
Topic 3: Constraint Predicates 1

(Version of 20th August 2024)

Pierre Flener, Gustav Björdal,
and Jean-Noël Monette

Optimisation Group
Department of Information Technology

Uppsala University
Sweden

Course 1DL442:
Combinatorial Optimisation and Constraint Programming,

whose part 1 is Course 1DL451:
Modelling for Combinatorial Optimisation

1Many thanks to Guido Tack for feedback

https://pierre-flener.github.io
https://www.uu.se/en/department/information-technology/research/optimisation

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 2 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 3 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Examples
Let X be an array of decision variables:

The all_different(X) constraint holds if and only if
all the elements of X take distinct values:

forall(i,j in index_set(X) where i < j)(X[i] != X[j])

The count(X,v) >= c constraint holds if and only if
the number of occurrences in X of v is at least c,
where v and c can be decision variables:

sum(i in index_set(X))(X[i] = v) >= c

COCP/M4CO 3 - 4 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
A definition of a constraint predicate is its semantics,
stated in MiniZinc in terms of usually simpler constraint predicates.

Examples
See some MiniZinc-provided default definitions at slide 4.

Definition
Each use of a predicate is decomposed during flattening by inlining
either its MiniZinc-provided default definition
or an overriding backend-provided solver-specific definition.

Examples
If a predicate γ on arguments X is supported by a solver,
then its backend provides γ(X) = γ(X) as solver-specific definition.

COCP/M4CO 3 - 5 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Motivation:
+ More compact and intuitive models,

because more expressive predicates are available: islands of common
combinatorial structure are identified in declarative high-level abstractions.

+ Faster solving, due to better inference and relaxation,
enabled by more global information in the model,
provided the predicate is a built-in of the used solver.

Enabling constraint-based modelling:
Constraint predicates over any number of decision variables go by many
names: global-constraint predicates, combinatorial predicates, . . .

See the MiniZinc global constraints and the Global-Constraint Catalogue.

Some predicates cannot be reified, say via bool2int.

COCP/M4CO 3 - 6 -

https://www.minizinc.org/doc-latest/en/lib-globals.html
https://sofdem.github.io/gccat

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 7 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Laurière, 1978)
The all_different(X) constraint holds if and only if
all the elements of the array X of decision variables take distinct values.

Its default definition is a conjunction of n·(n−1)
2 disequality constraints

when X has n elements:

forall(i,j in index_set(X) where i < j)(X[i] != X[j])

The all_different_except(X,S) constraint
allows multiple occurrences of the exception values in the set S.

Examples
n-Queens problem: see Topic 1: Introduction.
Photo Alignment problem: see Topic 2: Basic Modelling.
Student Seating problem: see Topic 4: Modelling.
Object, Shapes, and Colours: see Topic 4: Modelling.

COCP/M4CO 3 - 8 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 9 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Pachet and Roy, 1999)
The nvalue(m,X) constraint holds if and only if decision variable m takes the
number of distinct values taken by the elements of the array X of decision
variables. If array X is 1d and has indices 1..n, then this means:

|{X[1], . . . ,X[n]}| = m

The expression nvalue(X) denotes the number of distinct values taken by
the elements of the array X of decision variables.

If |X| = n then nvalue(n,X) means all_different(X), but:
Always use the most specific available constraint predicate!

Example
Model 2 of the Warehouse Location problem: see Topic 6: Case Studies.

COCP/M4CO 3 - 10 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 11 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Régin, 1996)
The global_cardinality(X,V,C) constraint holds if and only if each
decision variable C[j] takes the number of elements of the array X of decision
variables that take the given value V[j]. Variant predicates exist.
Add _closed to the predicate name if V is the domain of the variables in X.

Its default definition in MiniZinc includes:

forall(j in index_set(V))(count(X,V[j]) = C[j])

It means all_different(X) if V =
⋃
i dom(X[i]) and dom(C[j]) = {0,1}

for each j, but: Always use the most specific available constraint predicate!

