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Annotations:
Annotations provide information to the backend
or to the MiniZinc-to-FlatZinc compiler.
Annotations are optional.
A backend may ignore any of the annotations.
The compiler may introduce further annotations.
Annotations are attached with :: to model items.
Annotations do not affect the model semantics.

Annotations to a constraint:
Annotations can suggest a propagator to use for the constraint
by a CP or LCG backend: see slide 8.

Annotations to the objective:
Annotations can suggest a search strategy to use
by a CP or LCG backend: see slide 14.

COCP/M4CO 8 - 4 -
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Domains (reminder)

Definition
The domain of a decision variable v , denoted here by dom(v), is the set of
values that v can still take during search:

The domains of the decision variables are reduced by search
and by inference (see the next two slides).
A decision variable is said to be fixed if its domain is a singleton.
Unsatisfiability occurs if a decision variable domain goes empty.

Note the difference between:
a domain as a technology-independent declarative entity when modelling;
a domain as a CP-technology procedural data structure when solving.

COCP/M4CO 8 - 6 -
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CP Solving (reminder)

Tree Search, upon initialising each domain as in the model:

Satisfaction problem:
1 Perform inference (see the next slide).
2 If the domain of some decision variable is empty, then backtrack.
3 If all decision variables are fixed, then we have a solution.
4 Select a non-fixed decision variable v ,

partition its domain into two parts π1 and π2, and make two branches:
one with v ∈ π1, and the other one with v ∈ π2.

5 Recursively explore each of the two branches.

Optimisation problem: when a feasible solution is found at step 3, first add
the constraint that the next solution must be better and then backtrack.

COCP/M4CO 8 - 7 -
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CP Inference

Definition
A propagator for a predicate γ deletes from the domains of the variables of
a γ-constraint the values that cannot be in a solution to that constraint.
Not all impossible values need to be deleted:

A domain-consistency (DC) propagator deletes all impossible values from
the domains.
A bounds-consistency (BC) propagator only deletes all impossible
minimum and maximum values from the domains.
A value-consistency (VC) propagator is only awoken when at least one of
its decision variables became fixed.

There exist other, unnamed consistencies for propagators.
There is a trade-off between the time & space complexity of a propagator and
its achieved deletion of domain values.

COCP/M4CO 8 - 8 -
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Example (Linear equality constraints)
Consider the linear constraint 3 * x + 4 * y = z
with dom(x) = 0..1 = dom(y) and dom(z) = 0..10:

A bounds-consistency propagator reduces dom(z) to 0..7.
A domain-consistency propagator reduces dom(z) to {0,3,4,7}.

Time complexity:
A bounds-consistency propagator for a linear equality constraint can be
implemented to run in O(n) time, where n is the number of decision
variables in the constraint.
A domain-consistency propagator for a linear equality constraint can be
implemented to run in O(n · d2) time, where n is the number of decision
variables in the constraint and d is the sum of their domain sizes, hence in
time pseudo-polynomial = exponential in the input magnitude.

COCP/M4CO 8 - 9 -
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Controlling the CP Inference

The choice of propagator for each constraint may be critical for performance.
Each CP solver and LCG solver has a default propagator for each available
constraint predicate. It is possible to override the defaults with annotations:

:: domain_propagation asks for a DC propagator.
:: bounds_propagation asks for a BC propagator.
:: value_propagation asks for a VC propagator.

Annotations may be ignored, only partially followed, or just approximated:
annotations are just suggestions.

Example (Black-Hole Patience)
In Topic 6: Case Studies, the seen inference annotation within the channelling
constraint inverse(Card,Pos) :: domain_propagation;
has a huge impact with Gecode (CP) � + �.

COCP/M4CO 8 - 10 -
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Example (n-Queens)
1 array[1..n] of var 1..n: Row;
2 constraint all_different(Row) :: domain_propagation;
3 constraint all_different
4 ([ Row[c]+c | c in 1..n]) ::domain_propagation;
5 constraint all_different
6 ([ Row[c]-c | c in 1..n]) ::domain_propagation;

Test results with Gecode (CP) to the first solution for n=101:
inference # nodes seconds

default (no annotation) 348,193 5.5
bounds propagation on all different 348,193 5.5
domain propagation on all different 209,320 3.2

+ domain propagation on the linear constraints
domain propagation on all the constraints

Asking for bounds consistency on the implicit linear equality constraints
backfires here, as each is on only 2 decision variables,
but it may pay off upon more decision variables (and be default then).

