is important to give 
onditions for the 
onsisten
y of union. To this end, we introdu
e
onstraints.Definition 3.5. (Constraints) Let F(�) = h�; I;Ax i be a framework, and let � bea subsignature of � 
ontaining �. A �-
onstraint for I is any set Constrs of �-senten
es,su
h that I j � are the models of Constrs . A �-
onstrained framework is a frameworkF(�) = h�; I;Ax [ Constrsi, 
ontaining, as a distinguished subset of the axioms, a�-
onstraint Constrs for I.Example 3.11. T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) 
an be given in the form of a(X;Y;� : [X;X ℄;� : [Y; Y ℄)-
onstrained framework, by putting the total ordering axiomsfor � : [X;X ℄ and � : [Y; Y ℄ into the 
onstraint.
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t S
hemas 19To monitor 
onstraint satisfa
tion, we perform framework 
omposition through inter-nalisation and union.Let F(�) = h�; I;Ax [ Constrsi be a �-
onstrained framework, and G = h�;J ;Ax 0ibe a (possibly 
losed) framework, su
h that the 
ommon symbols of the two frameworksare only the sort symbols that o

ur in �.y Then we 
an perform internalisation of thede
larations of � by G, as follows:(i) Let r : a be a relation de
laration of �. Its internalisation in G is an expli
it �-de�nition 8x : r(x) $ R(x).(ii) Let f : a ! s be an open fun
tion de
laration of �. Its internalisation in G is anexpli
it �-de�nition 8x : F (x; f(x)), where J j= 8x : 9!y : F (x; y).Definition 3.6. (Internalisation) Let F(�) = h�; I;Ax [Constrsi and G = h�; J ;Ax 0i be de�ned as before. If a set D of expli
it de�nitions internalises all the fun
tionand relation de
larations of �, then it is 
alled a �-internalisation.A �-internalisation D de�nes one D-expansion Fxp(G; D) of G. We have the following
onsisten
y de�nition and result:Definition 3.7. (Consistent �-internalisations) Let F(�) = h�; I;Ax[Constrsiand G = h�;J ;Ax 0i be de�ned as before. A �-internalisation D is 
onsistent with re-spe
t to F(�) if and only if every interpretation of the D-expansion Fxp(G; D) of G is amodel of Constrs.Theorem 3.1. (Consisten
y Result) Let F(�) = h�; I;Ax [ Constrsi and G =h�;J ;Ax 0i be de�ned as before, and D be a �-internalisation. If D is 
onsistent withrespe
t to F(�), then Fxp(G; D) + F(�) is an expansion of G, as well as one of F(�).Proof. Consider an interpretation j 2 J . Sin
e (by the 
onsisten
y of D) j is a model ofConstrs , � 
ontains �, and F(�) is parametri
, there is one �-interpretation i 2 I that
oin
ides with j over the symbols of �. Therefore, the union 
ontains the interpretationi � j, whi
h is the unique expansion (in the union) of i, as well as of j. 2The advantage of performing internalisation before doing union is that, after the in-ternalisation steps, we 
an 
he
k 
onstraint satisfa
tion in G, sin
e we have an expansionof the language of G 
ontaining all the symbols involved in the 
onstraints.Example 3.12. We 
an 
ompose T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄) and the frame-work INT , whi
h formalises the standard integer type Int , by the following algorithm:(1) Rename or spe
ialise T OPAIR(X;Y;� : [X;X ℄;� : [Y; Y ℄), in su
h a way that theonly 
ommon symbols are the (possibly renamed) sort symbols of the 
onstraintsignature X;Y;� : [X;X ℄;� : [Y; Y ℄. Here, this is obtained by the spe
ialisationT OPAIR(Int ;� : [Int ; Int ℄). Note that Int is open, i.e., we have only renamed(spe
ialised) X and Y by Int . The translation of the 
onstraint 
ontains the totalordering axioms for � : [Int ; Int ℄.y If this 
ondition does not hold, then we rename F(�) as appropriate.
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hardson(2) Internalise � : [Int ; Int ℄ in INT , in su
h a way that the (translated) 
onstraint,i.e. total ordering axioms for �, be
omes a theorem. We 
an obtain this by theinternalisation D� : 8x; y : x� y $ x � y:(3) Perform the union T OPAIR(Int ;� : [Int ; Int ℄) + Fxp(INT ; D�).Looking at this example, we 
an see that we 
an use 
omposition based on inter-nalisation and union, to implement parameter passing. The example 
orresponds to theparameter passing where X and Y are repla
ed by Int , and � : [X;X ℄ and � : [Y; Y ℄ by� : [Int ; Int ℄. The di�eren
e is that, to internalise properly, we have introdu
ed an alias� of �. By the eliminability of expli
it de�nitions, we 
ould uniformly repla
e it by �, ifwe wished. On the other hand, internalisation 
an be used in a more 
exible way, and, aswe will see, the 
hoi
e of the internalising de�nitions will also impinge on the synthesispro
ess. 4. Spe
i�
ations and Corre
tnessIn this se
tion, we 
onsider spe
i�
ations. They allow us to introdu
e steadfast pro-grams, i.e., 
orre
t programs in frameworks. Su
h programs 
an be 
orre
tly reused by
omposing frameworks, as illustrated in Se
tion 2, and thus they provide us with a se
ondlevel of reuse. 4.1. spe
ifi
ationsDefinition 4.1. (Spe
ifi
ations) Let F = h�; I;Ax i be a framework and Æ be a setof relation symbols not in �. A �-spe
i�
ation SÆ of Æ is a set of (� [ Æ)-formulas.A spe
i�
ation SÆ is interpreted as an expansion operator, in the following way:Definition 4.2. (SÆ-expansions of Interpretations) Let � be a signature, and SÆbe a �-spe
i�
ation of Æ. A SÆ-expansion of a 
lass I of �-interpretations is a 
lass I 0 of(�[Æ)-interpretations su
h that I 0 j= SÆ , and, for every interpretation i 2 I, there is one(� [ Æ)-expansion i 0 2 I 0. The set of SÆ-expansions of I will be denoted by Ixp(I; SÆ).If Ixp(I; SÆ) is empty, then SÆ is in
onsistent with respe
t to the framework. IfIxp(I; SÆ) 
ontains just one expansion, then SÆ is stri
t with respe
t to the framework.If Ixp(I; SÆ) 
ontains more than one expansion, then SÆ is non-stri
t.Spe
i�
ation symbols have the sole purpose of spe
ifying programs, whi
h are to besynthesised in a framework. To avoid 
onfusion, we will 
all framework symbols thesymbols that are de�ned in a framework and 
an be used to write down spe
i�
ations,and spe
i�
ation symbols those that are used to spe
ify programs. Thus, spe
i�
ationsymbols will be 
onsidered to be disjoint from the framework language, and will bedesignated as s-symbols.There are many kinds of spe
i�
ations (see e.g. (Lau and Ornaghi, 1997a; Lau andOrnaghi, 1997b)). Here we brie
y dis
uss the more important ones: expli
it de�nitions,super-sub spe
i�
ations, 
onditional spe
i�
ations and sele
tor spe
i�
ations.Expli
it de�nitions have already been explained in Se
tion 3.2 (see Example 3.8). Inmany 
ases, they 
an be used as spe
i�
ations as well.
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t S
hemas 214.1.1. super-sub spe
ifi
ationsIn a framework F(�) = h�; I;Ax i, a super-sub spe
i�
ation Sssr of a new relationde
laration r : a is a �-de�nition of the form8x : (Rsub(x)! r(x)) ^ (r(x) ! Rsuper(x))where Rsub(x) and Rsuper (x) are �-formulas. It is 
onsistent if the obligationI j= 8x : Rsub(x)! Rsuper (x)holds. Its meaning is the following. Let i be a �-interpretation of I. Let isub be the8x : r(x) $ Rsub(x)-expansion of i and isuper be the 8x : r(x) $ Rsuper (x)-expansion ofi. Clearly, every (� [ fr : ag)-expansion j of i su
h thatrisub � rj � risuper (4.1)is a model of Sssr .Super-sub spe
i�
ations are very useful, be
ause they have a proof theory (see (Lauand Ornaghi, 1997a)) and many 
ases 
an be redu
ed to them. For example, 
onditionaland generalised 
onditional spe
i�
ations are a parti
ular 
ase of super-sub spe
i�
ations.4.1.2. 
onditional spe
ifi
ationsA 
onditional spe
i�
ation S
r of a new relation de
laration r : a, in a frameworkF(�) = h�; I;Axi, is a �-de�nition of the formy8(I ! (r(x) $ R))where I and R are �-formulas and x is the union of the free variables of I and R. I is
alled the input 
ondition, whereas R is 
alled the output 
ondition of the spe
i�
ation.S
r is equivalent to the super-sub spe
i�
ation:8((I ^ R! r(x)) ^ (r(x) ! :I _ R)):Therefore it is always 
onsistent, but, in general, it is non-stri
t.In Example 2.1, S
r and S
re
 are examples of 
onditional spe
i�
ations.4.1.3. generalised 
onditional spe
ifi
ationsA generalised 
onditional spe
i�
ation Sg
r of a new relation de
laration r : a is of theform 8(I ! (r(x) $ R))where I and R are formulas in the language of F(�) and their free variables are x [ y,with y non-empty. Sg
r is equivalent to the following super-sub spe
i�
ation:8(((9y : I ^ R)! r(x)) ^ (r(x) ! (8y : I ! R))):Therefore, it is 
onsistent if the following obligation holds:I j= 8x : (9y : I ^ R)! (8y : I ! R):In Example 2.1, Sg

