Inductive Programming

Pierre Flener
Department of Information Science
Uppsala University, Box 513, S — 751 20 Uppsala, Sweden
Pierre.Flener@dis.uu.se

Derek Partridge
Department of Computer Science
University of Exeter, Exeter, EX4 4PT, United Kingdom
D.Partridge@exeter.ac.uk

What Is Inductive Programming?

The intent of this special issue was to bring together developments in inductive
programming [12] that have a direct bearing on software development, and to
promote a broader usage of the term. Inductive programming, in our view, is
not a return to the overly ambitious, and thus ultimately unworkable, schemes of
automatically generating large software systems. Inductive programming is thus
not just programming-by-example, nor just programming-by-demonstration,
nor a panacea for software development-in-the-large. It is a mix of more sub-
tle uses of induction to assist the software developer in a variety of ways. We
describe some ingredients of the mixture below, but all need further develop-
ment, and entirely new ones remain to be discovered. At this point in time,
we can do no more than articulate our current understanding in the hope that
this personal view will stimulate the requisite discussion and research needed to
push the inductive-programming strategy forwards to become a set of practical
options for the software engineer — not a replacement for mainstream methods,
but a powerful adjunct in appropriate circumstances.

Scientific induction (which is not to be confused with mathematical induc-
tion) is the process of reasoning from the particular, which is known-to-be-
incomplete information, to the general. Such inductive inference, just like ab-
ductive inference and analogical inference, is in general unsound. The term
inductive programming may be contrasted with classical programming, which
works from an assumed-to-be-complete specification to a particular implemen-
tation. Classical programming is thus a process that we might justifiably call
deductive programming, which is a name that gains further credibility when
we remember that the history of automatic programming is one of attempting
to logically deduce correct implementations from (assumed-to-be-complete) so-



called “formal specifications”.! Recall that deductive inference is always sound.

In inductive programming, we seek algorithms that survey known-to-be-
incomplete information, say a set of input-output examples, and generate infor-
mation pertinent to the construction of a generalised computational system for
which these input-output examples are a representative sample. The informa-
tion so extracted might thus be no more than problem features and decision logic
for specification enhancement, or it might be a self-contained system module,
but it does not have to be a complete software system in order to be useful.

Another definition of inductive programming, namely as programming-by-
example, that is the extrapolation of “the correct” function from a subset of its
input-output examples, is too restrictive in our opinion. It even seems ill-posed,
as there never is a single correct function in such a setting, so that one has no
guarantee that the obtained result is correct in any sense. This common prej-
udice is overly strong, and can be weakened by the following argument. There
is not always a single correct function embedded in specifications suitable for
deductive programming either. Indeed, such specifications can also be ambigu-
ous (embed more than one function) or even internally inconsistent (embed no
function at all).? An ambiguous or internally inconsistent specification is sub-
jected to inspection and revision. If internal inconsistency persists, then it may
just be because the problem has no solution. If ambiguity persists, then it may
just be because several solutions are equally good. The hard rules of Formal
Methods advocates, such as avoiding ambiguity and internal inconsistency, thus
lead to absurdities: one cannot decide in advance what is good in all possible
situations. (Known-to-be-)incomplete specifications can thus not be attacked
for their (definite) ambiguity, due to their incomplete nature, because ambiguity
and internal inconsistency can be desirable even for (assumed-to-be-)complete
specifications.> The fundamental computer science notion of ‘specification’ is
surprisingly complex [13]; this is a fact that goes largely unappreciated, to judge
by the common and cavalier usage of this word.

Nothing thus says that no useful information nor valuable computational
system can be forthcoming from applications of induction algorithms to data.
Because the induction processes we contemplate are algorithmically specified,
the information generated — either guidance for problem specification enhance-
ment or an executable module — is generated automatically. This is the essence
of what induction algorithms have to contribute to the field of automated soft-
ware engineering [5, 12]. It has been noted [8] that the addition of input-output
examples to even complete specifications may be beneficial (to human program-
mers), namely as a means of clarification. (The common fear that such examples
may be inconsistent with the rest of the specification is unreasonable, as absence
of internal inconsistency is not a guarantee of external consistency, whereas in-
ternal inconsistency is an undeniable indication that the considered problem

ISee [8] for an argument why “formal specifications” cannot really be considered to be
actual specifications, in the classical engineering sense.

