
A New De
larative Bias for ILP:Constru
tion ModesEsra Erdem1 and Pierre Flener21 Dept of Computer S
ien
es 2 Dept of Information S
ien
eThe University of Texas at Austin Uppsala University, Box 513Austin, TX 78712, USA S{751 20 Uppsala, Swedenesra�
s.utexas.edu Pierre.Flener�dis.uu.seAbstra
t. Indu
tive logi
 programming (ILP) systems use some de
lar-ative bias to
onstrain the hypothesis spa
e. We introdu
e a new de
lara-tive bias,
alled
onstru
tion modes,
apturing the required data
ow of arelation, and design a language for expressing su
h
onstru
tion modes.Their semanti
s is
aptured via the notion of admissibility. Experimentswith the ILP systems synapse and dialogs have established the use-fulness of
onstru
tion modes. Sin
e the new bias is orthogonal to theexisting sear
h biases, it
an be used in
onjun
tion with the existingbiases.1 Introdu
tionIn indu
tive logi
 programming (ILP) [10℄, a hypothesis H is to be inferredfrom assumed-to-be-in
omplete information (or: eviden
e) E and ba
kgroundknowledge B su
h that B ^H j= E, where H , E, B are logi
 programs. Variousmethods are applied to
onstrain the hypothesis spa
e. A relevant method isthe provision of some de
larative bias, whi
h is any form of additional inputinformation that restri
ts the hypothesis spa
e (see [11℄ for a survey). One of thekinds of de
larative bias that
urrent ILP systems use is sear
h bias, determiningwhi
h part of the hypothesis spa
e is sear
hed, and how it is sear
hed. Examplesare input mode, type, and multipli
ity de
larations; they are
ombined into thesingle
on
ept of mode in the ILP system progol [9℄. Consider, for example,the progol modes for the inferen
e of a hypothesis/program for append:modeh(1; append(+list;+list;�list))modeh(�; append(�list;�list;+list))modeb(1; append(+list;+list;�list))modeb(�; append(�list;�list;+list))modeb(1;+list = �integer � �list)modeb(1;�list = +integer �+list) (Mappend)Here, list denotes a type. The expression +list denotes a ground termof type list, whereas �list denotes a variable of type list. Then,append(+list;+list;�list) expresses that atoms of relation append have three

parameters, where the �rst two parameters may be ground lists and the thirdparameter a list variable. The �rst line above expresses that su
h atoms may ap-pear in the heads of hypothesis
lauses, and that there is one
orre
t instan
e ofsu
h atoms in the intended interpretation of append. The se
ond line expressesthat atoms of relation append, where the �rst two parameters are variable listsand the third parameter a ground list, may also appear in the heads of hy-pothesis
lauses, and that there is an inde�nite number of
orre
t instan
es ofsu
h atoms. Similarly, the third and fourth lines indi
ate the atoms of relationappend that may appear in the bodies of hypothesis
lauses. The expression+list = �integer � �list says that equality (=) may o

ur in atoms of the formL = H �T , where L is a ground list, H an integer variable, and T a list variable.The �fth and sixth lines express that equality may only appear in the bodies ofhypothesis
lauses, in atoms of the form L = H �T , and that there is one
orre
tinstan
e if either L or both H and T are ground at
all-time, with the otherparameters being variables then.Su
h mode de
larations drasti
ally redu
e the hypothesis spa
e, as only
lauses satisfying them will be
onsidered. However, su
h mode de
larations areoperational, as they only
apture run-time properties of the atoms in
lauses. In-deed, they do not
apture the synta
ti
 and semanti
 stati
 relationships amongthe formal parameters of the relation for whi
h a program is to be inferred.We introdu
e a new sear
h bias,
alled
onstru
tion modes, that
apturesthese stati
 relationships in a de
larative way.For instan
e,
onsider the following program:
ompose(H;V; Y) odd(H); Y = V
ompose(H;V; Y) even(H); Y = H � V (P
ompose)In both
lauses, the �rst two parameters are mandatorily used to
onstru
t thethird parameter. This is represented by the
onstru
tion mode:
ompose(
ons;
ons; res)where
ons denotes the parameters used to
onstru
t the parameter denoted byres.A
onstru
tion mode does not only
apture some information about the syn-ta
ti

onstru
tion of the parameters, but also
aptures some information abouttheir semanti

onstru
tion. For instan
e, in the �rst
lause of P
ompose, param-eter Y is equal to V provided H is odd. Here, V parti
ipates synta
ti
ally in
onstru
ting Y , whereas H parti
ipates semanti
ally in
onstru
ting Y . In these
ond
lause, bothH and V parti
ipate synta
ti
ally in
onstru
ting Y , whereasH also parti
ipates semanti
ally. The information about the synta
ti
 and se-manti

onstru
tion of parameters is
aptured by the well-de�ned semanti
s of
onstru
tion modes via the
on
ept of \admissibility."Besides, a
onstru
tion mode gives information not only about
onstru
-tion, but also about de-
onstru
tion (or: de-stru
turing). Consider the relationinterse
tion, where interse
tion(X;Y; Z) i� list Z is the interse
tion of lists X2

and Y . Here the �rst two parameters of interse
tion(X;Y; Z) are de-
onstru
tedinto Z. This is represented by the
onstru
tion mode:interse
tion(des; des; res)where des denotes the parameters that are de-stru
tured into the parameterdenoted by res.Note that what is meant by (de-)
onstru
tion is thus not operational butstati
: a
onstru
tion mode
aptures the intrinsi
 relationship between the pa-rameters, independently of any run-time
onsiderations. Informally, a
onstru
-tion mode will thus state whi
h parameters are (de-)
onstru
ted from whi
hother parameters, and also expresses whether su
h (de-)
onstru
tion is manda-tory or optional. The
onstru
tion modes
apture the required data
ow of ea
hinvolved relation. Among other things, this is how
onstru
tion modes di�erfrom \relational
li
h�es" of [13℄. Relational
li
hes
apture the data
ow amongthe atoms of a
lause whereas
onstru
tion modes
apture the data
ow amongthe parameters of an atom.It is important to note that, under some
onditions, the
on
ept of
onstru
-tion modes introdu
ed in this paper follows from our earlier work presented in [2℄;the
on
ept of
onstru
tion modes introdu
ed in this paper is more general.Organization of this Paper. This paper is organized as follows. In Se
tion 2, weformally de�ne our new notion of
onstru
tion mode, and we design a languagefor expressing su
h
onstru
tion modes. In Se
tion 3, we de�ne admissibilitywrt a
onstru
tion mode, whi
h
aptures what it means for a de�nite
lause tosatisfy the
onstru
tion modes given for the relations appearing in it. Then, inSe
tion 4, we show how
onstru
tion modes have been su