COCP/M4CO 8 - 11 -



Annotations

Inference
Annotations
for CP & LCG

Search
Annotations
for CP & LCG

Case Studies
Balanced Incomplete
Block Design

Warehouse Location

Sport Scheduling

Example (n-Queens)
1 array[1..n] of var 1..n: Row;
2 constraint all_different(Row) :: domain_propagation;
3 constraint all_different
4 ([(Row[c]+c)::bounds_propagation | c in 1..n]) ::domain_propagation;
5 constraint all_different
6 ([(Row[c]-c)::bounds_propagation | c in 1..n]) ::domain_propagation;

Test results with Gecode (CP) to the first solution for n=101:
inference # nodes seconds

default (no annotation) 348,193 5.5
bounds propagation on all different 348,193 5.5
domain propagation on all different 209,320 3.2

+ bounds propagation on the linear constraints > 20M > 600.0
bounds propagation on all the constraints > 20M > 600.0

Asking for bounds consistency on the implicit linear equality constraints
backfires here, as each is on only 2 decision variables,
but it may pay off upon more decision variables (and be default then).

COCP/M4CO 8 - 12 -
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Search Strategies

Search Strategies:
On which decision variable to branch next?
How to partition the domain of the chosen decision variable?
Which search (depth-first, breadth-first, . . . ) to use?

The search is usually depth-first left-to-right search.

One can suggest to a CP or LCG backend on which decision variable
to branch and how, by making an annotation with:

a variable selection strategy, and
a domain partitioning strategy.

A search annotation is sometimes exploited for MIP solvers.

COCP/M4CO 8 - 14 -
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Variable Selection Strategy

The variable selection strategy has an impact on the size of the search tree,
especially if the constraints are processed with propagation at every node of
the search tree, or if the whole search tree is explored: for example, when it is
an optimisation problem or when there are no solutions.

Example (Impact of the variable selection strategy)
Consider var 1..2: x, var 1..4: y, var 1..6: z,
branching on all domain values, but no constraints:

If selecting the decision variables in the order x, y, z, then the CP search
tree has 1 + 2 + 2 · 4 + 2 · 4 · 6 = 59 nodes and 2 · 4 · 6 = 48 leaves.
If selecting the decision variables in the order z, y, x, then the CP search
tree has 1 + 6 + 6 · 4 + 6 · 4 · 2 = 79 nodes and also 6 · 4 · 2 = 48 leaves.

COCP/M4CO 8 - 15 -
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Definition (First-Fail Principle)
To succeed, first try where you are most likely to fail. In practice:

Select a decision variable with the smallest current domain.
Select a decision variable involved in the largest number of constraints.
Select a decision variable recently causing the most backtracks.

Example (Impact of the variable selection strategy)
Finding the first solution to 101-queens with Gecode (CP):

search # nodes seconds

default (no annotation) 348,193 5.5
first fail 323,275 5.3
anti first fail > 20M > 600.0
input order > 13M > 600.0

(Continued on slide 18)
COCP/M4CO 8 - 16 -
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Domain Partitioning Strategy

The domain partitioning strategy has an impact on the size of the search tree
when optimising, when only searching for the first solution, or when performing
incomplete search (say by using a time-out).

Example (Impact of the domain partitioning strategy)
Consider var 1..2: x, var 1..4: y, var 1..6: z,
domain consistency for x * y = z, x != y, x != z, and y != z,
smallest-domain variable selection, and depth-first search:

If the domain is split into singletons by increasing order,
then 6 CP nodes are explored before finding the (unique) solution.
If the domain is split into singletons by decreasing order,
then only 2 CP nodes (the root and a leaf) are explored
before finding the (unique) solution, without backtracking.

