A New Declarative Bias for ILP:
Construction Modes

Esra Erdem! and Pierre Flener?

! Dept of Computer Sciences 2 Dept of Information Science

The University of Texas at Austin ~ Uppsala University, Box 513
Austin, TX 78712, USA S-751 20 Uppsala, Sweden
esra@cs.utexas.edu Pierre.Flener@dis.uu.se

Abstract. Inductive logic programming (ILP) systems use some declar-
ative bias to constrain the hypothesis space. We introduce a new declara-
tive bias, called construction modes, capturing the required dataflow of a
relation, and design a language for expressing such construction modes.
Their semantics is captured via the notion of admissibility. Experiments
with the ILP systems SYNAPSE and DIALOGS have established the use-
fulness of construction modes. Since the new bias is orthogonal to the
existing search biases, it can be used in conjunction with the existing
biases.

1 Introduction

In inductive logic programming (ILP) [10], a hypothesis H is to be inferred
from assumed-to-be-incomplete information (or: evidence) E and background
knowledge B such that BA H = E, where H, E, B are logic programs. Various
methods are applied to constrain the hypothesis space. A relevant method is
the provision of some declarative bias, which is any form of additional input
information that restricts the hypothesis space (see [11] for a survey). One of the
kinds of declarative bias that current ILP systems use is search bias, determining
which part of the hypothesis space is searched, and how it is searched. Examples
are input mode, type, and multiplicity declarations; they are combined into the
single concept of mode in the ILP system PROGOL [9]. Consider, for example,
the PROGOL modes for the inference of a hypothesis/program for append:

modeh
modeh
modeb
modeb
modeb
modeb

——

1, append(+list, +list, —list))
x, append(—list, —list, +list))
1, append(+list, +list, —list
x, append(—list, —list, +list
1, +list = —integer - —list)
1, —list = +integer - +list)

)
)) (Mappend)

—— =

Here, list denotes a type. The expression +list denotes a ground term
of type list, whereas —list denotes a variable of type list. Then,
append(+list, +list, —list) expresses that atoms of relation append have three

parameters, where the first two parameters may be ground lists and the third
parameter a list variable. The first line above expresses that such atoms may ap-
pear in the heads of hypothesis clauses, and that there is one correct instance of
such atoms in the intended interpretation of append. The second line expresses
that atoms of relation append, where the first two parameters are variable lists
and the third parameter a ground list, may also appear in the heads of hy-
pothesis clauses, and that there is an indefinite number of correct instances of
such atoms. Similarly, the third and fourth lines indicate the atoms of relation
append that may appear in the bodies of hypothesis clauses. The expression
+list = —integer - —list says that equality (=) may occur in atoms of the form
L =H-T, where L is a ground list, H an integer variable, and 7' a list variable.
The fifth and sixth lines express that equality may only appear in the bodies of
hypothesis clauses, in atoms of the form L = H -T, and that there is one correct
instance if either L or both H and T are ground at call-time, with the other
parameters being variables then.

Such mode declarations drastically reduce the hypothesis space, as only
clauses satisfying them will be considered. However, such mode declarations are
operational, as they only capture run-time properties of the atoms in clauses. In-
deed, they do not capture the syntactic and semantic static relationships among
the formal parameters of the relation for which a program is to be inferred.

We introduce a new search bias, called construction modes, that captures
these static relationships in a declarative way.

For instance, consider the following program:

compose(H,V,Y) < odd(H),Y =V P)
compose(H,V,Y) < even(H),Y =H -V compose

In both clauses, the first two parameters are mandatorily used to construct the
third parameter. This is represented by the construction mode:

compose(cons, cons,res)

where cons denotes the parameters used to construct the parameter denoted by
res.

A construction mode does not only capture some information about the syn-
tactic construction of the parameters, but also captures some information about
their semantic construction. For instance, in the first clause of P.ompose, Param-
eter Y is equal to V provided H is odd. Here, V' participates syntactically in
constructing Y, whereas H participates semantically in constructing Y. In the
second clause, both H and V participate syntactically in constructing Y, whereas
H also participates semantically. The information about the syntactic and se-
mantic construction of parameters is captured by the well-defined semantics of
construction modes via the concept of “admissibility.”

Besides, a construction mode gives information not only about construc-
tion, but also about de-construction (or: de-structuring). Consider the relation
intersection, where intersection(X,Y, Z) iff list Z is the intersection of lists X

and Y. Here the first two parameters of intersection(X,Y, Z) are de-constructed
into Z. This is represented by the construction mode:

intersection(des, des, res)

where des denotes the parameters that are de-structured into the parameter
denoted by res.

Note that what is meant by (de-)construction is thus not operational but
static: a construction mode captures the intrinsic relationship between the pa-
rameters, independently of any run-time considerations. Informally, a construc-
tion mode will thus state which parameters are (de-)constructed from which
other parameters, and also expresses whether such (de-)construction is manda-
tory or optional. The construction modes capture the required dataflow of each
involved relation. Among other things, this is how construction modes differ
from “relational clichés” of [13]. Relational cliches capture the dataflow among
the atoms of a clause whereas construction modes capture the dataflow among
the parameters of an atom.

