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Reminder from Topic 1: Introduction

A solving technology offers languages, methods, and tools for:

what: Modelling constraint problems in a declarative language.

and / or

how: Solving constraint problems intelligently:

• Search: Explore the space of candidate solutions.

• Inference: Reduce the space of candidate solutions.

• Relaxation: Exploit solutions to easier problems.

A solver is a software that takes a model and data as input
and tries to solve that problem instance.
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Constraint Programming Technology

Constraint programming (CP) offers languages, methods, and tools for:

what: Modelling constraint problems in a high-level declarative language.

and

how: Solving constraint problems intelligently by:
• either default systematic search upon pushing a button
• or systematic search guided by a user-given strategy
• or local search guided by a user-given strategy

with lots of inference, called propagation in the case of systematic search,
but yet little relaxation.

Slogan of CP:

Constraint Program = Model [ + Search ]
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CP Solving = Inference + Search

A CP solver conducts search interleaved with inference:

Each constraint has an inference algorithm, called a propagator.
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Inference for One Constraint: Propagator

Example
Consider the constraint CONNECTED([C1, . . . ,Cn]), which imposes maximum
one stretch per colour among the n variables, whose domain is a colour set.
From the following current partial valuation for n = 6,
which we assume to be reached upon the search decision C4 = red:

C3 C6

a propagator of CONNECTED can infer that C3 = red:

C6

☞ A propagator deletes the impossible values from the current domains of
its variables, and thereby accelerates otherwise blind search. It is subsumed
when its constraint becomes certainly true under the new current domains.
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Roadmap

For CP by systematic search:
Consistency: A consistency (Module 3) is the targeted characterisation
of the domain values (Module 2) kept by a propagator (a musician; also
known as a filtering algorithm) for a constraint, but correctness of the
solver (the whole orchestra) must not depend on actually enforcing it.
Propagation: The fixPoint algorithm (of the conductor) decides
which propagator to run at what time (Module 2).
Search: The DFSearch algorithm (of the conductor) calls fixPoint and
a branching scheme (Modules 1, 2, and 9).
Propagators: We design propagators for Sum and Element (Module 3),
Table (Module 4), AllDifferent (Module 5), Circuit (Module 6),
Cumulative (Module 7), and Disjunctive (Module 8).

For CP by local search (LS):
Large-neighbourhood search: hybrid of LS and CP (Module 6).
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Mind the Gap

MiniCP is a white-box, bottom-up, and open-source teaching framework
for CP, implemented in Java. It is fully functional, but not as engineered
and complete as industry-strength CP solvers like Gecode.

In MiniZinc, a domain is declared for each variable.
In CP solvers, a domain is a dynamically shrinking data structure for a
variable, initialised to its declared domain, which must be finite.

With CP solvers, one writes an imperative program that states (or: posts)
— via any combination of sequential, conditional, iterative, and recursive
composition — the declarative constraints, which are given to the solver
via propagators enforcing user-chosen consistencies.

MiniCP does not automatically coerce Booleans (truth is 1 and falsity is 0)
into integers, and MiniZinc does.
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Reification

A MiniZinc reified constraint, such as b <-> γ(. . . ) with var bool: b,
can be modelled for MiniCP by naming it and designing a propagator for it.
Assume there are search guesses or other constraints on the reifying Boolean
variable b, which is a 0 / 1 variable in MiniCP:

When b gets fixed to 1, post the constraint γ(. . . ).

When b gets fixed to 0, post the constraint γ(. . . ).

When γ(. . . ) gets subsumed, post the constraint b=1.

When γ(. . . ) gets subsumed, post the constraint b=0.

where γ(. . . ) denotes the complement of γ(. . . ), not code for not γ(. . . ),
as CP solvers do not implement not.
Propagation may be very poor! Reification may be hard for some predicates!
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Constraint combination with reification:
With reification, constraints can be arbitrarily combined with logical
connectives: negation (¬), disjunction (∨), conjunction (&), implication (⇒),
and equivalence (⇔). However, propagation may be very poor!

Example
The composite constraint (γ1 & γ2) ∨ γ3 is modelled as

(b1 ⇔ γ1) & (b2 ⇔ γ2) & (b3 ⇔ γ3)
& (b1 · b2 = b) & (b + b3 ≥ 1)

Hence even the constraints γ1 and γ2 must be reified.
If γ1 is x = y + 1 and γ2 is y = x + 1, then γ1 & γ2 is unsatisfiable;
however, b is then not fixed to 0 by propagation, as each propagator works
individually and there is no communication through their shared variables x
and y ; hence b3 = 1 is not propagated and γ3 is not forced to hold.
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Remember the warning in Topic 2: Basic Modelling that the disjunction and
negation of constraints (with \/, xor, not, <-, ->, <->, exists, xorall,
if θ then ϕ1 else ϕ2 endif) in MiniZinc often makes the solving slow?