COCP/M4CO 8 - 17 -
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Definition (Best-First Principle)
First try a domain part that is most likely, if not guaranteed, to have values that
lead to solutions. This may be like how one would make the greedy choice in a
greedy algorithm for the problem at hand, considering its objective function.

Example (Impact of the domain partitioning strategy)
(Continued from slide 16)
Finding the first solution to 101-queens with Gecode (CP) �:

search # nodes seconds

default (no annotation) 348,193 5.5
first fail, indomain min 348,193 5.6
first fail, indomain 323,275 5.3
first fail, indomain median 96 0.1

COCP/M4CO 8 - 18 -
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Motivation for First-Fail and Best-First1

Finding a solution Detecting unsatisfiability

Variable
selection

Must consider all the
remaining decision variables

Need not consider all the
remaining decision variables:
☞ detect unsatisfiability a.s.a.p.

Domain
partitioning

Need not consider all the
remaining values:
☞ find a solution a.s.a.p.

Must consider all the
remaining values

1Based on material by Yves Deville and Pascal Van Hentenryck
COCP/M4CO 8 - 19 -
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Definition (Integer Brancher)
A brancher int_search(X,ϕ,ψ) selects a non-fixed decision variable in the
array X of integer decision variables, using as variable selection strategy ϕ one
of the following:

input_order: select the next decision variable by the order in X

first_fail: select a decision variable with the smallest domain
smallest: select a decision variable with smallest minimum in its domain
largest: select a decision variable with largest maximum in its domain
occurrence: select a decision variable involved in the largest number of
active propagators
most_constrained: use first_fail, break ties with occurrence

max_regret: select a decision variable with the largest difference
between the two smallest values in its domain
. . . (see Section 4.2.1.2 of the MiniZinc Handbook)

Ties are broken by the order in X. (Continued on next slide)
COCP/M4CO 8 - 20 -
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Definition (Integer Brancher, end)
Then, for the chosen decision variable, say v , the brancher selects values in
dom(v) = {d1, . . . ,dn}, with n ≥ 2 ∧ d1 < · · · < dn, and builds guesses, which
are constraints, using as domain partitioning strategy ψ one of the following:

indomain: branch left-to-right on v = d1, . . . , v = dn

indomain_min: branch left on v = d1 and right on v ̸= d1

indomain_middle: select di nearest the middle ṁ = ⌊(d1 + dn)/2⌋
so as to branch left on v = di and right on v ̸= di

indomain_median: select the median di = d⌊(n+1)/2⌋
so as to branch left on v = di and right on v ̸= di

indomain_split: branch left on v ≤ ṁ and right on v > ṁ
indomain_reverse_split: branch left on v > ṁ and right on v ≤ ṁ
outdomain_random: select a random value di
so as to branch left on v ̸= di and right on v = di

. . . (see Section 4.2.1.2 of the MiniZinc Handbook)

COCP/M4CO 8 - 21 -
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Definition (Boolean Brancher)
A brancher bool_search(X,ϕ,ψ) selects a non-fixed decision variable in
the array X of Boolean decision variables, using variable selection strategy ϕ
and domain partitioning strategy ψ, with the same choices as for integer
decision variables, under the convention false < true.

Definition (Chaining of Branchers)
A brancher seq_search([β1, . . . , βn]) chains branchers β1, . . . , βn:
when some brancher βi is finished, branch with βi+1.

Careful: A search annotation goes between the solve and satisfy,
minimize, or maximize keywords, and it is ignored elsewhere.
See the example on slide 37.

The search strategy of Gecode for the decision variables that are not in the
search annotation depends also on the output statement.

COCP/M4CO 8 - 22 -
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Definition
A set (decision) variable takes a set as value, and has a set of sets as domain.
For its domain to be finite, a set decision variable must be a subset of a given
finite set (called Σ below).

Integers are totally ordered, but sets are partially ordered: propagation for set
decision variables is much harder. Also, set domains can get huge: O(2|Σ|).
A trade-off is to over-approximate the domain of a set decision variable S by a
pair ⟨ℓ,u⟩ of finite sets, denoting the set of all sets σ such that ℓ ⊆ σ ⊆ u ⊆ Σ:

ℓ is the current set of mandatory elements of S;
u \ ℓ is the current set of optional elements of S.