essfully used in ILPsystems. Finally, in Se
tion 5, we review related work, outline future work, and
on
lude.Notation. In expressions (i.e., literals or terms) appearing in logi
 programsor spe
i�
ations, symbols starting with upper
ase letters designate variables,whereas all other symbols designate either fun
tions or relations, the distin
tionbeing always
lear from
ontext. All these symbols may be subs
ripted withnatural numbers or mathemati
al variables (ranging over natural numbers). Un-quanti�ed variables are assumed to be universally quanti�ed over the entireformula in whi
h they o

ur. The empty list nil is also denoted by [℄, and thenon-empty list H �T of head H and tail(-list) T (using the binary in�x type
on-stru
tor �) is also denoted by [H jT ℄. Similarly, the �xed-length listX1 �: : :�Xn �nilis also denoted by [X1; : : : ; Xn℄. When we want (or need) to group several termsinto a single term, we represent this as a tuple, using angled bra
kets. For in-stan
e, hf(a; 22); g(X)i is a term representing the
ouple built of the two termsf(a; 22) and g(X). 3

2 Constru
tion Modes: A New De
larative BiasInformally, a
onstru
tion mode for a relation states whi
h parameters are (de-)
onstru
ted from whi
h other parameters, and also expresses whether su
h (de-)
onstru
tion is mandatory or optional. For instan
e, in append atoms, the thirdparameter is mandatorily
onstru
ted from the �rst two parameters. Contrary toinput modes, there is no notion of di�erent usages of a relation a

ording to
on-stru
tion modes. Indeed,
onstru
tion modes are a stati
 notion, whereas inputmodes are an operational notion. However, a
onstru
tion mode may still not beunique for a given relation, be
ause there may be several ways of expressing itsdata
ow. For instan
e, in reverse atoms, the se
ond parameter is mandatorily
onstru
ted from the �rst parameter, or vi
e-versa. After introdu
ing furthernotation used, we in
rementally de�ne the notion of
onstru
tion mode.2.1 Synta
ti
 Constru
tionLet us �rst de�ne some notions of synta
ti

onstru
tion.De�nition 2.1 (Leaves and verti
es of a term)The leaves of a term t, denoted by leaves(t), are the set of variables and fun
tionsappearing in t.The verti
es of a term t, denoted by verti
es(t), are the multi-set of variablesand fun
tions appearing in t.For instan
e, leaves([1; B; 1℄) = f1; B; �; nilg, and leaves([ajT ℄) = fa; �; Tg =verti
es([ajT ℄), whereas verti
es([1; B; 1℄) = f1; 1; B; �; �; �; nilg.De�nition 2.2 (Synta
ti

onstru
tion)Term s is synta
ti
ally obtained from term t if leaves(t) � leaves(s). We denotethis by t � s.Term s synta
ti
ally
ontains term t if verti
es(t) v verti
es(s), where v de-notes multi-set in
lusion. We denote this by t v s.For instan
e, ha; b;
i is synta
ti
ally obtained from ha; b; bi, be
auseleaves(ha; b; bi) = fa; bg � fa; b;
g = leaves(ha; b;
i). However, ha; b;
i does notsynta
ti
ally
ontain ha; b; bi, be
ause verti
es(ha; b; bi) = fa; b; bg 6v fa; b;
g =verti
es(ha; b;
i).For atoms of a given relation, one
an express synta
ti

onstru
tion
on-straints between their parameters: this will be one of the roles of
onstru
tionmodes (de�ned below).The reason why we
onsider fun
tions of arity higher than 0 (rather thanjust
onstants) in leaves and verti
es is that we want to a
hieve fa
ts su
h asf(a; b) 6v g(a; b). Similarly, the reason why we sometimes
onsider multi-sets(rather than just sets) is that we want to a
hieve that [a; b; b℄ 6v [a; b℄. Finally,note that the two notions of synta
ti

onstru
tion are mu
h more general thanthe sub-term (i.e., sub-tree) notion, and this additional generality is
ru
ial inmany
ases. For instan
e, in delete(d; [g; e; d℄; [g; e℄), the verti
es of [g; e℄ are asub-multi-set of the verti
es of [g; e; d℄, but [g; e℄ is not a sub-tree of [g; e; d℄.4

2.2 Semanti
 Constru
tionTo
apture more than just synta
ti

onstru
tion, whi
h takes pla
e inside asingle atom, we have to extend this notion to semanti

onstru
tion, over de�-nite
lauses. Indeed, body atoms may perform some
omputations of semanti