 is an example of a generalised 
onditional spe
i�
ation.y 8(F ) is the universal 
losure of F .
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hardson4.1.4. sele
tor spe
ifi
ationsA sele
tor spe
i�
ation Sslr of a new relation de
laration r : a 
ontains two formulas,of the form 8(I(x)! (r(x; z)! R));8(I(x)! 9z : r(x; z));where x and z are tuples of sorted variables, and the free variables of R belong to x andz. Sele
tor spe
i�
ations are 
onsistent under the obligationI j= 8(I ! 9z : R):In general, sele
tor spe
i�
ations are non-stri
t. For every input x, there may be many(but more than one) outputs y su
h that r(x; y) holds.In Example 2.1, Ssld is an example of a sele
tor spe
i�
ation.Now we 
an de�ne program 
orre
tness with respe
t to spe
i�
ations. We shall use amodel-theoreti
 de�nition of 
orre
tness, based on steadfastness.4.2. steadfastness and reusable 
orre
t programsIf a predi
ate appears in the head of a 
lause of a program P , then we say that it isde�ned by P . If it is not de�ned by P , i.e. it appears only in the body of P 's 
lauses,then we say that it is open (in P ). The meaning of an open predi
ate in P is left open byP , along with the meaning of the sort, 
onstant and fun
tion symbols in P . In 
ontrast,the meaning of the de�ned predi
ates is determined by P in terms of that of the opensymbols. To express this dependen
e more pre
isely, we introdu
e the type of a program,in the 
ontext of a framework F(�), as follows:Definition 4.3. (Type) A program P has type Æ ( �, written P : Æ ( �, if Æ are thede�ned predi
ates of P , and � is a signature 
ontaining the open predi
ates � and thesort and (
onstant and) fun
tion symbols of P .Apart from the open predi
ates, i.e. the (program) parameters � of P (as well as thesort and 
onstant and fun
tion symbols of P ), � may also 
ontain symbols that do noto