It is important to note that, under some conditions, the concept of construc-
tion modes introduced in this paper follows from our earlier work presented in [2];
the concept of construction modes introduced in this paper is more general.

Organization of this Paper. This paper is organized as follows. In Section 2, we
formally define our new notion of construction mode, and we design a language
for expressing such construction modes. In Section 3, we define admissibility
wrt a construction mode, which captures what it means for a definite clause to
satisfy the construction modes given for the relations appearing in it. Then, in
Section 4, we show how construction modes have been successfully used in ILP
systems. Finally, in Section 5, we review related work, outline future work, and
conclude.

Notation. In expressions (i.e., literals or terms) appearing in logic programs
or specifications, symbols starting with uppercase letters designate variables,
whereas all other symbols designate either functions or relations, the distinction
being always clear from context. All these symbols may be subscripted with
natural numbers or mathematical variables (ranging over natural numbers). Un-
quantified variables are assumed to be universally quantified over the entire
formula in which they occur. The empty list nil is also denoted by [], and the
non-empty list H-T of head H and tail(-list) 7' (using the binary infix type con-
structor -) is also denoted by [H|T']. Similarly, the fixed-length list X -...- X, -nil
is also denoted by [X7, ..., X,]. When we want (or need) to group several terms
into a single term, we represent this as a tuple, using angled brackets. For in-
stance, (f(a,22),g(X)) is a term representing the couple built of the two terms

f(a,22) and g(X).

2 Construction Modes: A New Declarative Bias

Informally, a construction mode for a relation states which parameters are (de-
Jconstructed from which other parameters, and also expresses whether such (de-
)Jconstruction is mandatory or optional. For instance, in append atoms, the third
parameter is mandatorily constructed from the first two parameters. Contrary to
input modes, there is no notion of different usages of a relation according to con-
struction modes. Indeed, construction modes are a static notion, whereas input
modes are an operational notion. However, a construction mode may still not be
unique for a given relation, because there may be several ways of expressing its
dataflow. For instance, in reverse atoms, the second parameter is mandatorily
constructed from the first parameter, or vice-versa. After introducing further
notation used, we incrementally define the notion of construction mode.

2.1 Syntactic Construction

Let us first define some notions of syntactic construction.

Definition 2.1 (Leaves and vertices of a term)

The leaves of a term ¢, denoted by leaves(t), are the set of variables and functions
appearing in ¢.

The vertices of a term ¢, denoted by vertices(t), are the multi-set of variables
and functions appearing in ¢.

For instance, leaves([1, B, 1]) = {1, B, -, nil}, and leaves([a|T]) = {a,-, T} =
vertices([a|T]), whereas vertices([1, B,1]) = {1,1, B, -, -, -, nil}.

Definition 2.2 (Syntactic construction)

Term s is syntactically obtained from term ¢ if leaves(t) C leaves(s). We denote
this by t C s.

Term s syntactically contains term t if vertices(t) C vertices(s), where C de-
notes multi-set inclusion. We denote this by ¢ C s.

For instance, (a,b,c) is syntactically obtained from (a,b,b), because
leaves({a, b, b)) = {a,b} C {a,b,c} = leaves({a, b, c}). However, (a, b, c) does not
syntactically contain (a, b, b), because vertices({a, b, b)) = {a,b,b} Z {a,b,c} =
vertices({a, b, c)).

For atoms of a given relation, one can express syntactic construction con-
straints between their parameters: this will be one of the roles of construction
modes (defined below).

The reason why we consider functions of arity higher than 0 (rather than
just constants) in leaves and vertices is that we want to achieve facts such as
f(a,b) Z g(a,b). Similarly, the reason why we sometimes consider multi-sets
(rather than just sets) is that we want to achieve that [a,b,b] Z [a,b]. Finally,
note that the two notions of syntactic construction are much more general than
the sub-term (i.e., sub-tree) notion, and this additional generality is crucial in
many cases. For instance, in delete(d, [g, €, d],[g,€]), the vertices of [g,e] are a
sub-multi-set of the vertices of [g, e, d], but [g, €] is not a sub-tree of [g, e, d].

2.2 Semantic Construction

To capture more than just syntactic construction, which takes place inside a
single atom, we have to extend this notion to semantic construction, over defi-
nite clauses. Indeed, body atoms may perform some computations of semantic
construction of some parameters in the head atom, using relations other than
equality. Such atoms cannot be partially evaluated into the head of the clause,
unlike equality atoms. For instance, in min(X,Y,Z) + X <Y,Z = X, one can
partially evaluate Z = X into the head min(X,Y, Z), yielding min(X,Y, X) «+
X <Y, but one then cannot further partially evaluate X <Y into min(X,Y, X).
Also, parameter Y does not syntactically contribute to constructing result X (the
third parameter), but it does so semantically (via X <Y).

2.3 Construction Modes

We can now introduce our new concept of construction modes.

Definition 2.3 (Construction modes)

Let r be a relation of arity n, and the m; (1 <1i < n) be non-empty subsets of
the set {consi,...,consy,desy,...,desy, may1, ..., MaYn, MAYx, T€ST, . ..,T€Sy}
such that:

— for every ¢,j in 1..n, we have that res; is in m; iff there is some & # i in 1..n
such that cons; € my, or des; € my, or may; € my;
— for every j in 1..n, there is at most one ¢ in 1..n such that res; € m;.