2Note that internal inconsistency is impossible with input-output examples.

3Similarly, both kinds of specification cannot be attacked for their potential external in-
consistency with respect to the intentions or real world.



either is ill-posed or has no solution.) What inductive programming aims at is
the exploration of all synergies between complete and incomplete specifications.

Inductive Programming in Action

The first step in idealised software engineering is to abstract a precise (and
assumed-to-be-complete) specification, which is then taken as the foundation for
all subsequent development, such as coding and verification. However, complex
specifications typically contain errors and approximations that lead to errors in
the eventual software, errors that are not easily detected or eliminated before
the software is subjected to operational testing.

However, many programming problems are manifest as sets of data values,
namely inputs and corresponding outputs, divided into positive examples and
negative examples, which can also be seen as a known-to-be-incomplete speci-
fication. Inductive programming techniques work from such data instances to
the implementation without going through an assumed-to-be-complete speci-
fication. They thus offer the software engineer a means to avoid or rectify
system errors that are due to specification faults, and perhaps even to circum-
vent the need for a complete specification, i.e., some system modules may be
inductively generated from data where accurate specification proves difficult.
Induction-based processing of problem data (i.e., data mining) may even be
used to check and correct features of a potentially or assumed-to-be complete
specification. Indeed, software engineering experience shows that the notion of
‘complete specification’ is nothing but a chimera.

Inductive software development will be particularly germane, if not essential,
for (parts of) complex data-defined problems. These will arise in a data-rich
domain and address very complex aspects of the world, such as the human
body, complicated manufacturing processes, and complex dynamical situations.
Human face recognition is one such problem. It is a priori plausible that a
computerised face recogniser is possible. We are all good face recognisers, but
we do not know how we do it. We may be able to specify what is desired
but not at the level of detail required for classical algorithm design and subse-
quent implementation. The details could, however, be provided in the form of
a set of input-output examples, and from such a set of instances an inductive
programming technology could provide a generalised face-recognition system.

Inductive programming is not, however, trouble-free. There are difficult
issues of ‘understanding’ automatically induced procedures so that implementa-
tion performance can be characterised. There are issues of data pre-processing
to facilitate optimal application of a given inductive technique and to obtain an
implementation with certain desired characteristics.

The ‘understanding’ issue is particularly important when the induction tech-
nology is that of distributed neural computing. It may be possible to train, say,
a multilayer perceptron using the backpropagation algorithm to produce a good
prediction module in a situation where classical programming has been unsuc-
cessful. After training, no further weight updating is permitted, and then the



trained neural network implements a deterministic computation. This module
is then clear evidence of a systematic algorithmic solution to some hitherto in-
tractable subfunction, but inspection of the trained network is unlikely to shed
much light on how, in classical computational terms, this particular subfunction
can be characterised [11].

As a specific example, we are collaborating with National Air-Traffic Ser-
vices of the UK to improve the performance of their Short-Term Conflict Alert
(STCA) software system. The STCA system was designed to alert air-traffic
controllers whenever two aircraft are likely to breach proximity restrictions. It
must never miss a true alarm situation, and consequently it produces large num-
bers of false alarms. A common false-alarm situation occurs when one plane is
ascending (or descending) towards a flight level where it can (and invariably
does) safely level off, but the linear extrapolation of its flight path (before level-
off) leads to a false alarm. The existence of a subfunction that could predict
level-offs could cancel many false alarms, but the STCA system contains no
such subfunction because no one knows how to specify it. However, given many
examples of flight paths (and other objective data such as size of aircraft) for
which planes level off and do not level off, it is possible to train a neural net-
work to predict level-offs (not perfectly but quite well). But inspection of the
trained networks yields no information to assist in the formulation of a classical
specification for level-off prediction, and hence we are no closer to a classically
programmed level-off prediction module to add to the STCA system. But we
do then know which of the available features (such as speed, deceleration, and
size) are important for predicting level-off, and use of automatic decision-tree
induction algorithms is expected to reveal useful decision logic associated with
those features.

