
Topic 6: Case Studies
(Version of 20th August 2024)

Pierre Flener and Gustav Björdal

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

https://pierre-flener.github.io
https://www.uu.se/en/department/information-technology/research/optimisation

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Outline

1. Black-Hole Patience

2. Cost-Aware Scheduling

3. Warehouse Location

4. Sport Scheduling

COCP/M4CO 6 - 2 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Outline

1. Black-Hole Patience

2. Cost-Aware Scheduling

3. Warehouse Location

4. Sport Scheduling

COCP/M4CO 6 - 3 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Move all the cards into the black hole. A fan top card
can be moved if it is one rank apart from the black-
hole top card, independently of suit (♠, ♣, ♦, ♥);
aces (A,1) and kings (K,13) are a rank apart.

Card encoding: ♠: 1..13, ♣: 14..26, ♦: 27..39, ♥: 40..52.

The cards c1 and c2 are one rank apart if and only if

(c1 mod 13)− (c2 mod 13) ∈ {−12,−1,1,12}

Define a predicate and avoid mod on decision variables, by precomputation:

1 predicate rankApart(var 1..52: c1, var 1..52: c2) =
2 let { array[1..52] of int: Rank = [i mod 13 | i in 1..52] }

in Rank[c1] - Rank[c2] in {-12,-1,1,12};

Avoid implicit element constraints, for better inference:

2 table([c1,c2], [|1,2|1,13|...|1,52|2,3|...|52,40|52,51|]);

COCP/M4CO 6 - 4 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Move all the cards into the black hole. A fan top card
can be moved if it is one rank apart from the black-
hole top card, independently of suit (♠, ♣, ♦, ♥);
aces (A,1) and kings (K,13) are a rank apart.

Let Card[p] denote the card at position p in the black hole.
Adjacent black-hole cards are a rank apart:

3 constraint Card[1] = 1; % the card at position 1 is A♠
4 constraint forall(p in 1..51)(rankApart(Card[p],Card[p+1]));

The black-hole cards respect the order in the given fans:
5 constraint forall(f in Fan)

(let { var 2..52: p1; var 2..52: p2; var 2..52: p3 } in
Card[p1]=f.top/\Card[p2]=f.mid/\Card[p3]=f.bot/\p1<p2/\p2<p3);

or, equivalently, but better because without the implicit element constraints:
5 constraint all_different(Card) /\ forall(f in Fan)

(value_precede_chain([f.top,f.mid,f.bot],Card));

COCP/M4CO 6 - 5 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Let Pos[c] denote the position of card c in the black hole.
The black-hole cards respect the order in the given fans:

5 constraint Pos[1] = 1; % the position of card A♠ is 1
6 constraint forall(f in Fan)

(Pos[f.top] < Pos[f.mid] /\ Pos[f.mid] < Pos[f.bot]);

How to model “adjacent black-hole cards are a rank apart” with the Pos[c]?!

Let us use the Pos[c] for the second constraint, as mutually redundant with
the Card[p] for the first constraint, and 2-way channel between them.

Observe that ∀c, p ∈ 1..52 : Card[p] = c ⇔ Pos[c] = p.
Seen as functions, Card and Pos are each other’s inverse:

7 constraint inverse(Card,Pos) :: domain_propagation; % Topic 8

This model + with mutually redundant decision variables and the 2-way
channelling constraint is much faster (at least on a CP or LCG solver) than the
model on the previous slide with only the Card decision variables.

COCP/M4CO 6 - 6 -

https://pierre-flener.github.io/courses/COCP/models/blackHole.mzn
https://pierre-flener.github.io/courses/COCP/models/blackHole-09.dzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Outline

1. Black-Hole Patience

2. Cost-Aware Scheduling

3. Warehouse Location

4. Sport Scheduling

COCP/M4CO 6 - 7 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Energy-Cost-Aware Scheduling

Consider the core of CSPlib problem 059. Given are:
Machines, each machine having several capacitated reusable resources.
Jobs, each job having a duration, earliest start time, latest end time,
a consumption of energy (which is an overall consumable resource,
not a reusable resource of the machines), and requirements for the
reusable resources of the machines.
A time horizon, each time step having a predicted energy cost.