Then r(my,...,m,) is a construction mode for relation r, and m; is a construc-
tion mode for the i*® parameter of r.

For instance, compose({consi},{cons1},{res1}) is a construction mode,
meant to express that the third parameter is a result parameter
that must be constructed from the first two parameters. Contrast this
with the PROGOL modes modeh(1,compose(+integer,+list,—list)) and
modeh(1, compose(—integer, —list, +list)), to see that completely different
information is conveyed. For convenience, we often drop the indexes j
of may;, consj, desj, res; when the construction modes for all param-
eters have the same index. Similarly, each singleton construction mode
{m} for a parameter will often be denoted by m. So the construc-
tion mode above can also be written as compose(cons,cons,res). Also,
unionInter({consy, dess}, {cons,dess},res1, ress) is a construction mode for
unionInter(A, B,U,I) (which holds iff lists U and I are the union and inter-
section, respectively, of lists A and B), expressing that result U is constructed
from A and B, whereas result I is de-constructed from A and B. Note that
r(mayi, consy) is not a construction mode, because no parameter is being desig-
nated as the result of construction from the two given parameters. Also, r(res;)
is not a construction mode, because it does not indicate from what parame-
ters the given result parameter must or may be (de-)constructed. Moreover,

may

*

%\

may 1 may2 mayn

SN N AN

cons; desl cons, desz Y cons, desn

Fig. 1. Partial generality order on parameter modes

r(consi,resy,resy) is not a construction mode, because a result parameter can-
not possibly be in two places at the same time. Finally, r(may., may.) is a
construction mode.

Since we do not further consider other modes in the core of this paper, we
often simply speak about modes here.

In a first approximation (and for syntactic construction only), the intended
semantics of a construction mode is as follows:

— mode res; means the parameter in the corresponding position is result pa-
rameter number j, to be (de-)constructed from other (non-result) parame-
ters;

— mode cons; means all of the vertices of the parameter in the corresponding
position are mandatory in syntactically constructing the parameter in the
corresponding position of res;;

— mode des; means some of the vertices of the parameter in the corresponding
position are mandatory in syntactically constructing the parameter in the
corresponding position of res; (hence the parameter is de-constructed into
the result);

— mode may; means the parameter in the corresponding position is optional for
syntactically (de-)constructing the parameter in the corresponding position
of res;;

— mode may, means the parameter in the corresponding position is optional for
syntactically (de-)constructing any of the parameters in the corresponding
positions of all res;.

We will refine (for semantic construction) and formalize all this in the following,
via the concept of admissibility (in Section 3 below).

Note that mode may, generalizes every may;, and that each may; itself
generalizes cons; and des;. Figure 1 illustrates this partial generality order. So
the mode reverse(consi,res;) could be rewritten as reverse(mayi,res;), but
the ensuing loss of knowledge might damage the precision of any computations

based on modes. It is thus always preferable to use the least general construction
mode, according to the partial order of the Figure 1.

A mode may not be unique, though: for instance, reverse(res;,consy) is
an alternative mode to reverse(consi,res;). However, this does not mean that
there are several possible usages of the reverse relation according to its construc-
tion modes: contrary to the operational input modes, such as reverse(+, —) or
reverse(—,+), which declare the possible usages of a program for a relation,
construction modes are a static notion and only declare the dataflow intrinsic
to the relation, independently of any usage, even if there may well be several
different ways of stating it.

Some relations do not have any result parameters. For instance, odd(N) and
X <Y are just tests; this is accommodated here by setting their modes to
odd(may,) and < (may.«, may.).

The definition of construction modes itself can be further generalized, intro-
ducing for instance a mode ncd (for: neither cons nor des), expressing that the
parameter in the corresponding position may not be used for (de-)constructing
any of the result parameters. We do not consider such extensions in this intro-
ductory paper, but the corresponding generalizations are straightforward. Our
objective here is merely to establish some simple concepts. The key issue is that
modes can be pre-determined for any relation, given enough knowledge about
it.

It is important to note that the concept of construction modes intro-
duced in this paper significantly extends the one presented in [2]. For in-
stance, in [2], since the construction mode must; is used instead of cons;
and desj, and since the modes for the parameters of a relation can be one
of {must;, may;,res;}, the construction mode for the relation unioninter be-
comes unionInter(may, may,res,res). Note that this does not give as useful in-
formation as unionInter({consi, des2},{consi,des2},res1,res2) does. It is also
important to note that the concept of admissibility is extended in this paper as
well. This is explained in the next section.

3 Admissibility

In a first version, the concept of admissibility captures what it means for an
atom to satisfy a construction mode for its relation. After refining a definition
for this concept, based purely on syntactic construction, we will generalize it
and define what it means for a definite clause to satisfy a construction mode
for the relation in its head, and add considerations of semantic construction. We
conclude this section by discussing some properties of admissibility.