Example
The domain of a set decision variable represented as ⟨{1} , {1,2,3,4}⟩ has
the sets {1}, {1,2}, {1,3}, {1,4}, {1,2,3}, {1,2,4}, {1,3,4}, and {1,2,3,4}.
Deleting {1,2,3} from this domain is impossible!

COCP/M4CO 8 - 23 -
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Definition (Set Brancher)
A brancher set_search(X,ϕ,ψ) selects a non-fixed decision
variable S .

= ⟨ℓ,u⟩ in the array X of set decision variables, using a variable
selection strategy ϕ on slide 20:

first_fail: select a decision variable with the smallest |u \ ℓ|
smallest: select a decision variable with the smallest min(u \ ℓ)
. . . (see Section 4.2.1.2 of the MiniZinc Handbook)

Then, for the chosen decision variable, say S .
= ⟨ℓ,u⟩, it selects an element

in u \ ℓ = {d1, . . . ,dn}, with d1 < · · · < dn, and builds guesses using a domain
partitioning strategy ψ on slide 21 with the following semantics here:

indomain_min: branch left on d1 ∈ S and right on d1 ̸∈ S
outdomain_max: branch left on dn ̸∈ S and right on dn ∈ S
outdomain_median: select the median di = d⌊(n+1)/2⌋
so as to branch left on di ̸∈ S and right on di ∈ S
. . . (see Section 4.2.1.2 of the MiniZinc Handbook)

COCP/M4CO 8 - 24 -
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Designing Search Strategies

Problem-specific strategies:
Beside general principles (first-fail and best-first), there are often good
strategies that can be designed using problem-specific knowledge.
In MiniZinc, it is often easy to express such strategies in terms of
problem-specific concepts.

Interaction with symmetry-breaking constraints:
For higher solving speed, suggest a domain partitioning that drives the search
towards solutions satisfied by the symmetry-breaking constraints.

Counter-example
For a + b + c = 38, with all decision variables in 1..19,
and symmetry_breaking_constraint(a < b /\ b < c),
do not use int_search([a,b,c],input_order,indomain_max).

COCP/M4CO 8 - 25 -
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Interaction with the choice of dummy values:
For higher solving speed, suggest a domain partitioning that drives the search
towards trying the dummy values (recall the examples of Topic 4: Modelling)
at the right moment.

Example (Student Seating, viewpoint 2 revisited again)

1 int: dummyS = 0; % Advice: also experiment with nStudents + 1
2 set of int: StudentsAndDummy = 1..nStudents union {dummyS};
3 % Student[c] = the student, possibly dummy, sitting on chair c:
4 array[1..nChairs] of var StudentsAndDummy: Student;
5 constraint global_cardinality_closed(Student, [dummyS]++[i|i in 1..nStudents],

[nChairs - nStudents] ++ [1 | i in 1..nStudents]);
6 ...

Under Gecode default search, using dummyS = 0 is a lot slower than using
dummyS = nStudents + 1, whose speed can however be matched by
dummyS = 0 with int_search(Student,first_fail,indomain_max),
for example: search should only try and seat a dummy student on a chair after
it turns out that no real student can be seated on it.

COCP/M4CO 8 - 26 -
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Agricultural experiment design, AED

plot1 plot2 plot3 plot4 plot5 plot6 plot7
barley 1 1 1 0 0 0 0

corn 1 0 0 1 1 0 0
millet 1 0 0 0 0 1 1
oats 0 1 0 1 0 1 0
rye 0 1 0 0 1 0 1

spelt 0 0 1 1 0 0 1
wheat 0 0 1 0 1 1 0

Constraints to be satisfied:
1 Equal growth load: Every plot grows 3 grains.
2 Equal sample size: Every grain is grown in 3 plots.
3 Balance: Every grain pair is grown in 1 common plot.

