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.ukWhat Is Indu
tive Programming?The intent of this spe
ial issue was to bring together developments in indu
tiveprogramming [12℄ that have a dire
t bearing on software development, and topromote a broader usage of the term. Indu
tive programming, in our view, isnot a return to the overly ambitious, and thus ultimately unworkable, s
hemes ofautomati
ally generating large software systems. Indu
tive programming is thusnot just programming-by-example, nor just programming-by-demonstration,nor a pana
ea for software development-in-the-large. It is a mix of more sub-tle uses of indu
tion to assist the software developer in a variety of ways. Wedes
ribe some ingredients of the mixture below, but all need further develop-ment, and entirely new ones remain to be dis
overed. At this point in time,we 
an do no more than arti
ulate our 
urrent understanding in the hope thatthis personal view will stimulate the requisite dis
ussion and resear
h needed topush the indu
tive-programming strategy forwards to be
ome a set of pra
ti
aloptions for the software engineer | not a repla
ement for mainstream methods,but a powerful adjun
t in appropriate 
ir
umstan
es.S
ienti�
 indu
tion (whi
h is not to be 
onfused with mathemati
al indu
-tion) is the pro
ess of reasoning from the parti
ular, whi
h is known-to-be-in
omplete information, to the general. Su
h indu
tive inferen
e, just like ab-du
tive inferen
e and analogi
al inferen
e, is in general unsound. The termindu
tive programming may be 
ontrasted with 
lassi
al programming, whi
hworks from an assumed-to-be-
omplete spe
i�
ation to a parti
ular implemen-tation. Classi
al programming is thus a pro
ess that we might justi�ably 
alldedu
tive programming, whi
h is a name that gains further 
redibility whenwe remember that the history of automati
 programming is one of attemptingto logi
ally dedu
e 
orre
t implementations from (assumed-to-be-
omplete) so-1




alled \formal spe
i�
ations".1 Re
all that dedu
tive inferen
e is always sound.In indu
tive programming, we seek algorithms that survey known-to-be-in
omplete information, say a set of input-output examples, and generate infor-mation pertinent to the 
onstru
tion of a generalised 
omputational system forwhi
h these input-output examples are a representative sample. The informa-tion so extra
ted might thus be no more than problem features and de
ision logi
for spe
i�
ation enhan
ement, or it might be a self-
ontained system module,but it does not have to be a 
omplete software system in order to be useful.Another de�nition of indu
tive programming, namely as programming-by-example, that is the extrapolation of \the 
orre
t" fun
tion from a subset of itsinput-output examples, is too restri
tive in our opinion. It even seems ill-posed,as there never is a single 
orre
t fun
tion in su
h a setting, so that one has noguarantee that the obtained result is 
orre
t in any sense. This 
ommon prej-udi
e is overly strong, and 
an be weakened by the following argument. Thereis not always a single 
orre
t fun
tion embedded in spe
i�
ations suitable fordedu
tive programming either. Indeed, su
h spe
i�
ations 
an also be ambigu-ous (embed more than one fun
tion) or even internally in
onsistent (embed nofun
tion at all).2 An ambiguous or internally in
onsistent spe
i�
ation is sub-je
ted to inspe
tion and revision. If internal in
onsisten
y persists, then it mayjust be be
ause the problem has no solution. If ambiguity persists, then it mayjust be be
ause several solutions are equally good. The hard rules of FormalMethods advo
ates, su
h as avoiding ambiguity and internal in
onsisten
y, thuslead to absurdities: one 
annot de
ide in advan
e what is good in all possiblesituations. (Known-to-be-)in
omplete spe
i�
ations 
an thus not be atta
kedfor their (de�nite) ambiguity, due to their in
omplete nature, be
ause ambiguityand internal in
onsisten
y 
an be desirable even for (assumed-to-be-)
ompletespe
i�
ations.3 The fundamental 
omputer s
ien
e notion of `spe
i�
ation' issurprisingly 
omplex [13℄; this is a fa
t that goes largely unappre
iated, to judgeby the 
ommon and 
avalier usage of this word.Nothing thus says that no useful information nor valuable 
omputationalsystem 
an be forth
oming from appli
ations of indu
tion algorithms to data.Be
ause the indu
tion pro
esses we 
ontemplate are algorithmi
ally spe
i�ed,the information generated | either guidan
e for problem spe
i�
ation enhan
e-ment or an exe
utable module | is generated automati
ally. This is the essen
eof what indu
tion algorithms have to 
ontribute to the �eld of automated soft-ware engineering [5, 12℄. It has been noted [8℄ that the addition of input-outputexamples to even 
omplete spe
i�
ations may be bene�
ial (to human program-mers), namely as a means of 
lari�
ation. (The 
ommon fear that su
h examplesmay be in
onsistent with the rest of the spe
i�
ation is unreasonable, as absen
eof internal in
onsisten
y is not a guarantee of external 
onsisten
y, whereas in-ternal in
onsisten
y is an undeniable indi
ation that the 
onsidered problem1See [8℄ for an argument why \formal spe
i�
ations" 
annot really be 
onsidered to bea
tual spe
i�
ations, in the 
lassi
al engineering sense.2Note that internal in
onsisten
y is impossible with input-output examples.3Similarly, both kinds of spe
i�
ation 
annot be atta
ked for their potential external in-
onsisten
y with respe
t to the intentions or real world.2