3.1 Syntactic Admissibility of an Atom wrt a Construction Mode

Let r(mq,...,m,) be a mode m for a relation r of arity n. Without loss of
generality, let the indexes appearing in m run from 1 to k inclusive, where
k designates the number of result parameters in m. Let r(t1,...,t,) be the

considered atom. For every j in 1..k, let Cons; = (t; | cons; € m;). Similarly for
May;, May., Res;. Also, for every j in 1..k, for every i in 1..n, let Des} = t; if
des; € m;, and Des’, = undefined otherwise.

For instance, let the construction mode be
r(may., {cons1, des2},{cons1,dess},resi,resy) and let the atom be
r(1,[a],b,[a,b],()). We then have that n = 5, k& = 2, Cons; = ([a],b),
Consy = (), Dest = undefined for all i in 1..5, Des? = [a], Des3 = b,
Desy = undefined for all i in {1,4,5}, May, = May, = (), May. = (1),
Res; = ([a, b]), and Ress = (()).

According to the given informal approximate semantics of modes, for admis-
sibility of atom r(t1,...,t,) wrt mode m, we first need to express that every
parameter in the corresponding position of cons; is mandatory in syntactically
constructing the parameter in the corresponding position of res;. Here, we should
thus use syntactic containment as actual instance of syntactic construction. For-
mally:

V1< j<k.Cons;C Res; (1)

For instance, this is the case for the r atom and mode above. Note that C'ons;
groups together all parameters with mode cons;, so that this single-iterated
condition suffices, because each res; parameter must be constructed from all its
cons; parameters. (If the union of some sets is a subset of a given set S, then
these sets are themselves subsets of S.) Also note that k& may be 0, such as in
< (may«, may.); condition (1) then trivially holds.

Similarly, we need to express that every parameter in the corresponding po-
sition of des; is mandatorily syntactically de-constructed into the parameter
in the corresponding position of res;. In other words, the des; parameters, if
any, are mandatorily syntactically constructed from at least the res; parameter.
Formally:

Vi<j<k.Vli<i<n. Des; # undefined — Resj C Des; (2)

For instance, this is the case for the r atom and mode above. Note that we here
have to write a double-iterated condition, because each des; parameter must
individually be constructed from the res; parameter. (If a set S is a subset of a
union of sets, then S is not necessarily a subset of each of these sets.)

Last, we need to express that every parameter in the corresponding posi-
tion of may; is optional for syntactically (de-)constructing the parameter in the
corresponding position of res;, and that every parameter in the correspond-
ing position of may, is optional for syntactically (de-)constructing any of the
parameters in the corresponding positions of all res;. By themselves, these re-
quirements lead to no formula, because of the optional nature of this syntactic
(de-)construction. But we can refine the given approximate semantics by also
requiring that the parameter in the corresponding position of res; can only be
syntactically constructed from the parameters in the corresponding positions of
may;, mays, cons;. Here, we should use “is syntactically obtained from” as ac-
tual instance of syntactic construction, because syntactic containment might be

too strong in some cases (such as the example below). Formally:
V1< j<k.Resj C(Mayj, May.,Cons;) (3

So no leaves may be “invented” when building each Res;. For instance, this is
the case for the r atom and mode above. Note that this relationship does not
hold when using syntactic containment (C) instead of C.

However, this requirement is a bit too strong, as new leaves do some-
times appear in parameters with mode res;. Indeed, constructors of the in-
ductively defined type of such a parameter may appear: for instance, con-
stant 0 and unary functor s are type constructors for Peano numbers,
whereas constant nil and binary functor - are type constructors for lists.
The atom addPlateau(a,[],[a,s(0)]) does not satisfy condition (3’) for
addPlateau(may;, consy,res;), because 0 and s are “invented” by the parame-
ter with mode res;. Since such constructors cannot really be considered new if
the inductively defined type is known, we should add them to the right-hand side
of (3’). Since we do not know how many times they may be “invented,” we add
them once and use leaf set inclusion (C) rather than vertex multiset inclusion
(). Hence:

V1< j<k.Resj C(Mayj, May,Consj,nil,-,0,s,...) (3)

We thus here do not allow non-type-constructor leaves to be invented by res;
parameters, and leave such extensions as future work.
Hence the following overall definition:

Definition 3.1 (Atom admissibility)
An atom r(t1,...,t,) is admissible wrt a mode m for r if conditions (1), (2), (3)
are satisfied.

This concludes the refinement of a definition of syntactic atom admissibility.
Let us now switch our attention to semantic clause admissibility.

3.2 Semantic Admissibility of a Clause wrt a Construction Mode

Let r(t1,...,tn) + B be a definite clause, where B is a conjunction of atoms,
called the body of the clause, and r(ty,...,t,) is called the head of the clause.
It is crucial that body B does not contain any equality atoms, because oth-
erwise insufficient structure would be in the parameters in the head. For in-
stance, instead of insert(X,[Y|L],R) «+ X < Y,R = [X,Y|L], we prefer
insert(X,[Y|L],[X,Y|L]) « X <Y.

Definition 3.2 (Proper and reconcilable clauses)
We refer to an equality-free definite clause as a proper clause.
Two proper clauses are reconcilable if they define the same relation.