Schedule the jobs and allocate them to machines, so that:
1 No job starts too early or ends too late.
2 No resource capacity of any machine is ever exceeded.
3 The total energy cost is minimal.

We show that precomputing a 2d array with the energy cost of each job for
each possible start time boosts everything.

COCP/M4CO 6 - 8 -

https://www.csplib.org/Problems/prob059

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Parameters

1 enum Resources; % say: {cpu,ram,io};
2 int: nMachines; set of int: Machines = 1..nMachines;
3 array[Machines,Resources] of int: Capacity;
4 int: nTimeSteps; % say: 288, for every 5 minutes over 24h
5 set of int: Times = 0..nTimeSteps; % time points
6 set of int: Steps = 1..nTimeSteps; % time step s is from point s-1 to point s
7 array[Steps] of float: EnergyCost; % EnergyCost[s] e/kWh during time step s
8 int: nJobs; set of int: Jobs = 1..nJobs;
9 array[Jobs] of Steps: Duration; % job j lasts Duration[j] steps

10 array[Jobs] of Times: EarliestS; % job j starts >= EarliestS[j]
11 array[Jobs] of Times: LatestEnd; % job j ends <= LatestEnd[j]
12 array[Jobs] of int: Energy; % job j consumes Energy[j] kWh
13 array[Jobs,Resources] of int: Requirement;

In the instance sample03 of CSPlib problem 059 we have:
EnergyCost[119..128] = [0.04732, 0.04732, 0.08093, 0.08093, 0.08093, 0.08093,

0.08093, 0.08093, 0.08619, 0.08619]

A job of 6 steps & 1151 kWh costs ⌊1151 · (0.04732 · 2 + 0.08093 · 4)⌋ = 481e
at time 118, and ⌊1151 · (0.08093 · 4 + 0.08619 · 2)⌋ = 571e at time 122.

COCP/M4CO 6 - 9 -

https://www.csplib.org/Problems/prob059/data

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Model

14 array[Jobs] of var Times: Start; % job j starts at time Start[j]
15 array[Jobs] of var Machines: Machine; % job j runs on Machine[j]
16 % (1) No job starts too early or ends too late:
17 constraint forall(j in Jobs)

(Start[j] in EarliestS[j]..LatestEnd[j]-Duration[j]);
18 % (2) No resource capacity of any machine is ever exceeded:
19 constraint forall(m in Machines, r in Resources)(cumulative(Start, Duration,

[(Machine[j] = m) * Requirement[j,r] | j in Jobs], Capacity[m,r]));
20 ... % constraints for the rest of the problem
21 array[Jobs] of var 0..floor(max(Energy)*sum(EnergyCost)): Cost;% j is Cost[j]e
22 ... % see the next slide!
23 solve minimize sum(Cost) + ...;

COCP/M4CO 6 - 10 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Define the decision variables Cost[j] without precomputation:
22 constraint forall(j in Jobs)(Cost[j] = sum(s in Steps)(if Start[j]+1 <= s /\

s <= Start[j]+Duration[j] then floor(Energy[j]*EnergyCost[s]) else 0 endif));

For sample03, with 100 jobs and 288 time steps, this compiles under Gecode
in over 20 seconds into 12 MB of FlatZinc code, with 74,137 constraints
and 66,828 decision variables, due to the use of if θ then ϕ else ψ endif
with a test θ that depends on decision variables (the Start[j] here).
Define the decision variables Cost[j] with precomputation of an array of
derived parameters:

22 % JobCost[j,t] = energy cost of job j if j starts at time t (with dummy values
if t+Duration[j] > nTimeSteps):

23 array[Jobs,Times] of int: JobCost = array2d(Jobs, Times,
[floor(Energy[j] * sum(EnergyCost[t+1..min(t+Duration[j],nTimeSteps)]))
| j in Jobs, t in Times]); % round the sum, not its terms!