ur in P itself, that is, we 
onsider P in the 
ontext of the framework F(�).y Forsimpli
ity, the symbols of � will be 
alled parameters, and a �-interpretation j will be
alled a pre-interpretation. For every pre-interpretation j, program P : Æ ( � has a 
lassof j-models, de�ned as follows:Definition 4.4. (j-models) Let P : Æ ( � be an open program, and j be a pre-interpretation. A j-model of P is a model m of P su
h that m j� = j.j-models have the 
omplete partial ordering �Æ de�ned as follows:Definition 4.5. Let P : Æ ( � be an open program, and i1 and i2 be two j-models.Then i1 �Æ i2 if and only if, for every de�ned predi
ate r 2 Æ, we have that ri1 � ri2 .y For 
lari�
ation, the reader may wish to refer to Figure 1 in Se
tion 2.
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t S
hemas 23An open program P : Æ ( � has, for every pre-interpretation j, a 
orrespondingintended j-model, written jP+ , de�ned as follows:Definition 4.6. (Minimum j-models) Let P : Æ ( � be a program, and j be a �-interpretation. The minimum j-model of P is the model jP+ su
h that jP+ �Æ m, forevery j-model m of P .Now, 
onsider a program P : Æ ( �, in the 
ontext of a 
lass I of (� [ Æ)-interpre-tations. Any interpretation i 2 I 
ontains a pre-interpretation i j � of the parameters�, i.e., i j� a
ts as parameter passing. Thus the minimum (i j�)-model of P representsthe interpretation of Æ de�ned by P with parameter passing i j�. If this interpretation
oin
ides with i, then we 
an say that P is 
orre
t with respe
t to i. If this happens forevery i 2 I, then we 
an say that P is 
orre
t with respe
t to I. Steadfastness is justthis kind of model-theoreti
 
orre
tness in a 
lass of interpretations.Definition 4.7. (Steadfast Logi
 Programs) Let P : Æ ( � be an open program,and I be a 
lass of (� [ Æ)-interpretations. Then:(i) P is steadfast in a (�[Æ)-interpretation i if the minimum (i j�)-model of P 
oin
ideswith i, i.e. (i j�)P+ = i.(ii) P is steadfast in I i� it is steadfast in every interpretation i 2 I.Now we show how 
orre
tness with respe
t to a spe
i�
ation in a framework 
an beformalised in terms of steadfastness.yIn a frameworkF(�) = h�; I;Ax i, programs always satisfy the following requirements:(i) The sort, 
onstant and fun
tion symbols of P are symbols of the signature �.(ii) The predi
ate symbols of a program P are s-symbols, i.e., they have been introdu
edby spe
i�
ations and do not belong to �. We will distinguish the spe
i�
ations S�of the open predi
ates of P , and SÆ of the de�ned ones. Thus, a spe
i�
ation of P inF(�) will be a pair (SÆ; S�), and the type of P in this 
ontext will be Æ ( (�[ �).Thus the type of P is determined by its spe
i�
ation, and so we need not state itexpli
itly.If the spe
i�
ations SÆ and S� are stri
t, then the de�nition of 
orre
tness 
oin
ideswith that of steadfastness in the unique (SÆ; S�)-expansion of F(�). For non-stri
t spe
-i�
ations, 
orre
tness is de�ned as follows:Definition 4.8. (Corre
tness) Let F(�) = h�; I;Axi be a framework. Let P bean open program with spe
i�
ation (SÆ; S�). Then P is 
orre
t in F(�) with respe
t to(SÆ ; S�) if and only if, for every S�-expansion I� of I there is an SÆ-expansion I�;Æ ofI� su
h that P is steadfast in I�;Æ .Intuitively, the meaning of the de�nition is the following. P : Æ ( (�[�) is a programto be 
ompleted by programs Q for 
omputing the open predi
ates �. Sin
e we arey In (Lau and Ornaghi, 1997b; Lau et al., 1999), it is shown that this formalisation is very similar tothat in (Deville, 1990).
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hardsonin an open framework, we may have di�erent Qi's, for di�erent interpretations i 2 I.Ea
h Qi must be 
orre
t with respe
t to S�, therefore it `
omputes' an S�-expansion i.Considering all the interpretations i 2 I and the 
orresponding expansions 
omputed bythe 
orresponding Qi, we get an S�-expansion I�. If P is steadfast in an SÆ-expansionIÆ;� of I� , then it 
orre
tly 
omposes with every Qi, i.e., it 
an be 
orre
tly reused in thevarious interpretations of the framework. Corre
tness requires that this holds for everyS�-expansion I�, to get 
orre
t 
omposition with any 
orre
t Qi. The following theorem
an be proven (Lau et al., 1999):Theorem 4.1. (Compositionality of Corre
tness) Let F = h�; I;Axi be a frame-work. Let P be 
orre
t in F with respe
t to (SÆ1 ; S�1[SÆ2), and Q in F 
orre
t with respe
tto (SÆ2 ; S�2). Then P [Q is 
orre
t in F with respe
t to (SÆ1 [ SÆ2 ; S�1 [ S�2).Proof. (Outline.) Let i be an interpretation of I, and j be a (S�1 [S�2)-expansion of i.Sin
e Q is 
orre
t, there is a SÆ2 -expansion jÆ2 of j, su
h that Q is steadfast in jÆ2 . Sin
eP is 
orre
t, there is a SÆ1 -expansion jÆ1;Æ2 of jÆ2 , su
h that P is steadfast in jÆ1;Æ2 . Qremains steadfast in the expansion jÆ1;Æ2 and, by Lemma 4.1 of (Lau et al., 1999), P [Qis steadfast in jÆ1;Æ2 . Sin
e the above reasoning holds for a generi
 (S�1 [ S�2)-expansionj of a generi
 i 2 I, we have proved the 
ompositionality of 
orre
tness. 2This theorem is the basis of (
orre
t) reusability at the level of spe
i�
ations and (
or-re
t) programs. We 
an also prove the following theorem, whi
h guarantees inheritan
eof 
orre
t programs at the level of framework 
omposition:Theorem 4.2. (Inheritan
e of Corre
tness) Corre
tness is preserved by frame-work morphisms and union.Proof. (Outline.) We prove our theorem for framework morphisms. The 
ase of unionfollows as a 
orollary. Let F1 = h�1; I1;Ax1i and F2 = h�2; I2;Ax2i be two frameworks,h : �1 ! �2 be a framework morphism, and P be a program 
orre
t with respe
t to(Sr:a; S�) in F1.yWe have to prove that h(P ) is 
orre
t with respe
t to (h(Sr:a); h(S�)) in F2. Let j bea h(S�)-expansion of an i 2 I2. Then j jh j= S�, i.e., it is a S�-expansion of i jh. Sin
e his a framework morphism, we get i jh 2 I1 and, by the 
orre
tness of P , there is a Sr:a-expansion (j jh)r:a of j jh, su
h that P is steadfast in it. By interpreting h(r : a) as r : a in(j jh)r:a, we get an expansion jr:a of j, su
h that jr:a jh = (j jh)r:a. Thus jr:a is a h(Sr:a)-expansion of j and a j-model of h(P ). We 
an see that it is also the minimum j-model,i.e., h(P ) is steadfast in it. Sin
e the above reasoning holds for a generi
 h(S�)-expansionj of a generi
 i 2 I2, we obtain the inheritan
e of 
orre
tness. 2Sin
e the operations we have 
onsidered in Se
tion 3 
an be redu
ed to suitable 
ombi-nations of framework morphisms and to framework union, we 
an expand, re�ne, rename,spe
ialise and 
ompose frameworks, while inheriting 
orre
t programs. This holds for anysystem of framework operations that 
an be explained in terms of morphisms and unions.y We 
onsider just one single de�ned predi
ate r : a. The extension to the general 
ase isstraightforward.
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t S
hemas 25Inheritan
e, together with 
orre
t reusability at the level of spe
i�
ations and pro-grams, is the basis of our use of 
orre
t s
hemas, as dis
ussed in the next se
tion.5. Corre
t S
hemas for Program SynthesisUsing the results of the previous two se
tions, we now introdu
e 
orre
t s
hemas, asopen frameworks 
ontaining a set of spe
i�
ations together with (open) programs that are
orre
t with respe
t to these spe
i�
ations. These programs are 
alled the templates ofthe s
hema, and 
orrespond to synta
ti
 stru
tures often referred to as program s
hemasin the literature (see Se
tion 1 for referen
es). Our (
orre
t) s
hemas are therefore moreabstra
t than su
h program s
hemas, and yet they are also more suitable for synthesising(
orre
t) programs.Sin
e our 
hara
terisation of s
hemas is based on our model-theoreti
 formalisations offrameworks and 
orre
tness, we shall sket
h an asso
iated proof theory (whi
h is soundwith respe
t to our s
hema semanti
s) in order that we 
an prove s
hema 
orre
tness,and more importantly, in order that we 
an use our s
hemas for program synthesis (whi
hmust be based on formal proofs).5.1. Corre
t S
hemasDefinition 5.1. (Corre
t S
hemas) A s
hema S = hF(�); Spe
; T i is 
omposed ofan open 
onstrained framework F(�), a set Spe
 of spe
i�
ations, and a set T of logi
programs P : Æ ( � with spe
i�
ations (SÆ ; S�) in Spe
. The programs of T are 
alledthe templates of the s
hema. A template P : Æ ( � is 
orre
t in S if it is 
orre
t in F(�)with respe
t to its spe
i�
ation (SÆ ; S�). The s
hema S = hF(�); Spe
; T i is 
orre
t ifall the templates of T are 
orre
t in S.We have already shown examples of 
orre
t s
hemas in Se
tion 2 (see Examples 2.1and 2.2), and we will 
onsider others later (see Example 5.5).The semanti
s of 
orre
t s
hemas given by De�nition 5.1 is useful, be
ause it allows usto devise suitable asso
iated proof methods. Although these methods are not the main
on
ern of this paper, we need to outline the main underlying ideas in order that we
an deal with s
hema 
orre
tness and spe
ialisation. Spe
ialisation 
onsists in derivingnew s
hemas from a 
orre
t s
hema, by suitable transformations that preserve s
hema
orre
tness. This generalises the idea of program transformation to s
hemas and is thebasis for s
hema reuse: on
e we have a s
hema that has been proved 
orre
t, we 
anspe
ialise it into a family of s
hemas, while preserving 
orre
tness. In the limiting 
ase,spe
ialisation 
an yield a 
orre
t 
losed program, i.e., we 
an apply the same methods tos
hema spe
ialisation and program synthesis.Furthermore, templates 
ompose 
orre
tly, a