either is ill-posed or has no solution.) What indu
tive programming aims at isthe exploration of all synergies between 
omplete and in
omplete spe
i�
ations.Indu
tive Programming in A
tionThe �rst step in idealised software engineering is to abstra
t a pre
ise (andassumed-to-be-
omplete) spe
i�
ation, whi
h is then taken as the foundation forall subsequent development, su
h as 
oding and veri�
ation. However, 
omplexspe
i�
ations typi
ally 
ontain errors and approximations that lead to errors inthe eventual software, errors that are not easily dete
ted or eliminated beforethe software is subje
ted to operational testing.However, many programming problems are manifest as sets of data values,namely inputs and 
orresponding outputs, divided into positive examples andnegative examples, whi
h 
an also be seen as a known-to-be-in
omplete spe
i-�
ation. Indu
tive programming te
hniques work from su
h data instan
es tothe implementation without going through an assumed-to-be-
omplete spe
i-�
ation. They thus o�er the software engineer a means to avoid or re
tifysystem errors that are due to spe
i�
ation faults, and perhaps even to 
ir
um-vent the need for a 
omplete spe
i�
ation, i.e., some system modules may beindu
tively generated from data where a

urate spe
i�
ation proves diÆ
ult.Indu
tion-based pro
essing of problem data (i.e., data mining) may even beused to 
he
k and 
orre
t features of a potentially or assumed-to-be 
ompletespe
i�
ation. Indeed, software engineering experien
e shows that the notion of`
omplete spe
i�
ation' is nothing but a 
himera.Indu
tive software development will be parti
ularly germane, if not essential,for (parts of) 
omplex data-de�ned problems. These will arise in a data-ri
hdomain and address very 
omplex aspe
ts of the world, su
h as the humanbody, 
ompli
ated manufa
turing pro
esses, and 
omplex dynami
al situations.Human fa
e re
ognition is one su
h problem. It is a priori plausible that a
omputerised fa
e re
ogniser is possible. We are all good fa
e re
ognisers, butwe do not know how we do it. We may be able to spe
ify what is desiredbut not at the level of detail required for 
lassi
al algorithm design and subse-quent implementation. The details 
ould, however, be provided in the form ofa set of input-output examples, and from su
h a set of instan
es an indu
tiveprogramming te
hnology 
ould provide a generalised fa
e-re
ognition system.Indu
tive programming is not, however, trouble-free. There are diÆ
ultissues of `understanding' automati
ally indu
ed pro
edures so that implementa-tion performan
e 
an be 
hara
terised. There are issues of data pre-pro
essingto fa
ilitate optimal appli
ation of a given indu
tive te
hnique and to obtain animplementation with 
ertain desired 
hara
teristi
s.The `understanding' issue is parti
ularly important when the indu
tion te
h-nology is that of distributed neural 
omputing. It may be possible to train, say,a multilayer per
eptron using the ba
kpropagation algorithm to produ
e a goodpredi
tion module in a situation where 
lassi
al programming has been unsu
-
essful. After training, no further weight updating is permitted, and then the3



trained neural network implements a deterministi
 
omputation. This moduleis then 
lear eviden
e of a systemati
 algorithmi
 solution to some hitherto in-tra
table subfun
tion, but inspe
tion of the trained network is unlikely to shedmu
h light on how, in 
lassi
al 
omputational terms, this parti
ular subfun
tion
an be 
hara
terised [11℄.As a spe
i�
 example, we are 
ollaborating with National Air-TraÆ
 Ser-vi
es of the UK to improve the performan
e of their Short-Term Con
i
t Alert(STCA) software system. The STCA system was designed to alert air-traÆ