For defining the semantic admissibility of a proper clause wrt a construction
mode, we have to distinguish between its head atom and its body atoms.

For the head atom, we first want its cons parameters to be actually used
in constructing the result parameters. Condition (1) only verifies syntactic con-
struction, but some of the vertices of the cons parameters might only be used
in the body B so as to achieve semantic construction. So condition (1) must be
adapted as follows:

V1< j<k.ConsjC (Res;,B') (4)
where B’ is a tuple built of the atoms (seen as terms) of B. Similarly, we want
the des parameters to be actually de-constructed into the result parameters.
Condition (2) only verifies syntactic de-construction, but some of the vertices of
the des parameters might only be used in the body B so as to achieve semantic
de-construction. So condition (2) must be adapted as follows:

Vi<j<k.Vi<i<n. Des; # unde fined — Res; C (Des;-,B'> (5)

Last, we want the result parameters to be constructed only from the cons and
may parameters, as well as from the predefined type constructors. Condition
(3) only verifies syntactic construction, but some of the leaves of the result
parameters might only be computed in the body B, by semantic construction
thus. So condition (3) must be adapted as follows:

V1 <j <k:Res; C(May;, May.,Cons;, B nil,-,0,s,...) (6)

For instance, the head of the clause min(X,Y,X) + X < Y satisfies condi-
tions (4), (5), (6) for min(consy, consy,res1), but not condition (1), because Y
does not syntactically contribute to constructing result X, though it does so
semantically (through the test X <Y), as testified by the fact that (4) holds.

Conditions (4), (5), (6) can certainly be refined even further, in many differ-
ent ways, but we leave this for future work. Indeed, a fine balance between the
expressiveness of construction modes (i.e., the precision of the approximation of
the intended relation that they achieve) and the speed of verification of admissi-
bility has to be struck. The current definitions have evolved from a few years of
experimentation and have been successfully deployed in two prototype systems
(see Section 4).

For the body atoms now, other than their participation in conditions (4), (5),
(6) above, it is necessary to verify whether they are each admissible (according
to Definition 3.1) wrt their own construction modes. This only establishes their
syntactic admissibility, but there is nothing else that can be done since they are
not the head atoms of proper clauses.

Now we can finally propose the following definition of clause admissibility:

Definition 3.3 (Clause admissibility and clause set admissibility)

A proper clause r(ty,...,t,) < B is admissible wrt a mode m for r if conditions
(4), (5), (6) are satisfied, and if the atoms of B are each admissible wrt their
own modes.

A set of reconcilable clauses is admissible wrt a mode m for the relation in their
heads if each of its clauses is admissible wrt m.

10

It is important to note that the concept of admissibility introduced above is
more general than the one presented in [2] in that it not only captures a more
general definition of the construction modes but also considers the functors s
and . as invented parameters besides the constants nil and 0.

3.3 Properties of Admissibility

Admissibility has some interesting properties, as established next. They only
hold for (sets of) proper clauses whose bodies only involve atoms for test relations
(whose modes only involve the may, mode), so that their body atoms are all
trivially admissible.

In the following, f-subsumption [12] designates a partial generality order
between clauses (by definition, a clause g #-subsumes a clause s if there exists a
substitution o such that go C s, assuming clauses are seen as literal sets), and
1g6(C) denotes the least general clause, under #-subsumption, that #-subsumes
all clauses in clause-set C.

Lemma 3.1 (Preservation of admissibility under 0-subsumption)
If proper clause c is admissible wrt a mode m for the relation in its head, and if
c 0-subsumes proper clause d, then d is also admissible wrt m.

Proof. Let o be a witness substitution under which ¢ #-subsumes d, i.e., co C d.
Supposing ¢ has the structure r(t) < B, for some tuple ¢ and body B, this means
that d has the structure r(t)o < Bo, D, for some atom conjunction D. Since c is
admissible wrt mode m for r, the clause co is also admissible wrt m, by the rule
of universal instantiation. Since d is known to be a proper clause and since its
only difference with co is D, the sets in the right-hand sides of conditions (4),
(5), (6) can only become larger, whereas their left-hand side sets are unchanged;
so the truth of these conditions is maintained for d. So we can conclude that d
is also admissible wrt m. o

We can now prove a theorem establishing a sufficient criterion for deciding
whether a clause set is admissible or not.

Theorem 3.1 (Sufficient criterion for clause set admissibility)

Let C be a non-empty set of reconcilable clauses, and let m be a mode for the
relation in their heads. If 1g6(C) is admissible wrt m, then C is admissible wrt
m.

Proof. Let lg6(C) be admissible wrt m. Since C is made of reconcilable clauses for
r, it follows from the least generalization, under #-subsumption, of two clauses
that [g6(C) itself is a proper clause for r. Also, by definition, [g8(C) 6-subsumes all
clauses in C. So let d be an arbitrary clause in C; we have that {gf(C) 6-subsumes
d. By Lemma 3.1, d is admissible wrt m. Since d was chosen arbitrarily, we can
conclude that all clauses of C are admissible wrt m, i.e., that C is admissible wrt
m. o

11

The converse of this theorem is not true. For instance, the set

insert(1,[2],[1,2]) «
insert(4,[3],[3,4]) « (Pinsert)

is admissible wrt insert(cons, cons,res), but its least generalization, under 6-
subsumption, namely insert(X,[Y],[K,M]) < , is not admissible wrt that
mode.