Examples
Magic Series problem + Student Seating problem
+ Object, Shapes, and Colours: see Topic 4: Modelling.
Warehouse Location + Sports Scheduling: see Topic 6: Case Studies.

COCP/M4CO 3 - 12 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

A Common Source of Inefficiency in Models

Example
The model snippet

constraint forall(j in index_set(V))
(count(X,V[j]) = C[j]);

should be reformulated, due to the shared array X for each j, into:

constraint global_cardinality(X,V,C);

by applying the default definition backwards:
at worst, it will be applied forwards while flattening;
at best, the invoked solver has better inference.

This advice holds for each global-constraint predicate,
and for all (quantified) constraints over shared decision variables.

COCP/M4CO 3 - 13 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 14 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Van Hentenryck and Carillon, 1988)
The element(i,X,e) constraint, where:

X is an array of decision variables,
i is an integer decision variable, and
e is a decision variable,

holds if and only if X[i] = e.

For better model readability,
the element predicate should not be used,
as the functional form X[ϕ] is allowed,
even when ϕ is an integer expression involving at least one decision variable.

COCP/M4CO 3 - 15 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Use: The element predicate and its functional form X[ϕ]
help model an unknown element of an array.

Example (Job allocation at minimal salary cost)
Given jobs Jobs and the salaries of work applicants Apps,
find a work applicant for each job such that some constraints (on the
qualifications of the work applicants for the jobs, on workload distribution, etc)
are satisfied and the total salary cost is minimal:

1 array[Apps] of 0..1000: Salary; % Salary[a] = cost per job to appl. a
2 array[Jobs] of var Apps: Worker; % Worker[j] = appl. allocated job j
3 solve minimize sum(j in Jobs)(Salary[Worker[j]]);
4 constraint ...; % qualifications, workload, etc

Line 3 is equivalent to the less readable formulation, and flattened into it:

array[Jobs] of var 0..max(Salary): Cost; % Cost[j] = salary for job j
constraint forall(j in Jobs)(element(Worker[j],Salary,Cost[j]));
solve minimize sum(Cost);

We do not know at modelling time the worker allocated to each job!
COCP/M4CO 3 - 16 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 17 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
Let item i have the given (weight or) volume Vol[i].
Let decision variable Bin[i] denote the bin into which item i is put.
Let decision variable Load[b] denote the load (= volume of items) of bin b.
The bin_packing_load(Load,Bin,Vol) constraint holds if and only if
each Load[b] is the sum of the Vol[i] where Bin[i] equals b.
Variant predicates exist (such as bin_packing in the following example).

Example (Balanced academic curriculum problem)
Given, for each course c in Courses, a workload W[c] and a set Pre[c] of
prerequisite courses, find a semester Sem[c] in 1..n for each course c in
order to satisfy all the course prerequisites under a balanced workload:

1 constraint bin_packing(sum(W) div n, Sem, W); % same load
2 constraint forall(c in Courses, p in Pre[c])

(Sem[p] < Sem[c]);

COCP/M4CO 3 - 18 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

A Common Source of Inefficiency in Models

Example
The model snippet

constraint forall(b in Bins)
(Load[b] = sum(i in Items where Bin[i] = b)(Vol[i]));

should be reformulated — due to the shared array Bin for each b
and due to the where clause on the decision variables Bin[i] — as follows:
constraint bin_packing_load(Load,Bin,Vol);

There are many incarnations of this pattern:
Bins = semesters; Items = courses; Bin[i] = semester of course i;
Vol[i] = credits for course i; Load[b] = credits for courses in sem. b;
Bins = staff; Items = tasks; Bin[i] = employee assigned to task i;
Vol[i] = reward for task i; Load[b] = income over tasks to employee b.

COCP/M4CO 3 - 19 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
Let item type t have the given (weight or) volume Vol[t].
Let item type t have the given (value or) profit Pro[t].
Let decision variable X[t] denote the number of items of type t that are put
into a given knapsack.
Let decision variable v denote the total volume of what is in the knapsack.
Let decision variable p denote the total profit of what is in the knapsack.
The knapsack(Vol,Pro,X,v,p) constraint holds if and only if
both sum(t in index_set(X))(Vol[t] * X[t]) = v
and sum(t in index_set(X))(Pro[t] * X[t]) = p.