ontrollers whenever two air
raft are likely to brea
h proximity restri
tions. Itmust never miss a true alarm situation, and 
onsequently it produ
es large num-bers of false alarms. A 
ommon false-alarm situation o

urs when one plane isas
ending (or des
ending) towards a 
ight level where it 
an (and invariablydoes) safely level o�, but the linear extrapolation of its 
ight path (before level-o�) leads to a false alarm. The existen
e of a subfun
tion that 
ould predi
tlevel-o�s 
ould 
an
el many false alarms, but the STCA system 
ontains nosu
h subfun
tion be
ause no one knows how to spe
ify it. However, given manyexamples of 
ight paths (and other obje
tive data su
h as size of air
raft) forwhi
h planes level o� and do not level o�, it is possible to train a neural net-work to predi
t level-o�s (not perfe
tly but quite well). But inspe
tion of thetrained networks yields no information to assist in the formulation of a 
lassi
alspe
i�
ation for level-o� predi
tion, and hen
e we are no 
loser to a 
lassi
allyprogrammed level-o� predi
tion module to add to the STCA system. But wedo then know whi
h of the available features (su
h as speed, de
eleration, andsize) are important for predi
ting level-o�, and use of automati
 de
ision-treeindu
tion algorithms is expe
ted to reveal useful de
ision logi
 asso
iated withthose features.A major sour
e of in
ipient te
hnologies to develop for indu
tive program-ming is the �eld of Arti�
ial Intelligen
e (AI). This is be
ause the problems of AIhave long been a
knowledged as unspe
i�able with the pre
ision and 
omplete-ness typi
ally demanded by software engineers. Mi
hie [9℄, for example, makesexpli
it 
onne
tion between \ma
hine learning" te
hnologies and software main-tenan
e. A re
ent 
olle
tion entitled \Computational Intelligen
e in SoftwareEngineering" [14℄ 
ontains a number of indu
tive te
hnologies applied to variousaspe
ts of software development. The eÆ
ient solving of 
onstraint satisfa
tionproblems [15℄ is an important sub-�eld of AI, be
ause of the ubiquity of theseoften NP-
omplete problems; to 
ope with the instan
e sensitivity of heuristi
s,re
ent industry-strength solver generators [2, 10℄ also use training instan
es, andthus feature a produ
tive mix of indu
tive and dedu
tive inferen
e.In some indu
tive programming settings, mere input-output examples maybe too weak spe
i�
ation information, either be
ause the sear
h spa
e of indu
-tion then be
omes too large, or be
ause the spe
i�er knows a few more things.To over
ome the many negative results on indu
tive inferability from examplesalone, many resear
hers have proposed additional spe
i�
ation information, su
has ora
les, properties, and ba
kground knowledge. Indeed, the indu
tion algo-rithm may 
onstru
t its own additional examples and submit them to an ora
le(usually the spe
i�er) for 
lassi�
ation as positive or negative. Or the spe
i�er4



may wish to impart that the sought fun
tion is believed to satisfy a 
ertain prop-erty, su
h as transitivity. This may be useful for 
ommuni
ating known intrinsi
information: for instan
e, the � relation is intrinsi
 to number-list sorting, asit appears in all sorting programs, but a partitioning fun
tion is extrinsi
 to it,as it only appears in qui
ksort programs.4 Finally, ba
kground knowledge mayin
rease the power of indu
tion by making reusable programs available.Other information is often added to redu
e the sear
h spa
e. For instan
e,de
larative bias is used to 
ontrol the sear
h and language during indu
tion:a deterministi
 program may be preferred, or a program that �ts a 
ertains
hema5 [3, 4℄. A note of 
aution is ne
essary about the addition of hints atwhat relations from the ba
kground knowledge may or should be used duringthe indu
tion. Indeed, hinting at the exa
tly ne
essary ba
kground knowledgein a problem-spe
i�
 way amounts to \spe
ifying the solution" (whi
h is anoxymoron), and thus misses the usual obje
tive of spe
ifying the problem. Es-pe
ially in Indu
tive Logi
 Programming (ILP), some systems require su
h usein a tea
her setting (as opposed to a spe
i�er setting) [6℄ and are thus essentiallydedu
tive synthesisers masquerading as indu
tive ones. (Their sear
h spa
es areintra
table otherwise.) Of 
ourse, there are s
enarios where the spe
i�er feelsthat some spe
i�
 ba
kground programs may or do have to be reused, but doesnot know exa
tly how to 
ombine them to a
hieve the desired 
omputation, soprefers to hand over to an indu
tive programming tool to �gure it out. We thenget a hybrid approa
h between indu
tive programming and programming-by-demonstration.The Future of Indu
tive Programming?Predi
tion is always diÆ
ult (as someone said), espe
ially of the future, but itmay be worth a try. As stated above, the �eld of AI is a ri
h sour
e of potentialte
hnologies for indu
tive programming. But AI te
hnologies are notoriouslyfragile and often 
ome with no formal underpinning, whi
h 
an make a su