Instance: 7 plots, 7 grains, 3 grains/plot, 3 plots/grain, balance 1.
General term: balanced incomplete block design (BIBD).

COCP/M4CO 8 - 29 -
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The following constraints (of Topic 5: Symmetry) break all the row and column
symmetries, but not all their compositions: � + � �

4 constraint symmetry_breaking_constraint(
forall(v in Varieties diff {max(Varieties)})(
lex_greater(BIBD[v,..],BIBD[enum_next(v),..])));

5 constraint symmetry_breaking_constraint(
forall(b in Blocks diff {max(Blocks)})(
lex_greatereq(BIBD[..,b],BIBD[..,enum_next(b)])));

The use of lex_greatereq (as opposed to lex_lesseq) is justified by:
All BIBD[v,b] decision variables have the same 0..1 domain, so the
first-fail principle cannot distinguish between them: let us fill the BIBD
incidence matrix in input order (left-to-right in each row, and top-down
across the rows).
Since typically fewer 1s than 0s occur in a BIBD,
the best-first principle suggests trying 1 before 0.

0 solve::int_search(BIBD,input_order,indomain_max) satisfy;

COCP/M4CO 8 - 30 -
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The Warehouse Location Problem (WLP)

A company considers opening warehouses at some candidate locations in
order to supply its existing shops:

Each candidate warehouse has the same maintenance cost.
Each candidate warehouse has a supply capacity,
which is the maximum number of shops it can supply.
The supply cost to a shop depends on the supplying warehouse.

Determine which candidate warehouses actually to open,
and which of them supplies which shops, so that:

1 Each shop is supplied by exactly one actually opened warehouse.
2 Each actually opened warehouse supplies a number of shops

that is at most equal to its supply capacity.
3 The sum of the actually incurred maintenance costs and supply costs

is minimal.
COCP/M4CO 8 - 32 -



Annotations

Inference
Annotations
for CP & LCG

Search
Annotations
for CP & LCG

Case Studies
Balanced Incomplete
Block Design

Warehouse Location

Sport Scheduling

WLP: Sample Instance Data

Shops = {Shop1,Shop2, . . . ,Shop10}

Warehouses = {Berlin, London, Ankara, Paris, Rome}

maintCost = 30

Capacity =
Berlin London Ankara Paris Rome

1 4 2 1 3

SupplyCost =

Berlin London Ankara Paris Rome
Shop1 20 24 11 25 30
Shop2 28 27 82 83 74
Shop3 74 97 71 96 70
Shop4 2 55 73 69 61

...
...

...
...

...
...

Shop10 47 65 55 71 95

COCP/M4CO 8 - 33 -
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WLP Model 1: Decision Variables (reminder)

Automatic enforcement of the total-function constraint (1):

Supplier =
Shop1 Shop2 · · · Shop10

∈ Warehouses ∈ Warehouses · · · ∈ Warehouses

Supplier[s] denotes the supplier warehouse for shop s.

Variables redundant with Supplier, but not mutually, as less informative:

Open =
Berlin London Ankara Paris Rome
∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1

Open[w]=1 if and only if warehouse w is actually opened.

COCP/M4CO 8 - 34 -
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WLP Model 1: Annotations

The capacity constraint, using global_cardinality_closed and boosted
with the inference annotation ::domain_propagation, and the channelling
constraint from Supplier to Open are as in Topic 6: Case Studies.

Let the new decision variable Cost[s] denote the actually incurred supply
cost for shop s. It is non-mutually redundant with Supplier[s], as less
informative, and has the following one-way channelling constraint:
forall(s in Shops)(Cost[s] = SupplyCost[s,Supplier[s]]);

The objective now syntactically simplifies into:
solve minimize maintCost * sum(Open) + sum(Cost);

For shop s, let dom(Cost[s]) = {d1,d2, . . . ,dn}, with n ≥ 2 ∧ d1 < · · · < dn:
the regret of shop s is d2 − d1, that is the difference in supply cost between
its currently cheapest and second-cheapest potential supplying warehouses.
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The maximal-regret strategy recommends:
Variable selection: Select a decision variable Cost[s] such that the
shop s currently has the maximal regret.
Value selection and guesses: Select value d = min(dom(Cost[s])).
Branch left on Cost[s] = d and right on Cost[s] ̸= d .