ording to Theorem 4.1, and so we 
an
onsider the de�nition of a single relation in a 
omposite template as a single 
omponent,whose 
orre
tness 
an be dealt with independently from the other 
omponents. Therefore,in a s
hema, ea
h template is a 
omponent with type P : (r : a) ( �, i.e., it 
ontainsone de�ned predi
ate r : a. This view is not restri
tive, unless we have mutual re
ursion,whi
h is not 
onsidered in Theorem 4.1. For la
k of spa
e, we will not deal with mutuallyre
ursive templates. They have essentially the same proof theory, but they require adeeper termination analysis.Our 
orre
tness proofs are based on open 
ompletion and open termination (Lau et
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hardsonal., 1999). The open 
ompletion of a program P : (r : a)( � is the 
ompleted de�nition(Lloyd, 1987) of r in P . The if -part of the 
ompleted de�nition will be 
alled the positiveopen 
ompletion of P , and denoted by O
omp+(P ). The only-if -part will be 
alled thenegative open 
ompletion of P , and denoted by O
omp�(P ).Open termination is a property of P : (r : a)( � in a 
lass J of pre-interpretations. Ithas been de�ned in (Lau et al., 1999), using SLDE-derivations and SLDE-failed trees.Intuitively, given a pre-interpretation j 2 J , an SLDE-derivation in j is a 
omputationof an idealised j-interpreter that knows j.Our 
orre
tness proofs for s
hemas will be based on the following theorems (whi
h are
orollaries of the results in (Lau et al., 1999)):Theorem 5.1. Let S = hF = h�; I;Axi; Spe
; T i be a s
hema, and P : (r : a)( � be atemplate with spe
i�
ation (Sssr ; S�), where Sssr is the super-sub spe
i�
ation:8x : (Rsub(x)! r(x)) ^ (r(x) ! Rsuper (x)):If (a) Ax [ S� [ f8x : r(x) $ Rsuper (x)g ` O
omp+(P );(b) Ax [ S� [ f8x : r(x) $ Rsub(x)g ` O
omp�(P );and P existentially terminatesy in every S�-expansion of I, then P is 
orre
t in S.Proof. (Outline.) Sin
e P existentially terminates (in every S�-expansion of I), it de-
ides r : a (see Theorem 5.7 of (Lau et al., 1999)). Then, by Theorem 6.4 of (Lau etal., 1999), we get the 
orre
tness result. 2Theorem 5.2. Let S = hF = h�; I;Axi; Spe
; T i be a s
hema, and P : (r : a)( � be atemplate with spe
i�
ation (Sslr ; S�), where Sslr is the sele
tor spe
i�
ation(sel1) 8(I(x)! (r(x; z)! R(x; z)));(sel2) 8(I(x)! 9z : r(x; z)):If (a) Ax [ S� [ f8x; z : r(x; z)$ (:I(x) _ R(x; z))g ` O
omp+(P )(b) Ax [ S� [O
omp+(P ) ` 8x : I(x)! 9z : r(x; z)then P is 
orre
t in S.Proof. (Outline.) Let j be a S�-expansion of an interpretation i 2 I, jr be the (8x; z : r(x; z)$:I(x) _ R(x; z))-expansion of j, and jP be the minimum j-model of P . By (a), jP �r jr.Sin
e r(x; y)! (:I(x)_R(x; y) is logi
ally equivalent to (sel1), we get that jP j= (sel1).By (b), jP j= (sel2). Sin
e this holds for a generi
 S�-expansion j of a generi
 i 2 I, wehave proved the theorem. 2Thus, in our 
orre
tness proofs, we are interested in existential termination in a 
lassof pre-interpretations. Here we give a suÆ
ient 
ondition for existential termination, thatworks for a large 
lass of interesting s
hemas.y In an interpretation, P existentially terminates if for every assignment a of x, either r(x) is su