A major source of incipient technologies to develop for inductive program-
ming is the field of Artificial Intelligence (AI). This is because the problems of AI
have long been acknowledged as unspecifiable with the precision and complete-
ness typically demanded by software engineers. Michie [9], for example, makes
explicit connection between “machine learning” technologies and software main-
tenance. A recent collection entitled “Computational Intelligence in Software
Engineering” [14] contains a number of inductive technologies applied to various
aspects of software development. The efficient solving of constraint satisfaction
problems [15] is an important sub-field of AI, because of the ubiquity of these
often NP-complete problems; to cope with the instance sensitivity of heuristics,
recent industry-strength solver generators [2, 10] also use training instances, and
thus feature a productive mix of inductive and deductive inference.

In some inductive programming settings, mere input-output examples may
be too weak specification information, either because the search space of induc-
tion then becomes too large, or because the specifier knows a few more things.
To overcome the many negative results on inductive inferability from examples
alone, many researchers have proposed additional specification information, such
as oracles, properties, and background knowledge. Indeed, the induction algo-
rithm may construct its own additional examples and submit them to an oracle
(usually the specifier) for classification as positive or negative. Or the specifier



may wish to impart that the sought function is believed to satisfy a certain prop-
erty, such as transitivity. This may be useful for communicating known intrinsic
information: for instance, the < relation is intrinsic to number-list sorting, as
it appears in all sorting programs, but a partitioning function is extrinsic to it,
as it only appears in quicksort programs.? Finally, background knowledge may
increase the power of induction by making reusable programs available.

Other information is often added to reduce the search space. For instance,
declarative bias is used to control the search and language during induction:
a deterministic program may be preferred, or a program that fits a certain
schema® [3, 4]. A note of caution is necessary about the addition of hints at
what relations from the background knowledge may or should be used during
the induction. Indeed, hinting at the ezactly necessary background knowledge
in a problem-specific way amounts to “specifying the solution” (which is an
oxymoron), and thus misses the usual objective of specifying the problem. Es-
pecially in Inductive Logic Programming (ILP), some systems require such use
in a teacher setting (as opposed to a specifier setting) [6] and are thus essentially
deductive synthesisers masquerading as inductive ones. (Their search spaces are
intractable otherwise.) Of course, there are scenarios where the specifier feels
that some specific background programs may or do have to be reused, but does
not know exactly how to combine them to achieve the desired computation, so
prefers to hand over to an inductive programming tool to figure it out. We then
get a hybrid approach between inductive programming and programming-by-
demonstration.

The Future of Inductive Programming?

Prediction is always difficult (as someone said), especially of the future, but it
may be worth a try. As stated above, the field of Al is a rich source of potential
technologies for inductive programming. But AI technologies are notoriously
fragile and often come with no formal underpinning, which can make a success no
more than a pleasant surprise. In inductive programming, we require robustness
and we require that the scope and limitations of a candidate technology can be
circumscribed, so that applicability is not based on chance and that success
comes with some assurance of reliability. Part of the future can thus be seen
as development of inductive technologies that AI has demonstrated. A further
aspect of this development must be scalability: techniques that work on small
demonstration examples must also succeed on realistically large examples.
Work in Neural Computing [1], which associates an “error bar” with each
neural-net computation, offers promise of the necessary assurances for a practi-
cal software system. By modelling the training data and the inductive algorithm
used to develop a computational module, accurate confidence measures can be
associated with every new computation. Much work remains to be done on

4Qur passive SYNAPSE [3] and interactive DIALOGS [4] inductive program synthesisers demon-
strate the benefits of having such properties in addition to examples.
5See [6] for an overview of schema-guided inductive synthesisers of recursive logic programs.



accurate and efficient data modelling, but the potential reward, namely an ac-
curate ‘confidence’ value associated with each computed result, will be valuable
information for the software engineer. A similar strand of research is concentrat-
ing on the further development of Bayesian networks, which hold the promise of
illuminating logical decision structures as well as accurate confidence measures

ul

Overview of the Accepted Papers

The three papers that have been selected bring an interesting variety of ap-
plications of inductive technologies to bear on the central problem of software
development.