The Supplier[s] decision variables are then branched on by increasing
order of s and by increasing value. This brancher accelerates search only if
some values in SupplyCost[s,..] are equal for some shop s.

Upon the first seen one-way channelling from Supplier to Open,
the Open[w] decision variables are then branched on by increasing order of w
and by increasing value, in order to fix any still non-fixed Open[w] to 0 faster
than by relying upon minimisation (which we did in Topic 6: Case Studies).
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This search strategy is expressed in MiniZinc as follows: � + � �
1 solve
2 :: seq_search([
3 int_search(Cost,max_regret,indomain_min),
4 int_search(Supplier,input_order,indomain_min),
5 int_search(Open,input_order,indomain_min)
6 ])
7 minimize maintCost * sum(Open) + sum(Cost)

Objective values, upon the 3 seen ways of channelling, within 35 seconds by
Gecode (CP) on a MacBook-Air laptop, on a hard instance with 16 warehouses
of capacity 4 supplying 50 shops, of minimal cost at most 1,190,733:

Model 1 Model 2
search 1-way(17) 1-way(18) none

default (no annotation) none 1,869,494 1,864,913
first fail on Supplier 1,520,326 1,524,034 1,524,034

first fail on Cost 1,218,079 1,223,704 1,218,079
max regret on Cost 1,193,637 1,198,276 1,193,637
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The Sport Scheduling Problem (SSP)

Find a schedule in Periods× Weeks → Teams× Teams for
|Teams| = n and n is even (note that only n=4 is unsatisfiable)
|Weeks| = n-1

|Periods| = n/2 periods per week
subject to the following constraints:

1 Each possible game is played exactly once.
2 Each team plays exactly once per week.
3 Each team plays at most twice per period.

Idea for a model, and a solution for n=8

, with a dummy week n of duplicates

:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

Wk 8

P 1 1 vs 2 1 vs 3 2 vs 6 3 vs 5 4 vs 7 4 vs 8 5 vs 8

6 vs 7

P 2 3 vs 4 2 vs 8 1 vs 7 6 vs 7 6 vs 8 2 vs 5 1 vs 4

3 vs 5

P 3 5 vs 6 4 vs 6 3 vs 8 1 vs 8 1 vs 5 3 vs 7 2 vs 7

2 vs 4

P 4 7 vs 8 5 vs 7 4 vs 5 2 vs 4 2 vs 3 1 vs 6 3 vs 6

1 vs 8
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The Sport Scheduling Problem (SSP)

Find a schedule in Periods× Weeks → Teams× Teams for
|Teams| = n and n is even (note that only n=4 is unsatisfiable)
|Weeks| = n-1

|Periods| = n/2 periods per week
subject to the following constraints:

1 Each possible game is played exactly once.
2 Each team plays exactly once per week.
3 Each team plays at most twice per period.

Idea for a model, and a solution for n=8, with a dummy week n of duplicates:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7 Wk 8

P 1 1 vs 2 1 vs 3 2 vs 6 3 vs 5 4 vs 7 4 vs 8 5 vs 8 6 vs 7
P 2 3 vs 4 2 vs 8 1 vs 7 6 vs 7 6 vs 8 2 vs 5 1 vs 4 3 vs 5
P 3 5 vs 6 4 vs 6 3 vs 8 1 vs 8 1 vs 5 3 vs 7 2 vs 7 2 vs 4
P 4 7 vs 8 5 vs 7 4 vs 5 2 vs 4 2 vs 3 1 vs 6 3 vs 6 1 vs 8
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SSP Model 1: Decision Variables (reminder)

Declare a 3d matrix Team[Periods,ExtendedWeeks,Slots] of decision
variables in Teams (denoted T below), over a schedule extended by a dummy
week where teams play fictitious duplicate games in the period where they
would otherwise play only once, thereby strengthening constraint (3) into:

(3’) Each team plays exactly twice per period.