essful,or r(x) is �nitely failed for a.



An Abstra
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t S
hemas 27In order to simplify the de�nition, we 
onsider program 
lauses where the argumentsof predi
ates (ex
ept the equality predi
ate) are variables only. All 
lauses 
an be trans-formed into this form, by using equality. For example, r(f(x); y) r(x; g(y)); h(x; u(y))
an be written as r(a; y) a = f(x); b = g(y); 
 = u(y); r(x; b); h(x; 
).Definition 5.2. Let P : (r : a) ( � be an open program with 
lauses already trans-formed in the above manner. We say that P is de
reasing in a pre-interpretation j withrespe
t to argument positions i1; : : : ; in in r if, for every re
ursive 
lause r(x)  B of rin P , every assignment a of the variables of the 
lause su
h that j j=a B n r, where B n ris the set of the equations and open predi
ates of B, and every re
ursive 
all r(y) in thebody B, ha(yi1 ); : : : ; a(yin)i � ha(xi1 ); : : : ; a(xin)i, where � is well-founded in j. We saythat P is de
reasing in a 
lass J of pre-interpretations with respe
t to (the argumentpositions) i1; : : : ; in if it is de
reasing with respe
t to i1; : : : ; in in every j 2 J .Example 5.1. The program:r(x; a; x)  a = 0r(x; a; b)  a = s(y); b = s(z); r(x; y; z)is de
reasing with respe
t to (the argument position) 2 in every interpretation where therelation expli
itly de�ned by y � a$ a = s(y) is well founded. In these interpretations,it is also de
reasing with respe
t to 3.The existen
e of the well-founded relation � allows us to state the following suÆ
ient
ondition:Theorem 5.3. If a program P : (r : a)( � is de
reasing in a 
lass J of pre-interpretationswith respe
t to at least one (non-empty) set of argument positions, then it existentiallyterminates in J .To get de
reasing templates, we asso
iate with ea
h re
ursive template P : (r : a)( �a relation� su
h that P is de
reasing with respe
t to some set of argument positions in allthe pre-interpretations where � is well-founded. If ne
essary, we for
e well-foundednessby the 
onstraintWellFounded(�). Su
h 
onstraints will be the only non-�rst-order state-ments that we will use in the 
onstraints. However, we will not have to prove them. Aswe will see, either WellFounded(�) is inherited, or � is internalised by a relation thatis known to be well-founded. In the former 
ase no proof is needed, sin
e the statementbelongs to the axioms. In the latter 
ase, WellFounded(�) is guaranteed by the internal-isation. Finally, when a well-founded relation is de
lared in a framework, we 
an assumethat the �rst-order instan
es of the 
orresponding indu
tion and des
ending 
hain prin
i-ples impli
itly belong to the axioms. This allows, in parti
ular, indu
tive reasoning overthe re
ursive stru
ture of templates.By introdu
ing well-founded relations as required in frameworks, we have that existen-tial termination is always guaranteed, either by the 
onstraints, or by their internalisation.Therefore, 
orre
tness proofs will be based on the provability of the open 
ompletion,a