Example
To model the Knapsack Problem for a knapsack of given capacity c,
add constraint v <= c and state solve maximize p.

COCP/M4CO 3 - 20 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (https://xkcd.com/287)

A simplified version of the Knapsack Problem, but still NP-hard (see an interview for some interesting trivia).

1 array[1..6] of int: Cost = [215,275,335,355,420,580];
2 array[1..6] of int: Joy = [0, 0, 0, 0, 0, 0];
3 array[1..6] of var 0..(1505 div min(Cost)): Amount;
4 constraint knapsack(Cost, Joy, Amount, 1505, 0);
5 solve satisfy;

COCP/M4CO 3 - 21 -

https://www.maa.org/press/periodicals/math-horizons/the-mathematics-behind-xkcd-a-conversation-with-randall-munroe-0

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 22 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Assume we need to schedule a set of non-interruptible tasks under constraints
(on resources, precedences, . . .) such that the last task has the earliest end.

Definition
A task Ti is a triple ⟨S[i],D[i],R[i]⟩ of parameters or variables, where:

S[i] is the starting time of task Ti
D[i] is the duration of task Ti
R[i] is the quantity of a global reusable resource needed by Ti

Tasks may be run in parallel when the capacity of the global resource suffices.
Resource
Quantity

Time

Limit

Schedule with parallel tasks and a capacitated global reusable resource
COCP/M4CO 3 - 23 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
A precedence constraint of task T1 on task T2 requires
that T1 ends before T2 starts. We say that task T1 precedes task T2.

Example (courtesy Magnus Rattfeldt)

Sample tasks (circles), durations (black numbers), resource requirements
(blue numbers), and precedences (orange arrows). Task T7 is a dummy task,

as we do not know which of tasks T5 and T6 will end last.

COCP/M4CO 3 - 24 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Let us temporarily ignore the capacitated global reusable resource:
If we have an uncapacitated global reusable resource or each task has enough
of its own local reusable resource, then the polynomial-time-solvable problem
of finding the earliest ending time, under only the precedence constraints, for
performing all the tasks can be modelled using linear inequalities.

Example (continued)
The precedence constraints indicated by the orange arrows on slide 24 are
modelled as follows, based on the task durations indicated there in black:

1 constraint D = [2,1,4,2,3,1,0];
2 constraint S[1]+D[1] <= S[2] /\ S[1]+D[1] <= S[3]
3 /\ S[1]+D[1] <= S[4] /\ S[2]+D[2] <= S[5]
4 /\ S[3]+D[3] <= S[6] /\ S[4]+D[4] <= S[5]
5 /\ S[5]+D[5] <= S[7] /\ S[6]+D[6] <= S[7];
6 % plug in here the resource constraint of the next slide
7 solve minimize S[7];

COCP/M4CO 3 - 25 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Aggoun and Beldiceanu, 1993)
The cumulative(S,D,R,c) constraint, where each task Ti has the starting
time S[i], duration D[i], and resource requirement R[i], holds if and only if
the resource capacity c is never exceeded when performing the Ti.

Note that cumulative does not ensure any precedence constraints between
the tasks: these have to be stated separately (as on the previous slide).

Example (end)
To ensure that the global reusable resource capacity of c = 8 units, say, is
never exceeded under the resource requirements of the tasks indicated in blue
on slide 24, plug the following constraint into the model of the previous slide:

6 constraint cumulative(S,D,[1,3,3,2,4,6,0],8);

COCP/M4CO 3 - 26 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
A non-overlap constraint between tasks T1 and T2 requires
that either T1 precedes T2 or T2 precedes T1 (say because both tasks require
a resource that is available only for one task at a time). We say that tasks T1
and T2 do not overlap in time.