The first paper — by Herndndez-Orallo and Ramirez-Quintana — tackles
the issue of software specification from the viewpoint that there will always
be scope for improvement. In their view, software development methodologies
have an unhealthy tendency to treat the specification as some given foundation
upon which everything else is built and with respect to which crucial notions
like implementation correctness are defined. They propose a new model for
software development that is inspired by the ideas of incremental learning em-
anating from the Machine Learning subfield of Artificial Intelligence. Inductive
technology is used to move the specification into the evolutionary loop of incre-
mental modification alongside design and implementation, which are the more
traditional elements of an evolutionary software development paradigm.

The second paper — by Hamfelt, Nilsson, and Oldager — presents a new
approach to inductive synthesis of logic programs. They contrast their scheme
with that of the traditional ones, which attempt to generalise programs from
a set of examples. The proposed method works through examples but uses
problem-decomposition and problem-reduction principles to yield a practically
viable alternative, provided that the programmer can supply appropriate auxil-
iary predicates to maintain the overall search space within reasonable bounds.

The third contribution — by McCluskey and West — again addresses the ini-
tial phases of software development, namely the specification and management
of requirements. Their application domain, namely air-traffic management over
the North Atlantic, with its demanding safety requirements puts heavy empha-
sis upon the accuracy of a requirements domain theory. The central concern
is the refinement and improvement of this domain theory so that it better fits
the intentions of air-traffic control officers as reflected in operational examples.
They present a novel theory refinement algorithm that uses the logs of expert
decisions and so permits validation of the requirements.

Acknowledgements

We express our gratitude to all the authors who submitted a paper to this special
issue, as well as to all the anonymous referees who accepted to participate in the



review process. Finally, we would like to thank the Editorial Board members
who commented on a draft of this introduction, as well as Bashar Nuseibeh, the
Editor-in-Chief of this journal, for his continuous support.

References

[1] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,
1995.

[2] T. Ellman, J. Keane, A. Banerjee, and G. Armhold. A transformation sys-
tem for interactive reformulation of design optimization strategies. Research
in Engineering Design 10(1):30-61, 1998.

[3] P. Flener. Logic Program Synthesis from Incomplete Information. Kluwer
Academic Publishers, 1995.

[4] P. Flener. Inductive logic program synthesis with pD1aLoas. In: S. Muggle-
ton (ed), Proc. of ILP’96, pp. 175-198. LNAI 1314. Springer-Verlag, 1997.

[5] P. Flener and L. Popelinsky. On the use of inductive reasoning in program
synthesis: Prejudice and prospects. In: L. Fribourg and F. Turini (eds),
Proc. of LOPSTR/META 94, pp. 69-87. LNCS 883. Springer-Verlag, 1994.

[6] P. Flener and S. Yilmaz. Inductive synthesis of recursive logic programs:
Achievements and prospects. J. of Logic Programming 41(2-3):141-195,
Nov./Dec. 1999.

[7] F. Jensen. An Introduction to Bayesian Networks. UCL Press, 1996.

[8] B. Le Charlier and P. Flener. Specifications are necessarily informal, or:
Some more myths of formal methods. J. of Systems and Software 40(3):275—
296, March 1998.

[9] D. Michie. Methodologies from machine learning in data analysis and soft-
ware. The Computer Journal 34(6):559-565, 1991.

[10] S. Minton. Automatically configuring constraint satisfaction programs: A
case study. Constraints 1(1-2):7-43, 1996.

[11] D. Partridge. Non-programmed computation. Comm. of the ACM 43(11es),
Nov. 2000.

[12] D. Partridge. The case for inductive programming. IEEE Computer
30(1):36-41, 1997.

[13] D. Partridge and A. Galton. The specification of ‘specification.” Minds and
Machines 5(2):243-255, 1995.

[14] W. Pedrycz and J.F. Peters (eds). Computational Intelligence in Software
Engineering. World Scientific, 1998.



[15] E.P.K. Tsang. Foundations of Constraint Satisfaction. Academic Press,
1993.