ording to Theorems 5.1 and 5.2.Example 5.2. We 
an prove the 
orre
tness of the s
hema DC in Example 2.1. The
onstraintWellFounded(�) is not stri
tly needed here, sin
e the template is not re
ursive.
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hardsonHowever, WellFounded(�) will be ne
essary for the existential termination of re
ursivespe
ialisations. If we do not have this 
onstraint here, we will have to introdu
e it whenwe use re
ursive 
lauses.The other 
onstraints are needed to prove the 
ompletion. In this 
ase, O
omp+(Td
)is (logi
ally equivalent to):8x; y; h; a; b : r(x; y) d(x; h; a) ^ re
(a; b) ^ 
(h; b; y)and O
omp�(Td
) is:8x; y : r(x; y) ! 9h; a; b : d(x; h; a) ^ re
(a; b) ^ 
(h; b; y):O
omp+(Td
) is to be proved using the axioms, the 
onstraints, the spe
i�
ations of thepredi
ates in the body, and the de�nition:8x; y : r(x; y)$ (:Ir(x) _ Or(x; y)):This de�nition is to be repla
ed by:8x; y : r(x; y) $ (Ir(x) ^ Or(x; y))to prove O
omp�(Td
).Finally, we 
onsider spe
ialisation methods that preserve 
orre
tness. To prove 
orre
t-ness preservation, we use our results so far, together with unfolding or 
orre
t folding.Of 
ourse, the idea is to give general transformation rules that have been proved 
orre
ton
e and for all. Here, we 
ite just two of them.Example 5.3. The �rst transformation rule allows us to repla
e single 
alls by sequen
esof 
alls, in the body of a template. The rule is:Let q(t) be a 
all o

urring in the body of a template P : (r : a) ( �, and letIq ! (q(x) $ Oq(x)). If the internalisation Oq(x) $ A(x) ^ B(x) satis�es the
onstraints for Oq, then the 
all q(t) 
an be repla
ed by 
alls to a(t) and b(t),where a and b are two new predi
ates spe
i�ed as follows:Ir ! (a(x)$ A(x));Ir ^ A(x) ! (b(x)$ B(x)):For the 
orre
tness of the transformation, we use Theorem 5.1 to prove that the (non-re
ursive) 
lause r(x)  a(x); b(x) is 
orre
t with respe
t to its spe
i�
ations. Then,the result follows from 
orre
t 
omposability of 
orre
t templates and from the fa
t thatunfolding preserves the minimum model semanti
s.A similar result holds if r has a sele
tor spe
i�
ation.Example 5.4. The se
ond transformation rule allows us to repla
e variables with opensorts by tuples, if suitable 
onditions are satis�ed. The de�nition of the rule requires adetailed re
ursive de�nition of a suitable translation, so we omit it here for la
k of spa
eand just give an example that shows how the translation works and how it 
an be proved
orre
t, in a parti
ular 
ase.Assume that we want to repla
e x by u and v in the predi
ate r(x; y) of the DC s
hema.To this end, we rename I by Pair(U; V ) and we 
onsider the union of the renamed frame-work with PAIR(U; V ). Then we introdu
e a new de
laration r0 : [U; V;O℄ and the
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hemas 29spe
i�
ation Ir(hu; vi)! (r0(u; v; y)$ Or(hu; vi; y)). We 
an easily prove that the tem-plate r0(u; v; y)  x = hu; vi; r(x; y) is 
orre
t. By template 
omposition and unfolding,we get r0(u; v; y)  x = hu; vi; d(x; h; a); re
(a; b); 
(h; b; y). By a similar transformationon d(x; h; a), we get the template:r0(u; v; y) d0(u; v; h; a); re
(a; b); 
(h; b; y):Of 
ourse, the steps that have been performed here manually, should be performed au-tomati
ally by the rule. When applied to a variable of sort s, the rule 
he
ks that s 
anbe 
onsistently instantiated by Pair(U; V ), with U and V new sorts. This is guaranteedfor any open sort s,y like I in the example.5.2. using 
orre
t s
hemas for program synthesisIn this se
tion we brie
y explain how s
hemas 
an be (re)used in program derivation.As we mentioned earlier, we 
an use the same methods for spe
ialising a s
hema toa spe
i�
 ADT and for deriving a program for solving a given task. In the �rst 
ase,the result is another, more spe
i�
 
orre
t s
hema, whilst in the latter it is a (
losed)program.As we said in Se
tion 2.3, we view the program synthesis pro
ess as problem solvingby su

essive problem redu
tion until the sub-tasks 
an be solved. Therefore, in programsynthesis, we start with a (problem) spe
i�
ation Sprobr of r : a, in the 
ontext of a frame-work G representing an ADT or a problem domain. Suppose S is a s
hema 
ontaining atemplate P : (r : a) ( � with spe
i�
ation (Sr; S�), and a framework F(�). We shallassume that r : a is the same in Sr and in Sprobr , and the sort symbols in the arity aare the only 
ommon symbols of G and S. If this does not hold, then we have to �rstperform a suitable renaming and (possible) spe
ialisation of the s
hema. We also assume,for 
on
iseness, that Sr is a 
onditional spe
i�
ation with input 
ondition Ir and output
ondition Or. A program derivation step then has the following form:(i) We internalise Ir, Or and the other open symbols of the s
hema, in the 
omposedframework F(�) + G. The internalisation should allow us to prove that (Sr; S�)redu
es to (Sprobr ; S�), that is, 
orre
tness (in F(�) + G) with respe
t to (Sr; S�)entails 
orre
tness with respe
t to (Sprobr ; S�). A suÆ
ient 
ondition is that Sr $Sprobr 
an be proved, but there are other useful suÆ
ient 
onditions (see (Flener etal., 1997)).(ii) We try to prove the 
onstraints involving Ir and Or. The result is that either we 
anprove a 
onstraint, or we (possibly) simplify some parts of it. In the �rst 
ase, we
an delete the 
onstraint, whilst in the latter, we inherit the simpli�ed 
onstraint.(iii) We (possibly) transform the template P : (r : a) ( Æ, to get a better spe
ialisedtemplate. The transformation may involve the internalisation of other open symbols,as well as the analysis of appropriate 
onstraints.Program synthesis may halt with a spe
ialised s
hema, or with a 
losed program, i.e.,a set of templates where the predi
ates in the body of a template o

