
Topic 10: Modelling for SAT and SMT
(Version of 22nd February 2018)

Jean-Noël Monette

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL441:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

http://optimisation.research.it.uu.se

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 2 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 3 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Revisit the slides on Boolean satisfiability (SAT) and SAT
modulo theories (SMT) of Topic 7: Solving Technologies.

SAT using MiniZinc:
The currently only SAT backend, mzn-g12sat, allows only
Boolean decision variables:

One must manually transform a model with integer
variables (see the next slides), just like when directly
using a SAT solver. This will probably be automated in
a future release of the MiniZinc toolchain.
One can already flatten a model with set variables
using the option -Gnosets.

SMT using MiniZinc:
The backend fzn2smt transforms a FlatZinc model
into the SMTlib language, which is understood by most
SMT solvers, such as CVC4, Yices, and Z3.
All predicates are decomposed by the flattening.

COCP / M4CO - 4 -

http://smtlib.org
http://cvc4.cs.nyu.edu
http://yices.csl.sri.com
http://rise4fun.com/z3

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 5 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Encoding into SAT

Challenges:
How to encode an integer variable into a collection of
Boolean variables?
How to encode a constraint on integer variables into a
collection of constraints on Boolean variables?
How to transform a constraint on Boolean variables
into clausal form? Most solvers do this for you.

Considerations:
We want few variables.
We want few clauses.

As usual, there are many possibilities and it is not always
clear what is the best choice.

COCP / M4CO - 6 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Encoding an Integer Variable

Well-known encodings, described on the next three slides:

Direct (or sparse) encoding:
a Boolean variable for each equality with a value.

Order encoding:
a Boolean variable for each inequality with a value.

Direct + order encoding:
channel between the direct and order encodings.

Bit (or binary) encoding:
a Boolean variable for each bit in the base-2
representation of the domain values [not covered here].

COCP / M4CO - 7 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Direct Encoding of an Integer Variable

Consider an integer variable x with domain 1..n:

Create a Boolean variable b[x=k] for all k in 1..n.

The variable b[x=k] is true if and only if x = k holds.

Consistency constraints:

• At least one value:
∨

k∈1..n

b[x=k]

• At most one value:
∧

j,k∈1..n, j<k

¬
(
b[x=j] ∧ b[x=k]

)
There are n variables, n · (n − 1)/2 binary clauses, and
one n-ary clause.

The constraint x 6= k is encoded as ¬b[x=k].

The constraint x < k is encoded as
∧

j∈k ..n

¬b[x=j].

COCP / M4CO - 8 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Order Encoding of an Integer Variable

Consider an integer variable x with domain 1..n:

Create a Boolean variable b[x≥k] for all k in 1..(n + 1).

The variable b[x≥k] is true if and only if x ≥ k holds.

Consistency constraints:

• Order:
∧

k∈1..n

(
b[x≥k] ∨ ¬b[x≥k+1]

)
• Bounds: b[x≥1] ∧ ¬b[x≥n+1]

There are n + 1 variables and n binary clauses.

The constraint x = k is encoded as b[x≥k] ∧ ¬b[x≥k+1].

The constraint x 6= k is encoded as ¬b[x≥k] ∨ b[x≥k+1].

The constraint x < k is encoded as ¬b[x≥k].

COCP / M4CO - 9 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Direct + Order Encoding of Integer Variable

Channelling constraints:∧
k∈1..n

(
b[x=k] ⇔

(
b[x≥k] ∧ ¬b[x≥k+1]

))
Reminder: α⇔ β is equivalent to (¬α ∨ β) ∧ (α ∨ ¬β).

Channelling constraints in clausal form:∧
k∈1..n

((¬b[x=k] ∨ b[x≥k]) ∧ (¬b[x=k] ∨ ¬b[x≥k+1])

∧ (b[x=k] ∨ ¬b[x≥k] ∨ b[x≥k+1]))

There are 2 · n new binary and n new ternary clauses.

COCP / M4CO - 10 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Encoding a Constraint of Arity > 1

A constraint encoding is a constraint decomposition in
clausal form.

Many possibilities exist for each constraint predicate.

There is a lot of research on how to encode constraints.

There are two general approaches:

• encode solutions;

• encode non-solutions.

Constraint encodings depend on the variable encoding.