onstru
tion of some parameters in the head atom, using relations other thanequality. Su
h atoms
annot be partially evaluated into the head of the
lause,unlike equality atoms. For instan
e, in min(X;Y; Z) X � Y; Z = X , one
anpartially evaluate Z = X into the head min(X;Y; Z), yielding min(X;Y;X) X � Y , but one then
annot further partially evaluateX � Y intomin(X;Y;X).Also, parameter Y does not synta
ti
ally
ontribute to
onstru
ting resultX (thethird parameter), but it does so semanti
ally (via X � Y).2.3 Constru
tion ModesWe
an now introdu
e our new
on
ept of
onstru
tion modes.De�nition 2.3 (Constru
tion modes)Let r be a relation of arity n, and the mi (1 � i � n) be non-empty subsets ofthe set f
ons1; : : : ;
onsn; des1; : : : ; desn;may1; : : : ;mayn;may�; res1; : : : ; resngsu
h that:{ for every i,j in 1::n, we have that resj is in mi i� there is some k 6= i in 1::nsu
h that
onsj 2 mk or desj 2 mk or mayj 2 mk;{ for every j in 1::n, there is at most one i in 1::n su
h that resj 2 mi.Then r(m1; : : : ;mn) is a
onstru
tion mode for relation r, and mi is a
onstru
-tion mode for the ith parameter of r.For instan
e,
ompose(f
ons1g; f
ons1g; fres1g) is a
onstru
tion mode,meant to express that the third parameter is a result parameterthat must be
onstru
ted from the �rst two parameters. Contrast thiswith the progol modes modeh(1;
ompose(+integer;+list;�list)) andmodeh(1;
ompose(�integer;�list;+list)), to see that
ompletely di�erentinformation is
onveyed. For
onvenien
e, we often drop the indexes jof mayj ,
onsj , desj , resj when the
onstru
tion modes for all param-eters have the same index. Similarly, ea
h singleton
onstru
tion modefmg for a parameter will often be denoted by m. So the
onstru
-tion mode above
an also be written as
ompose(
ons;
ons; res). Also,unionInter(f
ons1; des2g; f
ons1; des2g; res1; res2) is a
onstru
tion mode forunionInter(A;B;U; I) (whi
h holds i� lists U and I are the union and inter-se
tion, respe
tively, of lists A and B), expressing that result U is
onstru
tedfrom A and B, whereas result I is de-
onstru
ted from A and B. Note thatr(may1;
ons1) is not a
onstru
tion mode, be
ause no parameter is being desig-nated as the result of
onstru
tion from the two given parameters. Also, r(res1)is not a
onstru
tion mode, be
ause it does not indi
ate from what parame-ters the given result parameter must or may be (de-)
onstru
ted. Moreover,5

...

...

may 2 may

may

n

*

1 may

cons cons consdes des des1 1 2 2 n nFig. 1. Partial generality order on parameter modesr(
ons1; res1; res1) is not a
onstru
tion mode, be
ause a result parameter
an-not possibly be in two pla
es at the same time. Finally, r(may�;may�) is a
onstru
tion mode.Sin
e we do not further
onsider other modes in the
ore of this paper, weoften simply speak about modes here.In a �rst approximation (and for synta
ti

onstru
tion only), the intendedsemanti
s of a
onstru
tion mode is as follows:{ mode resj means the parameter in the
orresponding position is result pa-rameter number j, to be (de-)
onstru
ted from other (non-result) parame-ters;{ mode
onsj means all of the verti
es of the parameter in the
orrespondingposition are mandatory in synta
ti
ally
onstru
ting the parameter in the
orresponding position of resj ;{ mode desj means some of the verti
es of the parameter in the
orrespondingposition are mandatory in synta
ti
ally
onstru
ting the parameter in the
orresponding position of resj (hen
e the parameter is de-
onstru
ted intothe result);{ modemayj means the parameter in the
orresponding position is optional forsynta
ti
ally (de-)
onstru
ting the parameter in the
orresponding positionof resj ;{ modemay� means the parameter in the
orresponding position is optional forsynta
ti
ally (de-)
onstru
ting any of the parameters in the
orrespondingpositions of all resj .We will re�ne (for semanti

onstru
tion) and formalize all this in the following,via the
on
ept of admissibility (in Se
tion 3 below).Note that mode may� generalizes every mayj , and that ea
h mayj itselfgeneralizes
onsj and desj . Figure 1 illustrates this partial generality order. Sothe mode reverse(
ons1; res1)
ould be rewritten as reverse(may1; res1), butthe ensuing loss of knowledge might damage the pre
ision of any
omputations6

based on modes. It is thus always preferable to use the least general
onstru
tionmode, a

ording to the partial order of the Figure 1.A mode may not be unique, though: for instan
e, reverse(res1;
ons1) isan alternative mode to reverse(
ons1; res1). However, this does not mean thatthere are several possible usages of the reverse relation a

ording to its
onstru
-tion modes:
ontrary to the operational input modes, su
h as reverse(+;�) orreverse(�;+), whi
h de
lare the possible usages of a program for a relation,
onstru
tion modes are a stati
 notion and only de
lare the data
ow intrinsi
to the relation, independently of any usage, even if there may well be severaldi�erent ways of stating it.Some relations do not have any result parameters. For instan
e, odd(N) andX � Y are just tests; this is a

ommodated here by setting their modes toodd(may�) and � (may�;may�).The de�nition of
onstru
tion modes itself
an be further generalized, intro-du
ing for instan
e a mode n
d (for: neither
ons nor des), expressing that theparameter in the
orresponding position may not be used for (de-)
onstru
tingany of the result parameters. We do not
onsider su
h extensions in this intro-du
tory paper, but the
orresponding generalizations are straightforward. Ourobje
tive here is merely to establish some simple
on
epts. The key issue is thatmodes
an be pre-determined for any relation, given enough knowledge aboutit. It is important to note that the
on
ept of
onstru
tion modes intro-du
ed in this paper signi�
antly extends the one presented in [2℄. For in-stan
e, in [2℄, sin
e the
onstru
tion mode mustj is used instead of
onsjand desj , and sin
e the modes for the parameters of a relation
an be oneof fmustj;mayj ; resjg, the
onstru
tion mode for the relation unionInter be-
omes unionInter(may;may; res; res). Note that this does not give as useful in-formation as unionInter(f
ons1; des2g; f
ons1; des2g; res1; res2) does. It is alsoimportant to note that the
on
ept of admissibility is extended in this paper aswell. This is explained in the next se
tion.3 AdmissibilityIn a �rst version, the
on
ept of admissibility
aptures what it means for anatom to satisfy a
onstru
tion mode for its relation. After re�ning a de�nitionfor this
on
ept, based purely on synta
ti