24 constraint forall(j in Jobs)(Cost[j] = JobCost[j,Start[j]]);

For sample03 , this model compiles very fast under Gecode into
only 343 KB of FlatZinc code, with 100 constraints and 100 decision variables,
and a feasible solution is found six times faster.

COCP/M4CO 6 - 11 -

https://pierre-flener.github.io/courses/COCP/models/ECAS-03.dzn
https://pierre-flener.github.io/courses/COCP/models/ECAS.mzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Outline

1. Black-Hole Patience

2. Cost-Aware Scheduling

3. Warehouse Location

4. Sport Scheduling

COCP/M4CO 6 - 12 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

The Warehouse Location Problem (WLP)

A company considers opening warehouses at some candidate locations in
order to supply its existing shops:

Each candidate warehouse has the same maintenance cost.
Each candidate warehouse has a supply capacity,
which is the maximum number of shops it can supply.
The supply cost to a shop depends on the supplying warehouse.

Determine which candidate warehouses actually to open,
and which of them supplies which shops, so that:

1 Each shop is supplied by exactly one actually opened warehouse.
2 Each actually opened warehouse supplies a number of shops

that is at most equal to its supply capacity.
3 The sum of the actually incurred maintenance costs and supply costs

is minimal.
COCP/M4CO 6 - 13 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP: Sample Instance Data

Shops = {Shop1,Shop2, . . . ,Shop10}

Warehouses = {Berlin, London, Ankara, Paris, Rome}

maintCost = 30

Capacity =
Berlin London Ankara Paris Rome

1 4 2 1 3

SupplyCost =

Berlin London Ankara Paris Rome
Shop1 20 24 11 25 30
Shop2 28 27 82 83 74
Shop3 74 97 71 96 70
Shop4 2 55 73 69 61

...
...

...
...

...
...

Shop10 47 65 55 71 95

COCP/M4CO 6 - 14 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 1: Decision Variables

Automatic enforcement of the total-function constraint (1):

Supplier =
Shop1 Shop2 · · · Shop10

∈ Warehouses ∈ Warehouses · · · ∈ Warehouses

Supplier[s] denotes the supplier warehouse for shop s.

Variables redundant with Supplier, but not mutually, as less informative:

Open =
Berlin London Ankara Paris Rome
∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1

Open[w] = 1 if and only if warehouse w is actually opened.

☞ Our chosen array names always reflect total functions.

COCP/M4CO 6 - 15 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 1: Objective

solve minimize maintCost * sum(Open)
+ sum(s in Shops)(SupplyCost[s,Supplier[s]]);

The first term is the total maintenance cost, expressed as the product of the
warehouse maintenance cost by the number of actually opened warehouses.

The second term is the total supply cost, expressed as the sum over all shops
of their actually incurred supply costs.

Notice the implicit use of the element predicate,
as the column index Supplier[s] to SupplyCost is a decision variable.

If warehouse w has maintenance cost MaintCost[w], then the first term
becomes sum(w in Warehouses)(MaintCost[w] * Open[w]).

COCP/M4CO 6 - 16 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 1: Channelling Constraint

One-way channelling constraint from the Supplier[s] decision variables
to some of their redundant Open[w] decision variables
(as not all Open[w] are fixed this way):

constraint forall(s in Shops)(Open[Supplier[s]] = 1);

The supplier warehouse of each shop is actually opened.

Notice the implicit use of the element predicate,
as the index Supplier[s] to Open is a decision variable.

How do the remaining Open[w] become 0? Upon minimisation!

COCP/M4CO 6 - 17 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 1: Channelling Constraint

Alternative: One-way channelling constraint from the Supplier[s] decision
variables to all of their redundant Open[w] decision variables,
but not vice-versa:

constraint forall(w in Warehouses)
(Open[w] = (exists(s in Shops)(Supplier[s]=w)));

A warehouse is opened if and only if there exists a shop that it supplies.