Let Team[p,w,s] be the team that plays in period p of week w in game slot s:

Team =

Wk 1 · · · Wk n − 1 Wk n
one two · · · · · · one two one two

P 1 ∈ T ∈ T · · · · · · ∈ T ∈ T ∈ T ∈ T
...

...
...

. . .
. . .

...
...

...
...

P n/2 ∈ T ∈ T · · · · · · ∈ T ∈ T ∈ T ∈ T
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SSP Model 1: More Decision Variables (reminder)

Rather declare a 2d matrix Game[Periods,Weeks] of decision variables
in Games over the non-extended weeks.

Let Game[p,w] be the game played in period p of week w:

Game =

Week 1 · · · Week n − 1
Period 1 ∈ Games · · · ∈ Games

...
...

. . .
...

Period n/2 ∈ Games · · · ∈ Games

The 2d matrix Game is mutually redundant with the first n − 1 2d columns of
the 3d matrix Team, which is over the extended weeks.
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SSP Model 1: Channelling Constraint

Two-way channelling constraint (reminder):

constraint forall(p in Periods, w in Weeks)
(Team[p,w,one] * n + Team[p,w,two] = Game[p,w]);

The game number in Game of each period and week corresponds to the teams
scheduled at that time in Team.
If a CP or LCG solver cannot enforce domain consistency on linear equality,
even when :: domain_propagation is used, then precompute a table:

constraint forall(p in Periods, w in Weeks)
(table([Team[p,w,one],Team[p,w,two],Game[p,w]],
array2d(1..(n*(n-1) div 2), 1..3,
[[f,s,f*n+s][i] | f,s in Teams where f<s, i in 1..3])));
% [|1,2,6|1,3,7|1,4,8|2,3,11|2,4,12|3,4,16|] for n=4
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SSP Model 1: Search Annotation

It suffices to follow the first-fail principle:
Variable selection: Select a decision variable Game[p,w] with the
currently smallest domain.
Value selection and guesses: Select value d = min(dom(Game[p,w])).
Branch left on Game[p,w] = d and right on Game[p,w] ̸= d .

The Team[p,w,s] decision variables need no brancher as they take their
values through either the 2-way channelling constraint, especially if propagated
to domain consistency, and the global_cardinality_closed(...)
formulation of constraint (3’) in Topic 6: Case Studies.

This search strategy is expressed in MiniZinc as follows: �
:: int_search(Game,first_fail,indomain_min)

COCP/M4CO 8 - 43 -

https://pierre-flener.github.io/courses/COCP/models/SSP1.mzn


Annotations

Inference
Annotations
for CP & LCG

Search
Annotations
for CP & LCG

Case Studies
Balanced Incomplete
Block Design

Warehouse Location

Sport Scheduling

SSP Model 2: Smaller Domains for Game[p,w] Variables

A round-robin schedule suffices to break many of the remaining symmetries:
Restrict the games of the first week to the set
{1 vs 2} ∪ {t + 1 vs n + 2 − t | 1 < t ≤ n/2}
For the remaining weeks, transform each game f vs s of the previous
week into a game f ′ vs s′, where

f ′ =


1 if f = 1
2 if f = n
f + 1 otherwise

, and s′ =

{
2 if s = n
s + 1 otherwise

The constraints (1) and (2) are now automatically enforced:
we must only find the period of each game, but not its week.
Search strategy �: Choose games for the first period across the weeks, then
for the first week across the remaining periods, then for the next period across
the remaining weeks, then for the next week across the remaining periods, etc.
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Interested in More Details?

For more details on WLP and SSP and their search strategies, see:

Van Hentenryck, Pascal.
The OPL Optimization Programming Language.
The MIT Press, 1999.

Van Hentenryck, Pascal.
Constraint and integer programming in OPL.
INFORMS Journal on Computing, 14(4):345 – 372, 2002.

Van Hentenryck, Pascal; Michel, Laurent; Perron, Laurent; and Régin,
Jean-Charles.
Constraint programming in OPL.
PPDP 1999, pages 98 – 116. Lecture Notes in Computer Science 1702.
Springer-Verlag, 1999.
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