ur in the head ofsome other 
lause. For the latter 
ase, we require that ea
h 
onstraint has been proved.y For an open sort, any interpretation is allowed, while 
onstrained sorts are open sorts that 
an beinterpreted in a 
onstrained way.
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hardsonThe whole synthesis pro
ess is su
h that, if at ea
h step the framework union F(�)+Gis 
onsistent (i.e., it has a non-empty 
lass of intended interpretations), then the �nalframework is 
onsistent, and the program 
ontained in it is 
orre
t with respe
t to thespe
i�
ations.Now we 
lose this se
tion with two examples. The �rst one shows a spe
ialisation ofthe DC s
hema (in Example 2.1) in the ADT of natural numbers, while the se
ond oneuses this spe
ialisation to synthesise a 
losed program.Example 5.5. We 
an get a spe
ialisation of DC to natural numbers as follows. Werename I by Nat , and then we build the union NAT + DC(Nat ;O; Ir; Or; Od;�). Sin
ewe are using natural numbers, we repla
e the spe
i�
ation of the de
omposition predi
ateOd(x; h; a) by:Oprobd (x; h; a) : x = 0 ^ h = [0℄ ^ a = [ ℄) _(9y; i; v : x = s(y) ^ h = [i℄ ^ a = [v℄ ^ i � s(0) ^ i+ v + v = x):For example, Oprobd (9; [1℄; [4℄) holds, be
ause 1+4+4=9. The de
omposition impli
it inthe spe
i�
ation is to 
ompute the integer half of x, and then to apply re
ursion to it.Now we pro
eed to the internalisation phase. To redu
e the spe
i�
ation 
ontainingOd to the one 
ontaining Oprobd , it suÆ
es to internalise Od by:Od(x; h; a)$ Oprobd (x; h; a):Also we internalise � by: x � y $ (x+ x � y ^ :y = 0):This relation is known to be well-founded, and the length of a 
hain starting from y islogarithmi
 in y. Therefore, 
onstraint C3: WellFounded(�) is satis�ed.We also have to prove 
onstraints involving Od. We 
an easily see that C1 is satis�ed,for every interpretation of Ir, i.e., with Ir open. We 
an simplify C2 to:Ir(s(x)) ^ i � s(0) ^ i+ v + v = s(x)! Ir(v);and C4 to:Ir(s(x)) ^ i � s(0) ^ i+ v + v = s(x) ^ Or(s(x); y)! 9w : Or(v; w);and then inherit these simpli�ed 
onstraints.Now we spe
ialise our templates. We 
an synthesise in the framework for naturalnumbers the following 
orre
t de
omposition program:d(0; [0℄; [ ℄)  d(s(y); [0℄; [v℄)  sum(v; v; s(y))d(s(y); [s(0)℄; [v℄)  sum(v; v; y)where the predi
ate sum is spe
i�ed by:ysum(x; y; z)$ z = x+ y:So, 0 is the primitive 
ase, and s(x) the non-primitive one. The latter is de
omposedy This is a 
onditional spe
i�
ation with no input 
ondition.



An Abstra
t Formalisation of Corre
t S
hemas 31into a list of one simpler value, to whi
h the re
ursor re
 is to be applied. Using thespe
i�
ation of re
, we 
an get:r(0; y)  
([0℄; [ ℄; y)r(s(x); y)  sum(v; v; s(x)); r(v; w); 
([0℄; [w℄; y)r(s(x); y)  sum(v; v; x); r(v; w); 
([s(0)℄; [w℄; y):Now, if we introdu
e the spe
i�
ations:
1(y)$ Or(0; y);Ir(x) ^ :x = 0 ^ i+ v + v = x ^ i � s(0) ^ Or(v; w)! (
2(i; w; y)$ Or(x; y));we 
an derive the 
orre
t program:
([0℄; [ ℄; y)  
1(y)
([i℄; [w℄; y)  
2(i; w; y)and we get our �nal spe
ialised template:r(0; y)  
1(y)r(s(x); y)  sum(v; v; s(x)); r(v; w); 
2(0; w; y)r(s(x); y)  sum(v; v; x); r(v; w); 
2(s(0); w; y):In this template, lists have disappeared, and we have obtained a s
hema for divide-and-
onquer for the stru
ture of natural numbers.Now, the reusability of the s
hema obtained in this example has the limitation thatthe input variable x : Nat 
annot be repla
ed by tuples, be
ause the spe
ialisation usedin Example 5.4 
annot be applied to the 
losed sort Nat . To get a more general s
hema,we 
an spe
ialise DC, by repla
ing I by a pair (Nat ; I), and then apply the spe
ialisationused in Example 5.5. Thus we get the s
hema:S
hema DCNAT (I;O; Ir; Or);import: NAT ;de
larations:Ir : [Nat ; I℄;Or : [Nat ; I;O℄;
onstraints:C1 : Ir(s(x); y) ^ i � s(0) ^ i+ v + v = s(x)! Ir(v; y);C2 : Ir(s(x); y) ^ i � s(0) ^ i+ v + v = s(x) ^ Or(s(x); y; z)! 9w : Or(v; y; w);spe
ifi
ations:r : [Nat ; I;O℄;S
r : Ir(x; y)! (r(x; y; z)$ Or(x; y; z));sum : [Nat ;Nat ;Nat ℄;S
sum : sum(x; y; z)$ z = x+ y;
1 : [I;O℄;S