onstru
tion, we will generalize itand de�ne what it means for a de�nite
lause to satisfy a
onstru
tion modefor the relation in its head, and add
onsiderations of semanti

onstru
tion. We
on
lude this se
tion by dis
ussing some properties of admissibility.3.1 Synta
ti
 Admissibility of an Atom wrt a Constru
tion ModeLet r(m1; : : : ;mn) be a mode m for a relation r of arity n. Without loss ofgenerality, let the indexes appearing in m run from 1 to k in
lusive, wherek designates the number of result parameters in m. Let r(t1; : : : ; tn) be the7

onsidered atom. For every j in 1::k, let Consj = hti j
onsj 2 mii. Similarly forMayj , May�, Resj . Also, for every j in 1::k, for every i in 1::n, let Desij = ti ifdesj 2 mi, and Desij = undefined otherwise.For instan
e, let the
onstru
tion mode ber(may�; f
ons1; des2g; f
ons1; des2g; res1; res2) and let the atom ber(1; [a℄; b; [a; b℄; hi). We then have that n = 5, k = 2, Cons1 = h[a℄; bi,Cons2 = hi, Desi1 = undefined for all i in 1::5, Des22 = [a℄, Des32 = b,Desi2 = undefined for all i in f1; 4; 5g, May1 = May2 = hi, May� = h1i,Res1 = h[a; b℄i, and Res2 = hhii.A

ording to the given informal approximate semanti
s of modes, for admis-sibility of atom r(t1; : : : ; tn) wrt mode m, we �rst need to express that everyparameter in the
orresponding position of
onsj is mandatory in synta
ti
ally
onstru
ting the parameter in the
orresponding position of resj . Here, we shouldthus use synta
ti

ontainment as a
tual instan
e of synta
ti

onstru
tion. For-mally: 81 � j � k : Consj v Resj (1)For instan
e, this is the
ase for the r atom and mode above. Note that Consjgroups together all parameters with mode
onsj , so that this single-iterated
ondition suÆ
es, be
ause ea
h resj parameter must be
onstru
ted from all its
onsj parameters. (If the union of some sets is a subset of a given set S, thenthese sets are themselves subsets of S.) Also note that k may be 0, su
h as in� (may�;may�);
ondition (1) then trivially holds.Similarly, we need to express that every parameter in the
orresponding po-sition of desj is mandatorily synta
ti
ally de-
onstru
ted into the parameterin the
orresponding position of resj . In other words, the desj parameters, ifany, are mandatorily synta
ti
ally
onstru
ted from at least the resj parameter.Formally:81 � j � k : 81 � i � n : Desij 6= undefined! Resj v Desij (2)For instan
e, this is the
ase for the r atom and mode above. Note that we herehave to write a double-iterated
ondition, be
ause ea
h desj parameter mustindividually be
onstru
ted from the resj parameter. (If a set S is a subset of aunion of sets, then S is not ne
essarily a subset of ea
h of these sets.)Last, we need to express that every parameter in the
orresponding posi-tion of mayj is optional for synta
ti
ally (de-)
onstru
ting the parameter in the
orresponding position of resj , and that every parameter in the
orrespond-ing position of may� is optional for synta
ti
ally (de-)
onstru
ting any of theparameters in the
orresponding positions of all resj . By themselves, these re-quirements lead to no formula, be
ause of the optional nature of this synta
ti
(de-)
onstru
tion. But we
an re�ne the given approximate semanti
s by alsorequiring that the parameter in the
orresponding position of resj
an only besynta
ti
ally
onstru
ted from the parameters in the
orresponding positions ofmayj , may�,
onsj . Here, we should use \is synta
ti
ally obtained from" as a
-tual instan
e of synta
ti

onstru
tion, be
ause synta
ti

ontainment might be8

too strong in some
ases (su
h as the example below). Formally:81 � j � k : Resj � hMayj ;May�; Consji (3')So no leaves may be \invented" when building ea
h Resj . For instan
e, this isthe
ase for the r atom and mode above. Note that this relationship does nothold when using synta
ti

ontainment (v) instead of �.However, this requirement is a bit too strong, as new leaves do some-times appear in parameters with mode resj . Indeed,
onstru
tors of the in-du
tively de�ned type of su
h a parameter may appear: for instan
e,
on-stant 0 and unary fun
tor s are type
onstru
tors for Peano numbers,whereas
onstant nil and binary fun
tor � are type
onstru
tors for lists.The atom addP lateau(a; [℄; [a; s(0)℄) does not satisfy
ondition (3') foraddP lateau(may1;
ons1; res1), be
ause 0 and s are \invented" by the parame-ter with mode res1. Sin
e su
h
onstru
tors
annot really be
onsidered new ifthe indu
tively de�ned type is known, we should add them to the right-hand sideof (3'). Sin
e we do not know how many times they may be \invented," we addthem on
e and use leaf set in
lusion (�) rather than vertex multiset in
lusion(v). Hen
e:81 � j � k : Resj � hMayj ;May�; Consj ; nil; �; 0; s; : : : i (3)We thus here do not allow non-type-
onstru
tor leaves to be invented by resjparameters, and leave su
h extensions as future work.Hen
e the following overall de�nition:De�nition 3.1 (Atom admissibility)An atom r(t1; : : : ; tn) is admissible wrt a mode m for r if
onditions (1), (2), (3)are satis�ed.This
on
ludes the re�nement of a de�nition of synta
ti
 atom admissibility.Let us now swit
h our attention to semanti

lause admissibility.3.2 Semanti
 Admissibility of a Clause wrt a Constru
tion ModeLet r(t1; : : : ; tn) B be a de�nite
lause, where B is a
onjun
tion of atoms,
alled the body of the
lause, and r(t1; : : : ; tn) is
alled the head of the
lause.It is
ru
ial that body B does not
ontain any equality atoms, be
ause oth-erwise insuÆ
ient stru
ture would be in the parameters in the head. For in-stan
e, instead of insert(X; [Y jL℄; R) X � Y;R = [X;Y jL℄, we preferinsert(X; [Y jL℄; [X;Y jL℄) X � Y .De�nition 3.2 (Proper and re
on
ilable
lauses)We refer to an equality-free de�nite
lause as a proper
lause.Two proper
lauses are re
on
ilable if they de�ne the same relation.9