Definition (Carlier, 1982)
The disjunctive(S,D) constraint, where each task Ti has the starting
time S[i] and duration D[i], holds if and only if no two tasks Ti and Tj
overlap in time. It is also known as unary.

It has among others the following definitions:
forall(i,j in 1..n where i<j)
((S[i] + D[i] <= S[j]) \/ (S[j] + D[j] <= S[i]))

cumulative(S, D, [1 | i in 1..n], 1)

Always use the most specific available constraint predicate!
COCP/M4CO 3 - 27 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 28 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Enabling the representation of a circuit in a digraph:
Let decision variable S[v] denote the successor of vertex v in the circuit.
The domain of S[v] is the set of vertices to which there is an arc from
vertex v, plus v itself (for a reason that will become apparent below).

Example

a

d

b

c

enum Vertices = {a,b,c,d};
array[Vertices] of var Vertices: S;
constraint S[a] != d /\ S[d] != c;

Assume the decision variables in S take the following values:

[b,c,d,a]: one circuit a → b → c → d → a

[c,a,b,d]: one subcircuit a → c → b → a and S[d]=d

[a,b,c,d]: one empty subcircuit: S[v]=v for all v in Vertices

[c,d,a,b]: two subcircuits, namely a → c → a and b → d → b

[b,d,a,d]: c → a → b → d is not a (sub)circuit
COCP/M4CO 3 - 29 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Laurière’78; Beldiceanu and Contejean’94)
The circuit(S) constraint holds if and only if the arcs v → S[v] for all v
form a Hamiltonian circuit: each vertex is visited exactly once.
The subcircuit(S) constraint holds if and only if circuit(S’) holds
for exactly one possibly empty but non-singleton subarray S’ of S,
and S[v] = v for all the other vertices v.

Examples (Vehicle routing)
Travelling salesperson problem (generalise this for vehicle routing problems
with multiple vehicles or with side constraints):

3 solve minimize sum(c in Cities)(Distance[c,Next[c]]);
4 constraint circuit(Next);

Requiring a directed path from vertex v to vertex w:
constraint subcircuit(S) /\ S[w] = v;

upon adding v to the domain of S[w] if need be.

Many graph constraints, including dpath, exist in MiniZinc.
COCP/M4CO 3 - 30 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 31 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example
We have lex_lesseq([1,2,34,5,678], [1,2,36,45,78]),
because 34 < 36, even though 678 ̸≤ 78.

Definition
The lex_lesseq(X,Y) constraint, where X and Y are same-length 1d arrays
of decision variables, say both with indices in 1..n, holds if and only if X is
lexicographically at most equal to Y:

either n = 0,
or X[1] < Y[1],
or X[1] = Y[1] & lex_lesseq(X[2..n],Y[2..n]).

Variant predicates exist.

Usage: Exploit index symmetries in matrix models, where there are arrays of
decision variables: see Topic 4: Modelling, and see Topic 5: Symmetry.

COCP/M4CO 3 - 32 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 33 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Regular Expressions

Examples (Regular Expressions)
(0|1)∗0 denotes the set of even binary numbers.
1∗(011∗)∗(0|ϵ) denotes the set of strings of zeros and ones
without consecutive zeros.
(0|1)∗00(0|1)∗ denotes the set of strings of zeros and ones
with consecutive zeros.

Notation for strings:
Let ϵ denote the empty string.
Let v · w denote the concatenation of strings v and w .
Let w i denote the concatenation of i copies of string w .

COCP/M4CO 3 - 34 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Regular Expressions and Languages

Definition
Let Σ be an alphabet, that is a finite set of symbols. A regular expression r
over Σ, and its regular language over Σ, denoted L(r), are defined as follows:

∅ is a regular expression: L(∅) = ∅.
ϵ is a regular expression: L(ϵ) = {ϵ}.
If σ ∈ Σ, then σ is a regular expression: L(σ) = {σ}.
If r and s are regular expressions, then rs is a regular expression:
L(rs) = {v · w | v ∈ L(r) ∧ w ∈ L(s)}.
If r and s are regular expressions, then r |s is a regular expression:
L(r |s) = L(r) ∪ L(s).
If r is a regular expression, then r∗ is a regular expression:
L(r∗) =

{
w i | i ∈ N ∧ w ∈ L(r)

}
.