Example
The MiniZinc disjunctive constraint

constraint x = 0 \/ x = 9;

is modelled for MiniCP with reification:

(b0 ⇔ x = 0) & (b9 ⇔ x = 9) & (b0 + b9 ≥ 1)

But it is logically equivalent to

constraint x in {0,9};

where no reification is involved and no further propagation is needed.
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Remember the strong warning in Topic 2: Basic Modelling about
a conditional if θ then ϕ1 else ϕ2 endif or a comprehension, such as
[i | i in ρ where θ], in MiniZinc with a test θ that depends on variables?

Example
Consider var 1..9: x and var 1..9: y for

constraint forall(i in 1..9 where i > x)(i > y)

Recall that this is syntactic sugar for

constraint forall([i > y | i in 1..9 where i > x])

This is modelled for MiniCP with reification, as in

constraint forall(i in 1..9)(i > x -> i > y)

that is with a logical implication (->), hence with a hidden logical disjunction
(\/): for each i, both sub-constraints are reified because both have variables.
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Inference: Propagator and Consistency

A MiniZinc inference annotation (recall Topic 8: Inference & Search in CP &
LCG) to a constraint, either value_propagation or bounds_propagation
or domain_propagation, is prescribed for MiniCP by designing for the
predicate of that constraint a propagator that enforces that consistency.

Example
We design propagators that enforce various consistencies, even others than
bounds and domain consistency (Module 3), for Sum and Element (Module 3),
Table (Module 4), AllDifferent (Module 5), Circuit (Module 6),
Cumulative (Module 7), and Disjunctive (Module 8).
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Search: Selection Strategies

A MiniZinc search annotation (recall Topic 8: Inference & Search in CP & LCG)
to an objective, such as int_search(X,first_fail,indomain_min), is
prescribed for MiniCP by providing a branching scheme, which selects an
unfixed variable x and returns an array (empty if no such x exists) of branching
constraints according to a partition of the current domain of x.

Example
We implement (Modules 1, 2, and 9) variable-selection strategies, such as
various realisations of the first-fail principle, and value-selection strategies for
domain partitioning, such as various realisations of the best-first principle.
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A MiniZinc linear constraint, such as the linear equality
constraint sum(i in 1..n)(A[i] * X[i]) = d,
can be modelled for MiniCP by designing a propagator for a Sum predicate:

Definition
The Sum([a1, . . . ,an] , [x1, . . . , xn] ,∼,d) constraint, with

[a1, . . . ,an] a sequence of non-zero integer parameters,
[x1, . . . , xn] a sequence of integer variables,
∼ in {<,≤,=, ̸=,≥, >}, and
d an integer parameter,

holds if and only if the linear relation
(∑n

i=1 ai · xi
)

∼ d holds.

It is easy to reify Sum.

In Module 3, we design a polynomial-time propagator that enforces bounds
consistency for

∑n
i=1 xi = 0, whose domain consistency is NP-hard to enforce.
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A MiniZinc constraint on an array element at an unknown index i, such
as element(i,X,e) or X[i]=e or a constraint on X[i], can be modelled
for MiniCP by designing a propagator for a new Element predicate:

Definition (Van Hentenryck and Carillon, 1988)
The Element([x1, . . . , xn] , i ,e) constraint, where the xj are variables, i is an
integer variable, and e is a variable, holds if and only if xi = e.

One can generalise Element to multi-dimensional arrays. It is hard to reify it.