For de�ning the semanti
 admissibility of a proper
lause wrt a
onstru
tionmode, we have to distinguish between its head atom and its body atoms.For the head atom, we �rst want its
ons parameters to be a
tually usedin
onstru
ting the result parameters. Condition (1) only veri�es synta
ti

on-stru
tion, but some of the verti
es of the
ons parameters might only be usedin the body B so as to a
hieve semanti

onstru
tion. So
ondition (1) must beadapted as follows: 81 � j � k : Consj v hResj ;B0i (4)where B0 is a tuple built of the atoms (seen as terms) of B. Similarly, we wantthe des parameters to be a
tually de-
onstru
ted into the result parameters.Condition (2) only veri�es synta
ti
 de-
onstru
tion, but some of the verti
es ofthe des parameters might only be used in the body B so as to a
hieve semanti
de-
onstru
tion. So
ondition (2) must be adapted as follows:81 � j � k : 81 � i � n : Desij 6= undefined! Resj v hDesij ;B0i (5)Last, we want the result parameters to be
onstru
ted only from the
ons andmay parameters, as well as from the prede�ned type
onstru
tors. Condition(3) only veri�es synta
ti

onstru
tion, but some of the leaves of the resultparameters might only be
omputed in the body B, by semanti

onstru
tionthus. So
ondition (3) must be adapted as follows:81 � j � k : Resj � hMayj ;May�; Consj ;B0; nil; �; 0; s; : : : i (6)For instan
e, the head of the
lause min(X;Y;X) X � Y satis�es
ondi-tions (4), (5), (6) for min(
ons1;
ons1; res1), but not
ondition (1), be
ause Ydoes not synta
ti
ally
ontribute to
onstru
ting result X , though it does sosemanti
ally (through the test X � Y), as testi�ed by the fa
t that (4) holds.Conditions (4), (5), (6)
an
ertainly be re�ned even further, in many di�er-ent ways, but we leave this for future work. Indeed, a �ne balan
e between theexpressiveness of
onstru
tion modes (i.e., the pre
ision of the approximation ofthe intended relation that they a
hieve) and the speed of veri�
ation of admissi-bility has to be stru
k. The
urrent de�nitions have evolved from a few years ofexperimentation and have been su

essfully deployed in two prototype systems(see Se
tion 4).For the body atoms now, other than their parti
ipation in
onditions (4), (5),(6) above, it is ne
essary to verify whether they are ea
h admissible (a

ordingto De�nition 3.1) wrt their own
onstru
tion modes. This only establishes theirsynta
ti
 admissibility, but there is nothing else that
an be done sin
e they arenot the head atoms of proper
lauses.Now we
an �nally propose the following de�nition of
lause admissibility:De�nition 3.3 (Clause admissibility and
lause set admissibility)A proper
lause r(t1; : : : ; tn) B is admissible wrt a mode m for r if
onditions(4), (5), (6) are satis�ed, and if the atoms of B are ea
h admissible wrt theirown modes.A set of re
on
ilable
lauses is admissible wrt a mode m for the relation in theirheads if ea
h of its
lauses is admissible wrt m.10

It is important to note that the
on
ept of admissibility introdu
ed above ismore general than the one presented in [2℄ in that it not only
aptures a moregeneral de�nition of the
onstru
tion modes but also
onsiders the fun
tors sand : as invented parameters besides the
onstants nil and 0.3.3 Properties of AdmissibilityAdmissibility has some interesting properties, as established next. They onlyhold for (sets of) proper
lauses whose bodies only involve atoms for test relations(whose modes only involve the may� mode), so that their body atoms are alltrivially admissible.In the following, �-subsumption [12℄ designates a partial generality orderbetween
lauses (by de�nition, a
lause g �-subsumes a
lause s if there exists asubstitution � su
h that g� � s, assuming
lauses are seen as literal sets), andlg�(C) denotes the least general
lause, under �-subsumption, that �-subsumesall
lauses in
lause-set C.Lemma 3.1 (Preservation of admissibility under �-subsumption)If proper
lause
 is admissible wrt a mode m for the relation in its head, and if
 �-subsumes proper
lause d, then d is also admissible wrt m.Proof. Let � be a witness substitution under whi
h
 �-subsumes d, i.e.,
� � d.Supposing
 has the stru
ture r(t) B, for some tuple t and body B, this meansthat d has the stru
ture r(t)� B�;D, for some atom
onjun
tion D. Sin
e
 isadmissible wrt mode m for r, the
lause
� is also admissible wrt m, by the ruleof universal instantiation. Sin
e d is known to be a proper
lause and sin
e itsonly di�eren
e with
� is D, the sets in the right-hand sides of
onditions (4),(5), (6)
an only be
ome larger, whereas their left-hand side sets are un
hanged;so the truth of these
onditions is maintained for d. So we
an
on
lude that dis also admissible wrt m. �We
an now prove a theorem establishing a suÆ
ient
riterion for de
idingwhether a
lause set is admissible or not.Theorem 3.1 (SuÆ
ient
riterion for
lause set admissibility)Let C be a non-empty set of re
on
ilable
lauses, and let m be a mode for therelation in their heads. If lg�(C) is admissible wrt m, then C is admissible wrtm.Proof. Let lg�(C) be admissible wrtm. Sin
e C is made of re
on
ilable
lauses forr, it follows from the least generalization, under �-subsumption, of two
lausesthat lg�(C) itself is a proper
lause for r. Also, by de�nition, lg�(C) �-subsumes all
lauses in C. So let d be an arbitrary
lause in C; we have that lg�(C) �-subsumesd. By Lemma 3.1, d is admissible wrt m. Sin
e d was
hosen arbitrarily, we
an
on
lude that all
lauses of C are admissible wrt m, i.e., that C is admissible wrtm. �11