COCP/M4CO 3 - 35 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Regular Expressions

Common abbreviations for regular expressions:
Let r be a regular expression:

r ? denotes r |ϵ; example in MiniZinc syntax: "12?"
r+ denotes rr∗; example in MiniZinc syntax: "34+"
r4 denotes rrrr ; example in MiniZinc syntax: "56{4}"
[1 2 3 4] denotes 1|2|3|4; same syntax in MiniZinc
[5-8] denotes [5 6 7 8]; same syntax in MiniZinc
[9-11 14] denotes [9 10 11 14]; same syntax in MiniZinc
. . . (see the MiniZinc documentation)

Usage: Regular expressions are good for the specification of regular
languages, but not so good for reasoning on them,
where one often uses finite automata instead.

COCP/M4CO 3 - 36 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Deterministic Finite Automaton (DFA), Nondet...FA (NFA)

Example (DFA for regular expression ss(ts)∗|ts(t|ss)∗ over Σ = {s, t})

a

b

c

d

e

s

t

s

s

t

s

t

Conventions:
Start state, marked by an arc coming in from nowhere: a.
Accepting states, marked by double circles: d and e.
Determinism: exactly one outgoing arc per σ ∈ Σ. Convention: non-drawn
arcs go to a non-accepting missing state with self-loops on each σ ∈ Σ.

COCP/M4CO 3 - 37 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition (Pesant, 2004)
The regular(X,T,q0,A) constraint holds if and only if the values of the 1d
array X of decision variables form a string of the regular language accepted by
the DFA with alphabet Σ, states Q, transition function T : Q × Σ → Q, start
state q0 ∈ Q, accepting states A ⊆ Q. Variants exist, including regular_nfa.
The regular(X,r) constraint holds if and only if the values of X form a string
of the regular language denoted by the regular expression r.

Example (�)

1 enum Alphabet = {s,t}; enum State = {a,b,c,d,e};
2 array[State,Alphabet] of opt State:

Transition = [| b,c | d,<> | e,<> | <>,b | c,e |];
3 array[1..n] of var Alphabet: X;
4 constraint regular(X,Transition,a,{d,e});
5 constraint regular(X,"s s (t s)* | t s (t | s s)*");

COCP/M4CO 3 - 38 -

https://pierre-flener.github.io/courses/COCP/models/regular-table-examples.mzn

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Definition
The table(X,T) constraint holds if and only if the values of the 1d array X of
decision variables form a row of the 2d array T of values.

The 2d array T gives an extensional definition of a new constraint predicate, as
opposed to the intensional definition so far for all other constraint predicates.
Note that regular and its variants are intensional as an automaton or regular
expression is independent of the length of X.

Example (�)
If the array X of the regular constraint of the previous slide for the DFA of two
slides ago has n=4 decision variables, then that constraint is equivalent to:

6 constraint table(X,[| s,s,t,s | t,s,s,s | t,s,t,t |]);

COCP/M4CO 3 - 39 -

https://pierre-flener.github.io/courses/COCP/models/regular-table-examples.mzn

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Nonogram Puzzle: instance)
Each hint gives the sequence of lengths of blue blocks in its row or column,
with at least one white cell between blocks, but possibly none before the first
block or after the last block (or both).

2 1

1

2
Solution:

2

1

1 2

1 2 1 2 2 1 2 1

COCP/M4CO 3 - 40 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Nonogram Puzzle: instance)
Each hint gives the sequence of lengths of blue blocks in its row or column,
with at least one white cell between blocks, but possibly none before the first
block or after the last block (or both).