ess nomore than a pleasant surprise. In indu
tive programming, we require robustnessand we require that the s
ope and limitations of a 
andidate te
hnology 
an be
ir
ums
ribed, so that appli
ability is not based on 
han
e and that su

ess
omes with some assuran
e of reliability. Part of the future 
an thus be seenas development of indu
tive te
hnologies that AI has demonstrated. A furtheraspe
t of this development must be s
alability: te
hniques that work on smalldemonstration examples must also su

eed on realisti
ally large examples.Work in Neural Computing [1℄, whi
h asso
iates an \error bar" with ea
hneural-net 
omputation, o�ers promise of the ne
essary assuran
es for a pra
ti-
al software system. By modelling the training data and the indu
tive algorithmused to develop a 
omputational module, a

urate 
on�den
e measures 
an beasso
iated with every new 
omputation. Mu
h work remains to be done on4Our passive synapse [3℄ and intera
tive dialogs [4℄ indu
tive program synthesisers demon-strate the bene�ts of having su
h properties in addition to examples.5See [6℄ for an overview of s
hema-guided indu
tive synthesisers of re
ursive logi
 programs.5



a

urate and eÆ
ient data modelling, but the potential reward, namely an a
-
urate `
on�den
e' value asso
iated with ea
h 
omputed result, will be valuableinformation for the software engineer. A similar strand of resear
h is 
on
entrat-ing on the further development of Bayesian networks, whi
h hold the promise ofilluminating logi
al de
ision stru
tures as well as a

urate 
on�den
e measures[7℄.Overview of the A

epted PapersThe three papers that have been sele
ted bring an interesting variety of ap-pli
ations of indu
tive te
hnologies to bear on the 
entral problem of softwaredevelopment.The �rst paper | by Hern�andez-Orallo and Ram��rez-Quintana | ta
klesthe issue of software spe
i�
ation from the viewpoint that there will alwaysbe s
ope for improvement. In their view, software development methodologieshave an unhealthy tenden
y to treat the spe
i�
ation as some given foundationupon whi
h everything else is built and with respe
t to whi
h 
ru
ial notionslike implementation 
orre
tness are de�ned. They propose a new model forsoftware development that is inspired by the ideas of in
remental learning em-anating from the Ma
hine Learning sub�eld of Arti�
ial Intelligen
e. Indu
tivete
hnology is used to move the spe
i�
ation into the evolutionary loop of in
re-mental modi�
ation alongside design and implementation, whi
h are the moretraditional elements of an evolutionary software development paradigm.The se
ond paper | by Hamfelt, Nilsson, and Oldager | presents a newapproa
h to indu
tive synthesis of logi
 programs. They 
ontrast their s
hemewith that of the traditional ones, whi
h attempt to generalise programs froma set of examples. The proposed method works through examples but usesproblem-de
omposition and problem-redu
tion prin
iples to yield a pra
ti
allyviable alternative, provided that the programmer 
an supply appropriate auxil-iary predi
ates to maintain the overall sear
h spa
e within reasonable bounds.The third 
ontribution | by M
Cluskey and West | again addresses the ini-tial phases of software development, namely the spe
i�
ation and managementof requirements. Their appli
ation domain, namely air-traÆ
 management overthe North Atlanti
, with its demanding safety requirements puts heavy empha-sis upon the a

ura
y of a requirements domain theory. The 
entral 
on
ernis the re�nement and improvement of this domain theory so that it better �tsthe intentions of air-traÆ
 
ontrol oÆ
ers as re
e
ted in operational examples.They present a novel theory re�nement algorithm that uses the logs of expertde
isions and so permits validation of the requirements.A
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