The
onverse of this theorem is not true. For instan
e, the setinsert(1; [2℄; [1; 2℄) insert(4; [3℄; [3; 4℄) (Pinsert)is admissible wrt insert(
ons;
ons; res), but its least generalization, under �-subsumption, namely insert(X; [Y ℄; [K;M ℄) , is not admissible wrt thatmode.Su
h properties of admissibilitymay be exploited in ILP systems that feature
onstru
tion modes. The sample properties above
ould for instan
e be exploitedif su
h an ILP system is based on �-subsumption.4 Appli
ations of Constru
tion ModesWe
laim that
onstru
tion modes may be su

essfully used as a de
larative(sear
h) bias in any ILP system, in addition to any other biases already usedthere, be
ause of the orthogonality and thus
omplementarity of our new bias.We have experimented with the usage of a simpler version of
onstru
tionmodes in two (related) ILP systems, namely synapse [5, 3℄ and dialogs [4℄.Both are s
hema-guided ILP systems dedi
ated to the inferen
e of re
ursive(logi
) programs, and have grown out of the tradition pioneered (in fun
tionalprogramming) by the thesys system [16℄ and its generalizationBMWk [8℄. Theresults of our experiments with synapse and dialogs, as also reported in [2℄,established that, with the
onstru
tion modes, the resulting programs were morea

urate. After explaining what \s
hema-guided ILP system" means, we showhow
onstru
tion modes
an be usefully deployed on su
h systems.A hypothesis/program s
hema [7℄ is a template program �xing the data
owand
ontrol-
ow of instan
e programs, plus a set of
onstraints (within a ba
k-ground theory,
alled the framework) on how the pla
eholders of the template
anbe instantiated. For instan
e, among the many possible forms of logi
 programs,there are the divide-and-
onquer programs with one re
ursive
all. They workas follows: if a distinguished formal parameter,
alled the indu
tion parameter,say X , has a minimal value, then one
an dire
tly solve for the
orrespond-ing other formal parameter,
alled the result parameter, say Y ; otherwise, X isde
omposed into a smaller value T (a

ording to a well-founded order �) bysplitting o� a quantity H , a sub-result V
orresponding to T is
omputed by are
ursive
all, and an overall result Y is
omposed from H and V . Formally, thisproblem-independent data
ow and
ontrol-
ow
an be
aptured in the followingtemplate, or open program, for r:r(X;Y) minimal(X); solve(X;Y)r(X;Y) :minimal(X); de
ompose(X;H; T); r(T; V);
ompose(H;V; Y)(d
)12

The pla
e-holders, or open relations, are minimal, solve, de
ompose, and
ompose. The involved relations have the following formal spe
i�
ations:ir(X)! (r(X;Y)$ or(X;Y)) (Sr)ir(X)! (minimal(X)$:ide
(X)) (Smin)ir(X) ^ :ide
(X)! (solve(X;Y)$ or(X;Y)) (Ssolve)ide
(X)! (de
ompose(X;H; T)$ ode
(X;H; T)) (Sde
)ode
(X;H; T) ^ or(T; V)! (
ompose(H;V; Y)$ or(X;Y)) (S
omp)where the newly introdu
ed symbols ir, or, ide
, ode
 must satisfy the following
onstraints: ide
(X)! 9H;T : ode
(X;H; T) (C1)ide
(X) ^ ode
(X;H; T)! ir(T) ^ T � X (C2)well founded order(�) (C3)Spe
i�
ation Sr exhibits ir and or as the input and output
onditions of r, whilespe
i�
ation Sde
 exhibits ide
 and ode
 as the input and output
onditions ofde
ompose. Note that the input and output
onditions of the remaining openrelations are only expressed in terms of ir, ide
, or, and ode
. The three
onstraintsrestri
t de
ompose to su

eed at least on
e if its input
ondition (on X) holds,and then to yield a value T that satis�es the input
ondition of r (so that are
ursive
all to r is legal) and that is smaller than X a

ording to �, whi
hmust be a well-founded relation (so that re
ursion terminates). Program d
 is
orre
t wrt spe
i�
ation Sr (subje
t to the other spe
i�
ations), within the (hereomitted) framework.Now, a
losed program for delOdds, where delOdds(L;R) holds i� R isinteger-list L without its odd elements, is an instan
e of the s
hema above underthe substitution minimal(X) X = [℄solve(X;Y) Y = [℄de
ompose(X;H; T) X = [HdjT ℄; H = [Hd℄
ompose(H;V; Y) odd(H); Y = V
ompose(H;V; Y) even(H); Y = [H jV ℄ (�)This substitution
aptures the problem-dependent
omputations of a delOddsprogram.S
hema-guided ILP systems, su
h as the ones mentioned above, use a hy-pothesis/program s
hema as de
larative (language) bias [11℄. The s
hema is of-ten restri
ted to its template, with the spe
i�
ations,
onstraints, and frameworkbeing omitted thus. Su
h systems are often dedi
ated to the inferen
e of re
ursiveprograms, and even have some hardwired divide-and-
onquer s
hema (a notableex
eption being dialogs, whi
h is parameterized on s
hemas). An up-to-dateoverview of ILP systems, whether s
hema-guided or not, that are dedi
ated tothe inferen
e of re
ursive logi
 programs is in [6℄, together with a
omparison onthis task with sele
ted general-purpose ILP systems. S
hema-guided ILP systemsdedi
ated to the inferen
e of re
ursive programs are instan
es of the following13