Make experiments to find out which channelling is better.
We will revisit this issue in Topic 8: Inference & Search in CP & LCG,
and in Topic 9: Modelling for CBLS.

Nothing changes if Open is an array of Boolean decision variables (instead of
integer decision variables).

COCP/M4CO 6 - 18 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 1: Capacity Constraint +

Capacity constraint (2), using a version of global_cardinality with given
lower and upper bounds rather than decision variables for the counts:

constraint global_cardinality_closed
(Supplier, Warehouses, [0 | w in Warehouses], Capacity);

Each actually opened warehouse is a supplier of a number of shops
that is at most equal to its supply capacity.

Which symmetries are there?
There are no problem symmetries.
We introduced no symmetries into the model.
There may be instance symmetries: indistinguishable shops,
or indistinguishable warehouses, or both.

COCP/M4CO 6 - 19 -

https://pierre-flener.github.io/courses/COCP/models/WLP1.mzn
https://pierre-flener.github.io/courses/COCP/models/WLP-OPLbook.dzn
https://pierre-flener.github.io/courses/COCP/models/WLP-cap44.dzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 2 +

Drop the array Open of redundant decision variables as well as its channelling
constraint, and reformulate the first term of the objective function as follows:

maintCost *
sum(w in Warehouses)(exists(s in Shops)(Supplier[s]=w))

We can alternatively use the nvalue constrained function:

maintCost *
nvalue(Supplier)

This alternative formulation cannot be generalised for warehouse-specific
maintenance costs.
For a speed comparison, see Topic 8: Inference & Search in CP & LCG.
Redundancy elimination may pay off, but it may just as well be the converse.
But this is hard to guess, as human intuition may be weak.

COCP/M4CO 6 - 20 -

https://pierre-flener.github.io/courses/COCP/models/WLP2.mzn
https://pierre-flener.github.io/courses/COCP/models/WLP-OPLbook.dzn
https://pierre-flener.github.io/courses/COCP/models/WLP-cap44.dzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 3: Decision Variables

No automatic enforcement of the total-function constraint (1):

Supply =

Berlin London Ankara Paris Rome
Shop1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1

...
...

...
...

...
...

Shop10 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1

Supply[s,w] = 1 if and only if shop s is supplied by warehouse w.

Redundant decision variables (as in Model 1):

Open = Berlin London Ankara Paris Rome
∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1 ∈ 0..1

Open[w] = 1 if and only if warehouse w is actually opened.

COCP/M4CO 6 - 21 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 3: Objective

The objective can now be expressed in linear fashion:

solve minimize maintCost * sum(Open)
+ sum(s in Shops, w in Warehouses)
(SupplyCost[s,w] * Supply[s,w]);

The first term is the total maintenance cost, expressed (as in Model 1) as the
product of the warehouse maintenance cost by the number of actually opened
warehouses.

The second term is the total supply cost, expressed as the sum over all shops
and warehouses of their actually incurred supply costs: each decision variable
Supply[s,w] is weighted by the parameter SupplyCost[s,w].

COCP/M4CO 6 - 22 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 3: Constraints

The total-function constraint (1) now needs to be modelled,
and can be expressed in linear fashion (that is, without using count):
constraint forall(s in Shops)(sum(Supply[s,..]) = 1);

Each shop is supplied by exactly one actually opened warehouse.

COCP/M4CO 6 - 23 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

WLP Model 3: Constraints (end) +

Capacity constraint (2), in isolation:
constraint forall(w in Warehouses)
(sum(Supply[..,w]) <= Capacity[w]);

One-way channelling constraint, in isolation:
constraint forall(w in Warehouses)
(sum(Supply[..,w]) > 0 <-> Open[w] = 1);

or, one-way channelling without reification, upon exploiting minimisation:
constraint forall(w in Warehouses)
(forall(s in Shops)(Supply[s,w] <= Open[w]));

Capacity (2) and second one-way channelling constraints combined:

constraint forall(w in Warehouses)
(sum(Supply[..,w]) <= Capacity[w] * Open[w]);