2 1

1

2
Solution:

2

1

1 2

1 2 1 2 2 1 2 1

COCP/M4CO 3 - 40 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Nonogram Puzzle: model � + data �)
Model:

Decision variables: An enumeration-type decision variable for each cell,
with value w if it is coloured white, and value b if it is coloured blue.
Constraints: State a regular constraint for each hint. For example, for a
hint 2 3 1 on a row or column X of length n ≥ 8, state the
constraint regular(X, "w* b{2} w+ b{3} w+ b{1} w*").

See Survey of Paint-by-Number Puzzle Solvers: the straightforward model
outlined above fares well, at least with a CP solver, compared to programs.

COCP/M4CO 3 - 41 -

https://pierre-flener.github.io/courses/COCP/models/nonogram.mzn
https://pierre-flener.github.io/courses/COCP/models/nonogram.dzn
https://webpbn.com/survey

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (Nurse Rostering)
Each nurse is assigned each day to one of the following:
r regular shift (this value is not available on Sundays)
e extended shift (this value is not available on Sundays)
s Sunday shift (this value is only available on Sundays)
o day off

The labour union of the nurses imposes the following regulations:
Monday off after a Sunday shift
No single extended shifts
One day off after two consecutive extended shifts

For each nurse n, state the following constraint over the scheduling horizon,
starting on a Sunday (and typically 17 weeks longs in Sweden):

regular(Roster[n,..], "(s o | e e o | r | o)*")

Further, a hospital has constraints on nurse presence, on the Roster[..,d].
COCP/M4CO 3 - 42 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Kakuro Puzzle: instance)
Fill in digits of 1..9 such that the digits of each word are distinct and add up to
the sum to the left (for horizontal words) or top (for vertical words) of the word.

11 4

14

5

10
17

3
6

3

4

10

3

COCP/M4CO 3 - 43 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Kakuro Puzzle: instance)
Fill in digits of 1..9 such that the digits of each word are distinct and add up to
the sum to the left (for horizontal words) or top (for vertical words) of the word.

11 4

14

5
2 3

10
17

9 5 1 2
3

6
5 1

3

4
3 1

10
3 1 4 2

3
2 1

COCP/M4CO 3 - 43 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Kakuro Puzzle: first model)
Model:

Decision variables: A decision variable for each cell, with domain 1..9.
Constraints: For each row or column hint K[α] + · · · + K[β] = σ,
state all_different(i in α..β)(K[i])

/\ sum(i in α..β)(K[i]) = σ.
Performance, using a CP solver:

22 × 14 Kakuro with 114 hints: 9,638 nodes, 160 s
90 × 124 Kakuro with 4,558 hints: ? nodes, ? years

Symptom: The definition as two constraints may give weak inference:
for x!=y /\ x+y=4, CP inference gives x,y in 1..3, not noticing that 2
should be pruned from both domains. We want a custom predicate
all_different_sum, constraining up to 9 variables over the domain 1..9.

COCP/M4CO 3 - 44 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Kakuro Puzzle: second model)
New model: Use the regular or table predicate for the conjunction of the
all_different and sum-based constraints of each hint?

For each length-2 hint x+y=4, state regular([x,y],"1 3|3 1").
Note that we have precomputed that y != 2 for this particular case of
the wanted all_different_sum(X,σ), where X = [x,y] and σ = 2.
For each length-2 hint y+z=3, state regular([y,z],"1 2|2 1").
One can also use table instead:
table([x,y],[|1,3|3,1|]) /\ table([y,z],[|1,2|2,1|]).
The regular expressions and tables above are not derived parameters, but
precomputed solution sets to islands of common combinatorial structure
within all Kakuro puzzles. We revisit precomputation in Topic 4: Modelling.
But what about the length-9 hint K[α] + · · · + K[α+8] = 45?
There are 9! = 362,880 solutions to this hint. . .

COCP/M4CO 3 - 45 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Example (The Kakuro Puzzle: second model, end)
New model (end):

For each length-9 hint K[α] + · · · + K[α+8] = 45, it suffices
to state all_different([K[i] | i in α..α+8],
as the sum of 9 distinct non-0 digits is necessarily 45.
For each length-8 hint K[α] + · · · + K[α+7] = σ, it suffices
to state all_different([K[i] | i in α..α+7] ++ [45-σ]).
For each hint K[α] = σ, it suffices to state K[α] = σ.