1 : 
1(y; z)$ Or(0; y; z);
2 : [Nat ; I;O;O℄;Sg

2 : Ir(x; y) ^ :x = 0 ^ i+ v + v = x ^ i � s(0) ^ Or(v; y; w)!(
2(i; y; w; z)$ Or(x; y; z));
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hardsontemplate:r(0; y; z)  
1(y; z)r(s(x); y; z)  sum(v; v; s(x)); r(v; y; w); 
2(0; y; w; z)r(s(x); y; z)  sum(v; v; x); r(v; y; w); 
2(s(0); y; w; z):Finally, as an example of a synthesis of a 
losed program, we use this s
hema tosynthesise a program for the produ
t of natural numbers.Example 5.6. We start from the following problem spe
i�
ation:prod(x; y; z)$ z = x � y:To apply the s
hema DCNAT , we repla
e I and O by Nat , and we rename r by prod , Irby Iprod , and Or by Oprod . Then we internalise Oprod by Oprod (x; y; z) $ z = x � y andIprod by Iprod (x; y)$ true. In this way, the problem spe
i�
ation be
omes equivalent tothat in the s
hema.Now we have to 
he
k the 
onstraints. They are satis�ed, as we 
an easily see.As a �nal step, we eliminate the expli
it de�nition of Oprod in the spe
i�
ations of 
1and 
2. We get
1(y; z)$ z = 0 � y;:x = 0 ^ i+ v + v = x ^ i � s(0) ^ w = v � y ! (
2(i; y; w; z)$ z = x � y);that is, 
1(y; z)$ z = 0 and 
2(i; y; w; z)$ (i = 0^z = w+w)_(i = s(0)^z = w+w+y).From the spe
i�
ations, we 
an get the �nal template:prod(0; y; 0)  prod(s(x); y; z)  sum(v; v; s(x)); prod (v; y; w); sum(w;w; z)prod(s(x); y; z)  sum(v; v; x); prod (v; y; w); sum(w;w; u); sum(y; u; z):To get a �nal 
losed program, we need to synthesise a program for sum. We 
ouldalso transform the program, by spe
ifying the predi
ate half (w; x) $ w + w = x, andsynthesising a program for half. 6. Con
lusionIn our work, we use spe
i�
ation frameworks (i.e. open �rst-order axiomatisations) toformalise program s
hemas (
ontaining templates) in order to ensure that the templates(and the programs that are instan
es thereof) do indeed have the behaviour we intendthem to have. In this paper, we have shown an abstra
t formalisation of a 
orre
t pro-gram s
hema as a spe
i�
ation framework 
ontaining spe
i�
ations (of predi
ates), andtemplates whi
h are open logi
 programs (
ontaining the spe
i�ed predi
ates) that are
orre
t with respe
t to the spe
i�
ations. We have also outlined how we 
an use su
h
orre
t s
hemas to synthesise 
orre
t logi
 programs. Our work is very strongly in
u-en
ed by Smith's pioneering work (Smith, 1985; Smith, 1990; Smith, 1996) in appli
ativeprogramming sin
e the mid 1980s.In 
ontrast to most approa
hes (with the ex
eption of Smith's) to s
hemas in theliterature, whi
h regard s
hemas as purely synta
ti
 
onstru
ts (whi
h therefore do not
apture domain knowledge), our approa
h de�nes s
hemas as semanti
 entities with botha model theory and a proof theory. The model theory allows us to de�ne a suitable notionof s
hema 
orre
tness, whi
h in turn provides a formalisation of 
orre
t s
hema reuse.
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t S
hemas 33The proof theory enables us not only to prove s
hema 
orre
tness for any given s
hemabut, more importantly, also to use s
hemas to guide program synthesis (whi
h must bebased on formal proofs).S
hema 
orre
tness is based on the 
onsisten
y of frameworks and the 
orre
tness ofthe templates with respe
t to the spe
i�
ations of the predi
ates in the templates. This
orre
tness leads to 
orre
t s
hema reuse at all three levels of frameworks, spe
i�
ationsand templates. Framework reuse o

urs via framework operations su
h as spe
ialisationand 
omposition. Spe
i�
ation reuse mainly takes the form of spe
i�
ation transforma-tion. Template reuse 
an be e�e
ted by importing s
hemas into other s
hemas. It is the
orre
t reuse at these three levels that makes our semanti
 
hara
terisation of s
hemasunique. More importantly, it de�nes 
orre
t s
hema reuse (for program synthesis).Spe
i�
ations also play an important role in guiding program synthesis. Di�erent formsof spe
i�
ations have di�erent asso
iated proof methods, and these methods provideguidan
e on how to pro
eed at various stages during synthesis.For frameworks, we have shown examples of 
losed and open parametri
 frameworks,with loose axiomatisations (with many diverse models) and ADT-axiomatisations (withunique isoinitial term-models). However, we have not explained the details of isoinitialmodels, whi
h are their intended models, be
ause this is not the 
entral issue of thispaper (although we have explained that we use these models in order to deal with nega-tion). Indeed, 
orre
tness 
an be based on any 
lass of intended interpretations. This isimportant, sin
e it allows the use of loose axiomatisations, whi
h in our opinion 
annotbe avoided if we want to deal with real programs.Sin
e we 
on
entrate on the semanti
s of s
hemas, we do not de�ne a pre
ise systemof operations on frameworks, but we just give the kind of semanti
s needed to applythe theory of 
orre
tness (based on steadfastness). Any su
h system for frameworks (i.e.theories) that 
an be interpreted a

ording to this semanti
s (in parti
ular, by frameworkmorphisms) will work. In parti
ular, we 
an apply the metatheory developed in the �eldof algebrai
 ADTs (Marti-Oliet and Meseguer, 1996).So far we have only the basis for a proof theory, and our future work will in
lude thedevelopment of a spe
ialised proof theory for s
hema 
orre
tness and s
hema spe
ialisa-tion. This will in turn provide the foundations for implementing a system based on ourideas.Another important future obje
tive is to identify templates and 
onstraints for otherdesign methodologies than divide-and-
onquer. On
e again, Smith (Smith, 1990) hasshown the way, namely by 
apturing a vast 
lass of sear
h methodologies in a global-sear
h s
hema. This was adapted to 
onstraint logi
 programming in (Flener et al.,1998b).Finally, a few words about the 
onsisten
y of frameworks. We use 
onsisten
y preserv-ing operations and formal 
orre
tness proofs, starting from prede�ned and well under-stood ADT frameworks and s
hemas. This guarantees 
onsisten
y and formal 
orre
tness.Of 
ourse, the 
orre
tness of formal spe
i�
ations with respe
t to informal requirements
annot be guaranteed. To partially remedy this, we allow frameworks with loose ax-iomatisations of their intended interpretations. Although we 
annot automati
ally 
he
kmistakes and in
onsisten
ies, we 
an have some partial 
he
ks, and this is surely a betteralternative than any 
ompletely informal approa
h of translating (informal) requirementsinto (formal) spe
i�
ation by ADT frameworks and s
hemas.
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