All constraints are linear (in)equalities: this is an IP model!
COCP/M4CO 6 - 24 -

https://pierre-flener.github.io/courses/COCP/models/WLP3.mzn
https://pierre-flener.github.io/courses/COCP/models/WLP-OPLbook.dzn
https://pierre-flener.github.io/courses/COCP/models/WLP-cap44.dzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Outline

1. Black-Hole Patience

2. Cost-Aware Scheduling

3. Warehouse Location

4. Sport Scheduling

COCP/M4CO 6 - 25 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

The Sport Scheduling Problem (SSP)

Find a schedule in Periods× Weeks → Teams× Teams for
|Teams| = n and n is even (note that only n=4 is unsatisfiable)
|Weeks| = n-1

|Periods| = n/2 periods per week
subject to the following constraints:

1 Each possible game is played exactly once.
2 Each team plays exactly once per week.
3 Each team plays at most twice per period.

Idea for a model, and a solution for n=8

, with a dummy week n of duplicates

:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7

Wk 8

P 1 1 vs 2 1 vs 3 2 vs 6 3 vs 5 4 vs 7 4 vs 8 5 vs 8

6 vs 7

P 2 3 vs 4 2 vs 8 1 vs 7 6 vs 7 6 vs 8 2 vs 5 1 vs 4

3 vs 5

P 3 5 vs 6 4 vs 6 3 vs 8 1 vs 8 1 vs 5 3 vs 7 2 vs 7

2 vs 4

P 4 7 vs 8 5 vs 7 4 vs 5 2 vs 4 2 vs 3 1 vs 6 3 vs 6

1 vs 8

COCP/M4CO 6 - 26 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

The Sport Scheduling Problem (SSP)

Find a schedule in Periods× Weeks → Teams× Teams for
|Teams| = n and n is even (note that only n=4 is unsatisfiable)
|Weeks| = n-1

|Periods| = n/2 periods per week
subject to the following constraints:

1 Each possible game is played exactly once.
2 Each team plays exactly once per week.
3 Each team plays at most twice per period.

Idea for a model, and a solution for n=8, with a dummy week n of duplicates:
Wk 1 Wk 2 Wk 3 Wk 4 Wk 5 Wk 6 Wk 7 Wk 8

P 1 1 vs 2 1 vs 3 2 vs 6 3 vs 5 4 vs 7 4 vs 8 5 vs 8 6 vs 7
P 2 3 vs 4 2 vs 8 1 vs 7 6 vs 7 6 vs 8 2 vs 5 1 vs 4 3 vs 5
P 3 5 vs 6 4 vs 6 3 vs 8 1 vs 8 1 vs 5 3 vs 7 2 vs 7 2 vs 4
P 4 7 vs 8 5 vs 7 4 vs 5 2 vs 4 2 vs 3 1 vs 6 3 vs 6 1 vs 8

COCP/M4CO 6 - 26 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 1: Data

Parameter:
int: n; constraint assert(n>=2 /\ n mod 2 =0,"Odd n");

Useful Ranges, enumeration, and set:
Teams = 1..n

Weeks = 1..(n-1)

ExtendedWeeks = 1..n

Periods = 1..(n div 2)

Slots = {one, two}

Games = {f * n + s | f,s in Teams where f < s},
thereby breaking some symmetries, such that the game between teams f
and s is uniquely identified by the natural number f * n + s.

Example: For n = 4, we get Games = {6,7,8,11,12,16}.
COCP/M4CO 6 - 27 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 1: Decision Variables

Declare a 3d matrix Team[Periods,ExtendedWeeks,Slots] of decision
variables in Teams (denoted T below), over a schedule extended by a dummy
week where teams play fictitious duplicate games in the period where they
would otherwise play only once, thereby strengthening constraint (3) into:

(3’) Each team plays exactly twice per period.

Let Team[p,w,s] be the team that plays in period p of week w in game slot s:

Team =

Wk 1 · · · Wk n − 1 Wk n
one two · · · · · · one two one two

P 1 ∈ T ∈ T · · · · · · ∈ T ∈ T ∈ T ∈ T
...