In Module 3, we write propagators that enforce various consistencies on the
various variables, depending on the number of dimensions of the array and on
whether its elements xj are variables or parameters.
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Example (Warehouse Location Problem)
Recall the one-way channelling constraint of Model 1 in Topic 6: Case Studies
from the Supplier[s] variables to their non-mutually redundant Open[w]
variables:

constraint forall(s in Shops)
(Open[Supplier[s]] = 1);

This must be modelled for MiniCP as in the following MiniZinc reformulation:

constraint forall(s in Shops)
(element(Supplier[s], Open, 1));
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Example (Warehouse Location Problem, a last time)
Recall the objective of Model 1 in Topic 6: Case Studies:

solve minimize maintCost * sum(Open)
+ sum(s in Shops)(SupplyCost[s,Supplier[s]]);

This must be modelled for MiniCP as in the following MiniZinc reformulation,
by declaring Cost[s] variables and posting element constraints for them:

% Cost[s] = the actually incurred supply cost for s:
array[Shops] of var 0..max(SupplyCost): Cost;
constraint forall(s in Shops)

(element(Supplier[s], SupplyCost[s,..], Cost[s]);
solve minimize maintCost * sum(Open) + sum(Cost);

Recall that we actually introduced these Cost[s] variables (in Topic 8:
Inference & Search in CP & LCG) in order to state a maximal-regret search
strategy on those variables.
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Example (Job allocation at minimal salary cost)
Remember the model in Topic 3: Constraint Predicates:

1 array[Apps] of 0..1000: Salary; % Salary[a] = cost per job to appl. a
2 array[Jobs] of var Apps: Worker; % Worker[j] = appl. allocated job j
3 solve minimize sum(j in Jobs)(Salary[Worker[j]]);
4 constraint ...; % qualifications, workload, etc

Line 3 must be modelled for MiniCP as in the following MiniZinc reformulation,
by declaring Cost[j] variables and posting element constraints for them:
array[Jobs] of var 0..max(Salary): Cost; % Cost[j] = salary for job j
constraint forall(j in Jobs)(element(Worker[j],Salary,Cost[j]));
solve minimize sum(Cost);

COCP/M4CO 12 - 23 -
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A MiniZinc constraint on membership of a 1d array among the rows of a 2d
array, such as table(X,T), is modelled for MiniCP by designing a propagator
for a new Table predicate:

Definition
The Table([x1, . . . , xn] , [[t11, . . . , t1n] , . . . , [tm1, . . . , tmn]]) constraint holds
if and only if the values taken by the sequence [x1, . . . , xn] of variables form
a row [ti1, . . . , tin] of the 2d table of parameters given as second argument.

It is easy to reify Table.

In Module 4, we design a propagator that enforces domain consistency.
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An MiniZinc constraint of pairwise difference, such as all_different(X),
can be modelled for MiniCP by designing a propagator for an AllDifferent
predicate:

Definition (Laurière, 1978)
The AllDifferent([x1, . . . , xn]) constraint holds if and only if all the
variables xi take distinct values.

This is logically equivalent to n·(n−1)
2 disequality constraints:

∀i , j ∈ 1..n where i < j : xi ̸= xj

It is hard to reify AllDifferent.

In Module 5, we write several propagators that enforce various consistencies
on the variables, namely a new consistency and domain consistency, which
both usually lead to faster solving than the Θ(n2) disequality constraints above.
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A MiniZinc constraint on a Hamiltonian circuit, such as circuit(S), can be
modelled for MiniCP by designing a propagator for a new Circuit predicate:

Definition (Laurière, 1978)
The Circuit([s1, . . . , sn]) constraint holds if and only if the arcs i → si form a
Hamiltonian circuit in the graph defined by the domains of the variables si :
each vertex is visited exactly once.

It is hard to reify Circuit.

In Module 6, we design a propagator.
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A MiniZinc constraint on the bounded cumulative resource requirement of
tasks, such as cumulative(S,D,R,c), can be modelled for MiniCP by
designing a propagator for a new Cumulative predicate:

Definition (Aggoun and Beldiceanu, 1993)
The Cumulative([s1, . . . , sn] , [d1, . . . ,dn] , [r1, . . . , rn] , c) constraint, where
each task Ti has the starting time si , duration di , and resource requirement ri ,
holds if and only if the resource capacity c is never exceeded when performing
the tasks Ti .

It is hard to reify Cumulative.

In Module 7, we design several propagators that enforce various consistencies
on the starting-time variables si , when all other arguments are parameters.
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A MiniZinc temporal no-overlap constraint on tasks, such as
disjunctive(S,D), can be modelled for MiniCP by designing a propagator
for a new Disjunctive predicate:

Definition (Carlier, 1982)
The Disjunctive([s1, . . . , sn] , [d1 . . . ,dn]) constraint,
where each task Ti has the starting time si and duration di ,
holds if and only if no two tasks Ti and Tj overlap in time.

It is hard to reify Disjunctive.

In Module 8, we design several propagators that enforce various consistencies
on the starting-time variables si , when the durations di are parameters.
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