Other opportunities for improvement exist.

New performance, using a CP solver:
22 × 14 Kakuro with 114 hints: 0 search nodes, 28 ms!
90 × 124 Kakuro with 4,558 hints: 0 nodes, 345 ms!

Published diabolically hard Kakuros (like the 22 × 14 one mentioned above)
where the new model pays off are rare.

The Kakuro story is based on material by Christian Schulte.COCP/M4CO 3 - 46 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

When to Use These Predicates?

Rapid prototyping of a new constraint predicate: The regular
and table predicates are very useful in the following conjunctive situation:

A needed constraint predicate γ on a 1d array of decision variables is not
a built-in of MiniZinc or the used solver.
A definition of γ in terms of built-in predicates is not apparent to the
modeller, or such a definition has turned out to inherit inference that
either has too high time complexity or is too weak (or both).
The modeller does not have the time or skill to design an inference
algorithm for γ (to be seen for CP solvers in part 2 of course 1DL442),
or deems γ not reusable for other problems.
The time complexity and strength of an inference algorithm for γ
are not deemed crucial for the time being.

COCP/M4CO 3 - 47 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Important Modelling Idea

Example (Encoding a function on a small set)
The non-linear constraint x*x=y, where there is exactly one y for every x,
may yield poor inference and become a bottleneck: for x only in 1..9, say,
try element(x, [d*d | d in 1..9], y), where d*d is not non-linear,
that is [d*d | d in 1..9][x] = y, for better inference and higher speed.

The element predicate is a specialisation of regular and table,
just like a function is a special case of a relation:

Example (Encoding a relation over a small set)
The non-linear constraint x*x=abs(y), where there are two y for most x, may
yield poor inference and become a bottleneck: for x only in 0..3, say, try
the less readable table([x,y], [|0,0|1,-1|1,1|2,-4|2,4|3,-9|3,9|])

for better inference and higher speed (but maybe not with a MIP solver).

COCP/M4CO 3 - 48 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Bibliography

Pesant, Gilles.
A regular language membership constraint for finite sequences of
variables.
Proceedings of CP 2004, Lecture Notes in Computer Science 3258,
pages 482 – 495. Springer, 2004.

Hopcroft, John E.; Motwani, Rajeev; Ullman, Jeffrey D.
Introduction to Automata Theory, Languages, and Computation.
Third edition. Addison-Wesley, 2007.

COCP/M4CO 3 - 49 -

https://dx.doi.org/10.1007/978-3-540-30201-8_36
https://dx.doi.org/10.1007/978-3-540-30201-8_36
https://www.amazon.com/Introduction-Automata-Theory-Languages-Computation/dp/0321455363

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Outline

1. Motivation

2. all different

3. nvalue

4. global cardinality

5. element

6. bin packing, knapsack

7. cumulative, disjunctive

8. circuit, subcircuit

9. lex lesseq

10. regular, table

11. Checklist

COCP/M4CO 3 - 50 -

Motivation

all
different

nvalue

global
cardinality

element

bin packing,
knapsack

cumulative,
disjunctive

circuit,
subcircuit

lex lesseq

regular,
table

Checklist

Checklist for Designing or Reading a Model

11 The predicates with the most specific semantics are used

12 Global constraints are not replaced by their definitions

13 Constraints over shared decision variables are ideally merged

14 The element predicate is not used explicitly, for clarity

15 Functions on small sets are encoded if needed by implicit element

16 Relations over small relations are encoded if needed by regular / table

COCP/M4CO 3 - 51 -

	Motivation
	all_ different
	nvalue
	global_ cardinality
	element
	bin_packing, knapsack
	cumulative, disjunctive
	circuit, subcircuit
	lex_lesseq
	regular, table
	Checklist