...
...

. . .
. . .

...
...

...
...

P n/2 ∈ T ∈ T · · · · · · ∈ T ∈ T ∈ T ∈ T

COCP/M4CO 6 - 28 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 1: Constraints

Twice-per-period constraint (3’):
constraint forall(p in Periods)
(global_cardinality_closed
(Team[p,..,..], Teams, [2 | i in 1..n]));

In each period, each team occurs exactly twice within the slots of the weeks.
(We do not need the four-argument version of the predicate, with an array of
ones as lower bounds and an array of twos as upper bounds.)

Once-per-week constraint (2):
constraint forall(w in ExtendedWeeks)
(all_different(Team[..,w,..]));

In each week, including the dummy week, there are no duplicate teams within
the slots of the periods in Team.

COCP/M4CO 6 - 29 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 1: Decision Variables (revisited)

Try to state the each-game-once constraint (1) using Team!

Rather declare a 2d matrix Game[Periods,Weeks] of decision variables
in Games over the non-extended weeks.

Let Game[p,w] be the game played in period p of week w:

Game =

Week 1 · · · Week n − 1
Period 1 ∈ Games · · · ∈ Games

...
...

. . .
...

Period n/2 ∈ Games · · · ∈ Games

The 2d matrix Game is mutually redundant with the first n − 1 2d columns of
the 3d matrix Team, which is over the extended weeks.

COCP/M4CO 6 - 30 -

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 1: Constraints (end)

Each-game-once constraint (1):

constraint all_different(Game);

There are no duplicate game numbers in Game.

Two-way channelling constraint (but rather precompute and use table:
see Topic 8: Inference & Search in CP & LCG):

constraint forall(p in Periods, w in Weeks)
(Team[p,w,one] * n + Team[p,w,two] = Game[p,w]);

The game number in Game of each period and week corresponds to the teams
scheduled at that time in Team.

The constraints (2) and (3’) are hard to formulate using Game.

Add the symmetry-breaking constraints of slide 29 of Topic 5: Symmetry.

COCP/M4CO 6 - 31 -

https://pierre-flener.github.io/courses/COCP/models/SSP1.mzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

SSP Model 2: Smaller Domains for Game[p,w] Variables

A round-robin schedule suffices to break many of the remaining symmetries:
Restrict the games of the first week to the set
{1 vs 2} ∪ {t + 1 vs n + 2 − t | 1 < t ≤ n/2}
For the remaining weeks, transform each game f vs s of the previous
week into a game f ′ vs s′, where

f ′ =

1 if f = 1
2 if f = n
f + 1 otherwise

, and s′ =

{
2 if s = n
s + 1 otherwise

The constraints (1) and (2) are now automatically enforced:
we must only find the period of each game, but not its week .

COCP/M4CO 6 - 32 -

https://pierre-flener.github.io/courses/COCP/models/SSP2.mzn

Black-Hole
Patience

Cost-Aware
Scheduling

Warehouse
Location

Sport
Scheduling

Interested in More Details?

For more details on WLP and SSP and their modelling, see:

Van Hentenryck, Pascal.
The OPL Optimization Programming Language.
The MIT Press, 1999.

Van Hentenryck, Pascal.
Constraint and integer programming in OPL.
INFORMS Journal on Computing, 14(4):345 – 372, 2002.

Van Hentenryck, Pascal; Michel, Laurent; Perron, Laurent; and Régin,
Jean-Charles.
Constraint programming in OPL.
PPDP 1999, pages 98 – 116. Lecture Notes in Computer Science 1702.
Springer-Verlag, 1999.

COCP/M4CO 6 - 33 -

https://www.amazon.com/The-OPL-Optimization-Programming-Language/dp/0262720302
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.102.1278&rep=rep1&type=pdf
https://dx.doi.org/10.1007/10704567_6

	Black-Hole Patience
	Cost-Aware Scheduling
	Warehouse Location
	Sport Scheduling

