
The MiniZinc

Language

Modelling

Set Variables

&Constraints

Modelling

Checklist

Checklist for Designing or Reading a Model

1 Each array index occurs twice in the comment on the array’s declaration;
array[I,J] of ...: X; % X[i,j] = the ... i ... j

2 Each array index range either starts from 1 or is an enum, for clarity
3 Beware of decision variables declared without tight domains
4 No decision variable has a non-inlined equality constraint
5 No decision variable of type opt ω is declared explicitly (in this course)
6 No sum|forall(i in 1..x) with a decision variable x is used
7 No equality constraints are pushed into an if then else expression
8 Beware of where ε and if ε with test ε on decision variables
9 Beware of explicit (<->) and implicit (bool2int(...)) reification

10 Beware of logical negation and disjunction: not, \/, exists, xor,
xorall, if ε then ϑ else ϖ endif, <-, ->, <->

11 Beware of nonlinear, pow, div, mod constraints on decision variables
M4CO topic 2 – 60 –



Motivation

all
different

nvalue

global
cardinality

element

bin packing,

knapsack

cumulative,

disjunctive

circuit,

subcircuit

lex lesseq

regular,

table

Checklist

Checklist for Designing or Reading a Model

12 Constraint predicates with the most specific meanings are used

13 Global constraints are used, instead of their definitions

14 Constraints over shared decision variables are ideally merged

15 The element predicate is not used explicitly, for readability

16 Functions on small sets are encoded by implicit element, if need be

17 Relations over small sets are encoded by regular or table, if faster
than a formulation in the scope of checklist items 6 to 11 of Topic 2

M4CO topic 3 – 51 –



The MiniZinc

Language

Modelling

Set Variables

&Constraints

Modelling

Checklist

Conventions of all Slides (recommended!)

Scalar identifiers (bool, enum items, int) start with a lowercase letter.
Mass identifiers (array, enum, set) start with an uppercase letter.
Arrays have self-explanatory function identifiers: a given|unknown total
function f : X → Y can be modelled as array[X] of par|var Y: F.
Index identifiers are lowercase and mnemonic: memory aid.
Comments about the next line end in “:”, like line 2 in the example below.

Example
1 int: nQueens; % the given number of queens
2 % Row[c] = the row number of the queen in column c:
3 array[1..nQueens] of var 1..nQueens: Row;

Variable Row[c] is like Row(c), denoting the function Row applied to arg. c.
The array Row is not a variable, but an array of variables: it has row numbers,
but calling it Rows would make Rows[c] seem to denote a set of rows for c!

M4CO topic 2 – 58 –



The MiniZinc

Language

Modelling

Set Variables

&Constraints

Modelling

Checklist

Ideas for Debugging and Accelerating a Model

If there are no solutions (or missing solutions) to a known-to-be satisfiable
instance, then:

• Comment away constraints in order to increase the solution set
and thereby find unsatisfiable constraints.

• In the IDE or CLI, choose findMUS as the backend
in order to find a minimal unsatisfiable subset (MUS) of the constraints:
see Section 3.8 of the MiniZinc Handbook.

In the IDE, choose “Run > Profile compilation” in order to see per model
line the numbers of constraints and decision variables generated by its
flattening, and the flattening time: if some of these numbers are extreme,
then you probably ran afoul of items of the checklist on the next slide.

In the IDE, choose “Run > Compile” in order to inspect the flat code.

M4CO topic 2 – 59 –

https://www.minizinc.org/doc-latest/en/find_mus.html

	The MiniZinc Language
	Modelling
	Set Variables &Constraints
	Modelling Checklist