Such properties of admissibility may be exploited in ILP systems that feature
construction modes. The sample properties above could for instance be exploited
if such an ILP system is based on #-subsumption.

4 Applications of Construction Modes

We claim that construction modes may be successfully used as a declarative
(search) bias in any ILP system, in addition to any other biases already used
there, because of the orthogonality and thus complementarity of our new bias.

We have experimented with the usage of a simpler version of construction
modes in two (related) ILP systems, namely SYNAPSE [5,3] and DIALOGS [4].
Both are schema-guided ILP systems dedicated to the inference of recursive
(logic) programs, and have grown out of the tradition pioneered (in functional
programming) by the THESYS system [16] and its generalization BM W}, [8]. The
results of our experiments with SYNAPSE and DIALOGS, as also reported in [2],
established that, with the construction modes, the resulting programs were more
accurate. After explaining what “schema-guided ILP system” means, we show
how construction modes can be usefully deployed on such systems.

A hypothesis/program schema [7] is a template program fixing the dataflow
and control-flow of instance programs, plus a set of constraints (within a back-
ground theory, called the framework) on how the placeholders of the template can
be instantiated. For instance, among the many possible forms of logic programs,
there are the divide-and-conquer programs with one recursive call. They work
as follows: if a distinguished formal parameter, called the induction parameter,
say X, has a minimal value, then one can directly solve for the correspond-
ing other formal parameter, called the result parameter, say Y; otherwise, X is
decomposed into a smaller value T' (according to a well-founded order <) by
splitting off a quantity H, a sub-result V' corresponding to 7" is computed by a
recursive call, and an overall result Y is composed from H and V. Formally, this
problem-independent dataflow and control-flow can be captured in the following
template, or open program, for r:

r(X,Y) < minimal(X), solve(X,Y)

r(X,Y) « —minimal(X), decompose(X, H,T),r(T,V),compose(H,V,Y)
(dc)

12

The place-holders, or open relations, are minimal, solve, decompose, and
compose. The involved relations have the following formal specifications:

ir(X) = (r(X,Y) < o (X,Y)) (Sr)
i (X) = (mzmmal() > Tigec(X)) (Smin)
i (X) A —igec(X) = (solve(X,Y) < 0,.(X,Y)) (Ssotve)
tdec(X) = (decompose(X, H,T) <> 0gec (X, H,T)) (Sqec)
0dec(X, H,T) N 0 (T, V) = (compose(H,V,Y) < 0,(X,Y)) (Scomp)

where the newly introduced symbols i,., 0., i4ec, Ogec must satisfy the following
constraints:

tdec(X) = IH, T . 04e.(X, H,T) (C1)
idec(X)/\Odec(X,H,T)—)iT(T)/\T-<X (02)
well_founded_order(<) (Cs)

Specification S, exhibits ¢, and o, as the input and output conditions of r, while
specification Sge. exhibits 4. and oge. as the input and output conditions of
decompose. Note that the input and output conditions of the remaining open
relations are only expressed in terms of 7., i 4¢c, 05, and 0g4e.. The three constraints
restrict decompose to succeed at least once if its input condition (on X) holds,
and then to yield a value T that satisfies the input condition of r (so that a
recursive call to r is legal) and that is smaller than X according to <, which
must be a well-founded relation (so that recursion terminates). Program dc is
correct wrt specification S, (subject to the other specifications), within the (here
omitted) framework.

Now, a closed program for delOdds, where delOdds(L, R) holds iff R is
integer-list L without its odd elements, is an instance of the schema above under
the substitution

minimal (X
solve(X,Y
decompose(X, H,T = [Hd|T],H = [Hd] ()
compose(H,V,Y) « odd(H), Y=V
compose(H,V,Y) « even(H),Y = [H|V]

“X=]]
v -]

This substitution captures the problem-dependent computations of a delOdds
program.

Schema-guided ILP systems, such as the ones mentioned above, use a hy-
pothesis/program schema as declarative (language) bias [11]. The schema is of-
ten restricted to its template, with the specifications, constraints, and framework
being omitted thus. Such systems are often dedicated to the inference of recursive
programs, and even have some hardwired divide-and-conquer schema (a notable
exception being DIALOGS, which is parameterized on schemas). An up-to-date
overview of ILP systems, whether schema-guided or not, that are dedicated to
the inference of recursive logic programs is in [6], together with a comparison on
this task with selected general-purpose ILP systems. Schema-guided ILP systems
dedicated to the inference of recursive programs are instances of the following

13

(informal) program template, which infers a program P, for relation r given
evidence E, for it:

1. Schema-biased creation of an open recursive program O, that has two clauses
for r, namely a non-recursive one for a base case and a recursive one for a
step case. The recursive clause for r refers to an open relation g that is
supposed to combine the partial results (stemming from the recursive calls)
into the overall results.