COCP / M4CO - 11 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Encoding Simple Constraints of Arity > 1

Constraint x = y , both variables with domain 1..n:

Direct encoding:
∧

k∈1..n

(b[x=k] ⇔ b[y=k])

Order encoding:
∧

k∈1..n

(b[x≥k] ⇔ b[y≥k])

Constraint x 6= y , both variables with domain 1..n:

Direct encoding:
∧

k∈1..n

(
¬b[x=k] ∨ ¬b[y=k]

)
Order encoding:∧

k∈1..n

(
¬b[x≥k] ∨ b[x≥k+1] ∨ ¬b[y≥k] ∨ b[y≥k+1]

)
COCP / M4CO - 12 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Constraint x ≤ y , both variables with domain 1..n:

Direct encoding:
∧

k∈1..n

¬b[x=k] ∨
∨

j∈k ..n

b[y=j]


Order encoding:

∧
k∈1..n

(
¬b[x≥k] ∨ b[y≥k]

)
Constraint x + c = y , with x ∈ 1..n and y ∈ (1 + c)..(n + c):

Direct encoding:
∧

k∈1..n

(
b[x=k] ⇔ b[y=k+c]

)
Order encoding:

∧
k∈1..n

(
b[x≥k] ⇔ b[y≥k+c]

)

COCP / M4CO - 13 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Encoding alldifferent

How to encode alldifferent([X1, . . . ,Xm]), where all the
variables have domain 1..n, with usually m ≤ n?

Approach 1: Decompose alldifferent into binary
disequalities, and encode each disequality separately.

Approach 2: Each value is taken by at most one var:

• Use a decomposition into binary clauses, like in the
direct encoding: this actually boils down to Approach 1.

• Use a ladder encoding: see the next slide.

COCP / M4CO - 14 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Ladder Encoding for alldifferent

Add a Boolean variable Aik for each i ∈ 0..m & k ∈ 1..n.

Variable Aik is true iff one of X1, . . . ,Xi has value k .

Constraints:

• Consistency: ∧
k∈1..n

∧
i∈1..m

(
¬A(i−1)k ∨ Aik

)
• Channelling:∧

k∈1..n

∧
i∈1..m

(
B[Xi=k] ⇔

(
¬A(i−1)k ∧ Aik

))

COCP / M4CO - 15 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Comparison of alldifferent Encodings

Decomposition encoding:

The decomposition has m·(m−1)
2 binary disequalities.

Each disequality is encoded by n binary clauses.

Total: n·m·(m−1)
2 binary clauses.

Ladder encoding:

First part: n ·m binary clauses.

Second part: 2 · n ·m binary and n ·m ternary clauses.

Total: 4 · n ·m clauses with 2 or 3 literals.

COCP / M4CO - 16 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 17 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Some Guidelines

Use higher-level variable types (sets, . . .),
even if not supported by the SAT or SMT backend.

They enable the use of carefully designed encodings.

It is easier for the modeller to reason about them.

Use global constraint predicates,
even if not supported by the SAT or SMT backend.

They enable the use of carefully designed encodings.

It is easier for the modeller to reason about them.

COCP / M4CO - 18 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Add implied constraints:

They may reduce the search space a lot

This might be redundant with the clause-learning
mechanisms of modern SAT and SMT solvers.

Add symmetry-breaking constraints:

They may reduce the search space a lot.

Limit the number of SMT theories used:

Using several theories may decrease the inference
power of the solver.

COCP / M4CO - 19 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 20 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Outline

1. SAT and SMT

2. Encoding into SAT

3. Modelling for SAT and SMT in MiniZinc

4. Case Study
Graph Colouring

COCP / M4CO - 21 -

SAT and SMT

Encoding
into SAT

Modelling for
SAT and SMT
in MiniZinc

Case Study
Graph Colouring

Given a graph (V,E), colour each vertex so that adjacent
vertices have different colours, using at most n colours.

Model 2, MiniZinc/CP/LCG-style
Variable C[v] in 1..n is k iff vertex v has colour k.

1 One colour per vertex: enforced by choice of variables.
2 Different colours on edge ends:

forall((u,v) in E)(C[u] != C[v])

Give SAT and SMT flattenings of this model!

COCP / M4CO - 22 -

	SAT and SMT
	Encoding into SAT
	Modelling for SAT and SMT in MiniZinc
	Case Study
	Graph Colouring