(informal) program template, whi
h infers a program Pr for relation r giveneviden
e Er for it:1. S
hema-biased
reation of an open re
ursive programOr that has two
lausesfor r, namely a non-re
ursive one for a base
ase and a re
ursive one for astep
ase. The re
ursive
lause for r refers to an open relation q that issupposed to
ombine the partial results (stemming from the re
ursive
alls)into the overall results.2. Abdu
tive generation of eviden
e Eq for q by running the open program Oron eviden
e Er.3. Indu
tive generalization of the abdu
ed positive eviden
e E+q and analysis ofthe resulting
losed program Pq for q: if a

eptable, exit; otherwise,
onje
-ture ne
essary predi
ate invention [14℄ and re
ursively invoke the system onthe abdu
ed eviden
e Eq , yielding another
losed program Pq for q. In either
ase, the (�nal) program Pq is then added to open program Or in order toget a
losed program Pr for r.The pla
e-holders here are the s
hema-biased open program
reation, the ab-du
tive eviden
e generation, the indu
tive eviden
e generalization, and the a
-
eptability test.For instan
e, when the template is d
, then the role of q is usually playedby
ompose (or de
ompose, by duality). For instan
e,
onsider the followingeviden
e for delOdds:delOdds([℄; [℄) delOdds([1℄; [℄) delOdds([2℄; [2℄) delOdds([3; 4℄; [4℄) delOdds([6; 7; 8℄; [6; 8℄) delOdds([5℄; [5℄) (EdelOdds)Suppose Step 1
reates the following open program, whose (only) open relationis
ompose:delOdds(X;Y) minimal(X); solve(X;Y)delOdds(X;Y) :minimal(X); de
ompose(X;H; T); delOdds(T; V);
ompose(H;V; Y)minimal(X) X = [℄solve(X;Y) Y = [℄de
ompose(X;H; T) X = [HdjT ℄; H = [Hd℄ (OdelOdds)Suppose Step 2 abdu
es (with the help of the spe
i�er and/or ba
kground knowl-edge) the following eviden
e for the open relation
ompose:
ompose(1; [℄; [℄) odd(1)
ompose(2; [℄; [2℄) even(2)
ompose(3; [4℄; [4℄) odd(3)
ompose(6; [8℄; [6; 8℄) even(6)
ompose(5; [℄; [5℄) (E
ompose)14

Suppose Step 3 indu
es the least generalization under �-subsumption of thepositive eviden
e: the result, namely
ompose(H;V; Y) , is not a

eptable,in the sense that the overall result Y is not
onstru
ted from H and the partialresult V . In other words, it is over-general. However, re
ursive invo
ation of thesystem on all the abdu
ed eviden
e will not eventually yield a �nal program fordelOdds that is
orre
t wrt its informal spe
i�
ation above. In fa
t, the
omposerelation should be de�ned as follows (whi
h is equivalent to the version in thebeginning of this paper):
ompose(H;Y; Y) odd(H)
ompose(H;V; [H jV ℄) even(H) (P
ompose)The synapse and dialogs systems over
ome this
aw of su
h ILP systemsby using
onstru
tion modes. Indeed, from general programming knowledge,it is possible to state in advan
e that the
onstru
tion mode of
ompose is
ompose(may;
ons; res), no matter what the relation r is. Based on this insight,a more re�ned method for Step 3 was developed, and even enhan
ed in [2℄,
alledthe Program Closing Method. Basi
ally, the idea is to divide (not ne
essarilypartition) the positive eviden
e set E+q into maximal-sized
liques (or:
ompletely
onne
ted
omponents),
onsidering that there is an ar
 between two
lauses ofE+q whenever their least generalization under �-subsumption is admissible (wethen say they are
ompatible), and to perform the
lassi
al approa
h to Step 3for ea
h su
h
lique. In our example, this gives two
liques, namely:
ompose(1; [℄; [℄) odd(1)
ompose(3; [4℄; [4℄) odd(3) (C1
ompose)and
ompose(2; [℄; [2℄) even(2)
ompose(6; [8℄; [6; 8℄) even(6) (C2
ompose)whose least generalizations under �-subsumption indeed are the two
lauses ofP
ompose.Without
onstru
tion modes, this result
an only be a
hieved under otherapproa
hes to avoiding over-generality, whi
h are usually based on the (massive)presen
e of negative eviden
e (whi
h must thus not be
overed by any
andidatehypothesis). Our approa
h has the pleasant advantage that the user need notpresent that mu
h negative eviden
e, and need not even present the
onstru
tionmode for the open relations in hypothesis/program templates, as they
an bepredetermined!5 Con
lusionWe have introdu
ed
onstru
tion modes as a new sear
h bias for ILP systems.A
onstru
tion mode
aptures the required data
ow of a relation, by expressingwhi
h parameters are (de-)
onstru
ted from whi
h other parameters, as well aswhether su
h (de-)
onstru
tion is mandatory or optional for ea
h parti
ipating15

parameter. The semanti
s of a
onstru
tion mode is formalized by the notion ofadmissibility of a de�nite
lause wrt that mode,
apturing both synta
ti
 andsemanti
 ways of parameter (de-)
onstru
tion. Constru
tion modes have beensu

essfully employed in some ILP systems.In terms of related work, there are many alternative (and
omplementary) no-tions of mode. The modes in the do
umentation of the primitives of the prologlogi
 programming language are input modes, whi
h indi
ate the form (groundor variable, for instan
e) of ea
h parameter upon
alling a primitive. They werededu
ed from the programs for these primitives so as to help a posteriori spe
ifythe
onditions of usage of these primitives. Deville [1℄ has proposed that inputmodes be part of a priori spe
i�
ation information, so that they o