2. Abductive generation of evidence E, for ¢ by running the open program O,
on evidence FE,.

3. Inductive generalization of the abduced positive evidence Eq+ and analysis of
the resulting closed program P, for g¢: if acceptable, exit; otherwise, conjec-
ture necessary predicate invention [14] and recursively invoke the system on
the abduced evidence F, yielding another closed program P, for g. In either
case, the (final) program P, is then added to open program O, in order to
get a closed program P, for r.

The place-holders here are the schema-biased open program creation, the ab-
ductive evidence generation, the inductive evidence generalization, and the ac-
ceptability test.

For instance, when the template is dc, then the role of ¢ is usually played
by compose (or decompose, by duality). For instance, consider the following
evidence for delOdds:

delOdds([],[]) «
delOdds([1],[]) «
delOdds([2], [2])
delOdds([3 [4} M) : (Eder0das)
delOdds([6,7,8], [6,8]) «

« delOdds([5], [5])

Suppose Step 1 creates the following open program, whose (only) open relation
is compose:

delOdds(X,Y) < minimal(X), solve(X,Y)
delOdds(X,Y) —lmzmmal(X),decompose(X, H,T),delOdds(T, V), compose(H,V,Y)
minimal(X) + X =[]
solve(X,Y) « Y =]
decompose(X, H,T) «+ X = [Hd|T], H = [Hd]

(Odelodas)
Suppose Step 2 abduces (with the help of the specifier and/or background knowl-

edge) the following evidence for the open relation compose:

compose(L,[1,[) « odd(1)

compose(2,[],[2]) < even(2)

compose(3, (4], [4]) - odd(3) (Ecompose)
compose(6, [8], [6, 8]) « even(6)

« compose(5,[], [5])

14

Suppose Step 3 induces the least generalization under #-subsumption of the
positive evidence: the result, namely compose(H,V,Y) « , is not acceptable,
in the sense that the overall result Y is not constructed from H and the partial
result V. In other words, it is over-general. However, recursive invocation of the
system on all the abduced evidence will not eventually yield a final program for
delOdds that is correct wrt its informal specification above. In fact, the compose
relation should be defined as follows (which is equivalent to the version in the
beginning of this paper):

compose(H,Y,Y) < odd(H) (P)
compose(H,V,[H|V]) « even(H) compose

The SYNAPSE and DIALOGS systems overcome this flaw of such ILP systems
by using construction modes. Indeed, from general programming knowledge,
it is possible to state in advance that the construction mode of compose is
compose(may, cons, res), no matter what the relation r is. Based on this insight,
a more refined method for Step 3 was developed, and even enhanced in [2], called
the Program Closing Method. Basically, the idea is to divide (not necessarily
partition) the positive evidence set £, into maximal-sized cliques (or: completely
connected components), considering that there is an arc between two clauses of
E;r whenever their least generalization under #-subsumption is admissible (we
then say they are compatible), and to perform the classical approach to Step 3
for each such clique. In our example, this gives two cliques, namely:

compose(1,[],[]) + odd(1)

compose(3, [4], [4]) < odd(3) (Cclompose)
" (2,[1,12]) (2)
compose(2,]], +— even)
compose(G, [8], [6, 8]) — euen(G) (Ccompose)

whose least generalizations under #-subsumption indeed are the two clauses of
Pcompose-

Without construction modes, this result can only be achieved under other
approaches to avoiding over-generality, which are usually based on the (massive)
presence of negative evidence (which must thus not be covered by any candidate
hypothesis). Our approach has the pleasant advantage that the user need not
present that much negative evidence, and need not even present the construction
mode for the open relations in hypothesis/program templates, as they can be
predetermined!

5 Conclusion

We have introduced construction modes as a new search bias for ILP systems.
A construction mode captures the required dataflow of a relation, by expressing
which parameters are (de-)constructed from which other parameters, as well as
whether such (de-)construction is mandatory or optional for each participating

15

parameter. The semantics of a construction mode is formalized by the notion of
admissibility of a definite clause wrt that mode, capturing both syntactic and
semantic ways of parameter (de-)construction. Construction modes have been
successfully employed in some ILP systems.

In terms of related work, there are many alternative (and complementary) no-
tions of mode. The modes in the documentation of the primitives of the PROLOG
logic programming language are input modes, which indicate the form (ground
or variable, for instance) of each parameter upon calling a primitive. They were
deduced from the programs for these primitives so as to help a posteriori specify
the conditions of usage of these primitives. Deville [1] has proposed that input
modes be part of a priori specification information, so that they occur in the
definition of correctness of a program. He also introduced output modes, which
indicate the form of each parameter upon completion of a call. He combined
input modes, output modes, and multiplicity information (which indicates the
minimum and maximum number of correct answers to a call) into a new concept
called directionality, which is part of specifications along with types. This idea
was (partially) picked up for the MERCURY logic programming language [18],
which requires type, input mode, and multiplicity declarations to be added to
the clauses of a program. Such declarations allow the compiler to infer an order-
ing of the clauses and of the body atoms in each clause for each input mode, such
that the corresponding calls terminate correctly. The modes of the ILP system
PROGOL [9], already discussed in Section 1, also include type, input mode, and
multiplicity declarations.