ur in thede�nition of
orre
tness of a program. He also introdu
ed output modes, whi
hindi
ate the form of ea
h parameter upon
ompletion of a
all. He
ombinedinput modes, output modes, and multipli
ity information (whi
h indi
ates theminimum and maximum number of
orre
t answers to a
all) into a new
on
ept
alled dire
tionality, whi
h is part of spe
i�
ations along with types. This ideawas (partially) pi
ked up for the mer
ury logi
 programming language [18℄,whi
h requires type, input mode, and multipli
ity de
larations to be added tothe
lauses of a program. Su
h de
larations allow the
ompiler to infer an order-ing of the
lauses and of the body atoms in ea
h
lause for ea
h input mode, su
hthat the
orresponding
alls terminate
orre
tly. The modes of the ILP systemprogol [9℄, already dis
ussed in Se
tion 1, also in
lude type, input mode, andmultipli
ity de
larations.The ILP system sieres [17℄ is not really s
hema-guided (in the sense above),but it features a te
hnique not unlike our Program Closing Method and its
on
eptual apparatus. Indeed, it also
omputes the least generalization under�-subsumption of eviden
e (whi
h must however be unit
lauses); it
onstru
ts
lauses that �t argument dependen
y graphs (a kind of primitive s
hemas thatpres
ribe the data
ow but not the
ontrol-
ow, nor any spe
i�
ations,
on-straints, or framework); and it uses input-mode de
larations (but no
onstru
-tion modes) to guide this
onstru
tion towards non-overgeneral
lauses. However,there is no notion of admissibility and
ompatibility, and hen
e no possibilityof division of the eviden
e into
liques, i.e., no indu
ability of multi-
lausal pro-grams for the open relations.The ILP system indi
o [15℄ is not at all s
hema-guided. However, it fea-tures an interesting method for
onje
turing the heads of possible
lauses, hen
eproviding already mu
h of the dis
riminating information that otherwise has tobe dis
overed together with the
hara
terizing information when starting frommost-general
lause heads. The method �rst partitions (i.e., it does not divide)the eviden
e (whi
h must be unit
lauses) into subsets a

ording to the fun
tors(e.g., type
onstru
tors) appearing in it; then it
omputes the least generaliza-tion under �-subsumption of ea
h obtained subset so as to produ
e a series of
lause heads, from whi
h a top-down
lause spe
ialization pro
ess
an then bestarted. This method is obviously related to, but mu
h more spe
ialized than,our Program Closing Method. 16

In terms of future work, we have already mentioned interesting extensionsto the de�nitions of
onstru
tion modes (see Se
tion 2) and admissibility (seeSe
tion 3). Of
ourse, (re�nements of) our suggested
onstru
tion modes andadmissibility and properties thereof may be used (maybe in
onjun
tion withprogol modes) by other resear
hers, and we look forward to seeing su
h appli-
ations of our proposal in the ILP literature.A
knowledgmentsWe thank Baudouin Le Charlier and Pierre-Yves S
hobbens (both at the Uni-versity of Namur, Belgium), Ne
ip Faz�l Ayan (University of Maryland, USA),and the Ma
hine Learning Group at the University of Texas at Austin, USA,for their helpful suggestions on a preliminary version of this paper. The referees'
omments have also signi�
antly
ontributed to the quality of this paper.Referen
es1. Y. Deville. Logi
 Programming: Systemati
 Program Development. Addison-Wesley, 1990.2. E. Erdem and P. Flener. Completing open logi
 programs by
onstru
tive indu
-tion. International J. of Intelligent Systems 14(10):995-1019, O
t. 1999.3. P. Flener. Logi
 Program Synthesis from In
omplete Information. Kluwer, 1995.4. P. Flener. Indu
tive logi
 program synthesis with dialogs. In S. Muggleton (ed),Pro
. of ILP'96, pp. 175{198. LNAI 1314, Springer-Verlag, 1997.5. P. Flener and Y. Deville. Logi
 program synthesis from in
omplete spe
i�
ations.J. of Symboli
 Computation 15(5{6):775{805, May/June 1993.6. P. Flener and S. Y�lmaz. Indu
tive synthesis of re
ursive logi
 programs: A
hieve-ments and prospe
ts. J. of Logi
 Programming 41(2-3):141-195, Nov./De
. 1999.7. P. Flener, K.-K. Lau, M. Ornaghi, and J. Ri
hardson. An abstra
t formalisation of
orre
t s
hemas for program synthesis. To appear in J. of Symboli
 Computation,May 2000.8. J.-P. Jouannaud and Y. Kodrato�. Chara
terization of a
lass of fun
tions synthe-sized from examples by a Summers-like method using the Boyer-Moore-Wegbreitmat
hing te
hnique. In Pro
. of IJCAI'79, pp. 440{447.9. S. Muggleton. Inverse entailment and progol. New Generation Computing 13:245{286, 1995.10. S. Muggleton and L. De Raedt. Indu
tive logi
 programming: Theory and methods.In J. of Logi
 Programming 19{20:629{679, 1994.11. C. N�edelle
 et al. De
larative bias in indu
tive logi
 programming. In L. De Raedt(ed), Advan
es in Indu
tive Logi
 Programming, pp. 82{103. IOS Press, 1996.12. G.D. Plotkin. A note on indu
tive generalization. In B. Meltzer and D. Mi
hie(eds), Ma
hine Intelligen
e 5:153-163. Edinburgh University Press, Edinburgh(UK), 1970.13. G. Silverstein, and M. Pazzani. Relational
li
h�es: Constraining
onstru
tive in-du
tion during relational learning. Pro
eedings of IWML'91, pp. 203{207. MorganKaufmann, 1991.14. I. Stahl. Predi
ate invention in indu
tive logi
 programming: An overview. In P.B.Brazdil (ed), Pro
. of ECML'93, pp. 313{322. LNAI 667, Springer-Verlag, 1993.17

15. I. Stahl, B. Tausend, and R. Wirth. Two methods for improving indu
tive logi
programming systems. In P. Brazdil (ed), Pro
. of ECML'93, pp. 41{55. LNAI667, Springer-Verlag, 1993.16. P.D. Summers. A methodology for LISP program
onstru
tion from examples. J.of the ACM 24(1):161{175, Jan. 1977.17. R. Wirth and P. O'Rorke. Constraints for predi
ate invention. In S. Muggleton (ed),Indu
tive Logi
 Programming, pp. 299{318. Volume APIC-38, A
ademi
 Press,1992.18. Z. Somogyi, F. Henderson, and T. Conway. The exe
ution algorithm of Mer
ury:An eÆ
ient purely de
larative logi
 programming language. J. of Logi
 Program-ming 29(1{3):17{64, O
t./De
. 1996.

18