The ILP system SIERES [17] is not really schema-guided (in the sense above),
but it features a technique not unlike our Program Closing Method and its
conceptual apparatus. Indeed, it also computes the least generalization under
f-subsumption of evidence (which must however be unit clauses); it constructs
clauses that fit argument dependency graphs (a kind of primitive schemas that
prescribe the dataflow but not the control-flow, nor any specifications, con-
straints, or framework); and it uses input-mode declarations (but no construc-
tion modes) to guide this construction towards non-overgeneral clauses. However,
there is no notion of admissibility and compatibility, and hence no possibility
of division of the evidence into cliques, i.e., no inducability of multi-clausal pro-
grams for the open relations.

The ILP system INDICO [15] is not at all schema-guided. However, it fea-
tures an interesting method for conjecturing the heads of possible clauses, hence
providing already much of the discriminating information that otherwise has to
be discovered together with the characterizing information when starting from
most-general clause heads. The method first partitions (i.e., it does not divide)
the evidence (which must be unit clauses) into subsets according to the functors
(e.g., type constructors) appearing in it; then it computes the least generaliza-
tion under #-subsumption of each obtained subset so as to produce a series of
clause heads, from which a top-down clause specialization process can then be
started. This method is obviously related to, but much more specialized than,
our Program Closing Method.

16

In terms of future work, we have already mentioned interesting extensions
to the definitions of construction modes (see Section 2) and admissibility (see
Section 3). Of course, (refinements of) our suggested construction modes and
admissibility and properties thereof may be used (maybe in conjunction with
PROGOL modes) by other researchers, and we look forward to seeing such appli-
cations of our proposal in the ILP literature.

Acknowledgments

We thank Baudouin Le Charlier and Pierre-Yves Schobbens (both at the Uni-
versity of Namur, Belgium), Necip Fazil Ayan (University of Maryland, USA),
and the Machine Learning Group at the University of Texas at Austin, USA,
for their helpful suggestions on a preliminary version of this paper. The referees’
comments have also significantly contributed to the quality of this paper.

References

1. Y. Deville. Logic Programming: Systematic Program Development. Addison-
Wesley, 1990.

2. E. Erdem and P. Flener. Completing open logic programs by constructive induc-

tion. International J. of Intelligent Systems 14(10):995-1019, Oct. 1999.

P. Flener. Logic Program Synthestis from Incomplete Information. Kluwer, 1995.

4. P. Flener. Inductive logic program synthesis with DIALOGS. In S. Muggleton (ed),
Proc. of ILP’96, pp. 175-198. LNAT 1314, Springer-Verlag, 1997.

5. P. Flener and Y. Deville. Logic program synthesis from incomplete specifications.
J. of Symbolic Computation 15(5—6):775-805, May/June 1993.

6. P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs: Achieve-
ments and prospects. J. of Logic Programming 41(2-3):141-195, Nov./Dec. 1999.

7. P. Flener, K.-K. Lau, M. Ornaghi, and J. Richardson. An abstract formalisation of
correct schemas for program synthesis. To appear in J. of Symbolic Computation,
May 2000.

8. J.-P. Jouannaud and Y. Kodratoff. Characterization of a class of functions synthe-
sized from examples by a Summers-like method using the Boyer-Moore-Wegbreit
matching technique. In Proc. of IJCAI’79, pp. 440-447.

9. S. Muggleton. Inverse entailment and PROGOL. New Generation Computing 13:245—
286, 1995.

10. S. Muggleton and L. De Raedt. Inductive logic programming: Theory and methods.
In J. of Logic Programming 19-20:629-679, 1994.

11. C. Nédellec et al. Declarative bias in inductive logic programming. In L. De Raedt
(ed), Advances in Inductive Logic Programming, pp. 82-103. IOS Press, 1996.

12. G.D. Plotkin. A note on inductive generalization. In B. Meltzer and D. Michie
(eds), Machine Intelligence 5:153-163. Edinburgh University Press, Edinburgh
(UK), 1970.

13. G. Silverstein, and M. Pazzani. Relational clichés: Constraining constructive in-
duction during relational learning. Proceedings of IWML’91, pp. 203-207. Morgan
Kaufmann, 1991.

14. I. Stahl. Predicate invention in inductive logic programming: An overview. In P.B.
Brazdil (ed), Proc. of ECML’93, pp. 313-322. LNAI 667, Springer-Verlag, 1993.

w

17

15.

16.

17.

18.

I. Stahl, B. Tausend, and R. Wirth. Two methods for improving inductive logic
programming systems. In P. Brazdil (ed), Proc. of ECML’93, pp. 41-55. LNAI
667, Springer-Verlag, 1993.

P.D. Summers. A methodology for LISP program construction from examples. J.
of the ACM 24(1):161-175, Jan. 1977.

R. Wirth and P. O’Rorke. Constraints for predicate invention. In S. Muggleton (ed),
Inductive Logic Programming, pp- 299-318. Volume APIC-38, Academic Press,
1992.

Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mercury:
An efficient purely declarative logic programming language. J. of Logic Program-
ming 29(1-3):17-64, Oct./Dec. 1996.

18

